1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
// ----------------------------------------------------------------------------
// - Open3D: www.open3d.org -
// ----------------------------------------------------------------------------
// Copyright (c) 2018-2024 www.open3d.org
// SPDX-License-Identifier: MIT
// ----------------------------------------------------------------------------
#include "open3d/t/io/NumpyIO.h"
#include <cmath>
#include <limits>
#include "open3d/t/io/NumpyIO.h"
#include "open3d/utility/FileSystem.h"
#include "open3d/utility/Logging.h"
#include "tests/Tests.h"
#include "tests/core/CoreTest.h"
namespace open3d {
namespace tests {
class NumpyIOPermuteDevices : public PermuteDevices {};
INSTANTIATE_TEST_SUITE_P(Tensor,
NumpyIOPermuteDevices,
testing::ValuesIn(PermuteDevices::TestCases()));
TEST_P(NumpyIOPermuteDevices, NpyWriteRead) {
const core::Device device = GetParam();
const std::string file_name = "tensor.npy";
core::Tensor t;
core::Tensor t_load;
// 2x2 tensor.
t = core::Tensor::Init<float>({{1, 2}, {3, 4}}, device);
t.Save(file_name);
t_load = core::Tensor::Load(file_name);
EXPECT_TRUE(t.AllClose(t_load.To(device)));
// Non-contiguous tensor will be stored as contiguous tensor.
t = core::Tensor::Init<float>(
{{{0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11}},
{{12, 13, 14, 15}, {16, 17, 18, 19}, {20, 21, 22, 23}}},
device);
// t[0:2:1, 0:3:2, 0:4:2]
t = t.Slice(0, 0, 2, 1).Slice(1, 0, 3, 2).Slice(2, 0, 4, 2);
t.Save(file_name);
EXPECT_FALSE(t.IsContiguous());
t_load = core::Tensor::Load(file_name);
EXPECT_TRUE(t_load.IsContiguous());
EXPECT_EQ(t_load.GetShape(), core::SizeVector({2, 2, 2}));
EXPECT_EQ(t_load.ToFlatVector<float>(),
std::vector<float>({0, 2, 8, 10, 12, 14, 20, 22}));
// {} tensor (scalar).
t = core::Tensor::Init<float>(3.14, device);
t.Save(file_name);
t_load = core::Tensor::Load(file_name);
EXPECT_TRUE(t.AllClose(t_load.To(device)));
// {0} tensor.
t = core::Tensor::Ones({0}, core::Float32, device);
t.Save(file_name);
t_load = core::Tensor::Load(file_name);
EXPECT_TRUE(t.AllClose(t_load.To(device)));
// {0, 0} tensor.
t = core::Tensor::Ones({0, 0}, core::Float32, device);
t.Save(file_name);
t_load = core::Tensor::Load(file_name);
EXPECT_TRUE(t.AllClose(t_load.To(device)));
// {0, 1, 0} tensor.
t = core::Tensor::Ones({0, 1, 0}, core::Float32, device);
t.Save(file_name);
t_load = core::Tensor::Load(file_name);
EXPECT_TRUE(t.AllClose(t_load.To(device)));
// Clean up.
utility::filesystem::RemoveFile(file_name);
}
TEST_P(NumpyIOPermuteDevices, NpzWriteRead) {
const core::Device device = GetParam();
const std::string file_name = "tensors.npz";
// Empty map.
t::io::WriteNpz(file_name, {});
std::unordered_map<std::string, core::Tensor> empty_tensor_map =
t::io::ReadNpz(file_name);
EXPECT_EQ(empty_tensor_map.size(), 0);
core::Tensor t;
core::Tensor t_load;
// t0: 2x2 tensor.
core::Tensor t0 = core::Tensor::Init<int32_t>({{1, 2}, {3, 4}}, device);
// t1: Non-contiguous tensor will be stored as contiguous tensor.
// t1 sliced with [0:2:1, 0:3:2, 0:4:2].
core::Tensor t1 = core::Tensor::Init<float>(
{{{0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11}},
{{12, 13, 14, 15}, {16, 17, 18, 19}, {20, 21, 22, 23}}},
device);
t1 = t1.Slice(0, 0, 2, 1).Slice(1, 0, 3, 2).Slice(2, 0, 4, 2);
// t2: {} tensor (scalar).
core::Tensor t2 = core::Tensor::Init<float>(3.14, device);
// t3: {0} tensor.
core::Tensor t3 = core::Tensor::Ones({0}, core::Float32, device);
// t4: {0, 0} tensor.
core::Tensor t4 = core::Tensor::Ones({0, 0}, core::Float32, device);
// t5: {0, 1, 0} tensor.
core::Tensor t5 = core::Tensor::Ones({0, 1, 0}, core::Float32, device);
// Write t0 to t5.
t::io::WriteNpz(file_name, {{"t0", t0},
{"t1", t1},
{"t2", t2},
{"t3", t3},
{"t4", t4},
{"t5", t5}});
// Read from npz
std::unordered_map<std::string, core::Tensor> tensor_map =
t::io::ReadNpz(file_name);
EXPECT_EQ(tensor_map.size(), 6);
core::Tensor t0_load = tensor_map.at("t0");
EXPECT_TRUE(t0.AllClose(t0_load.To(device)));
EXPECT_EQ(t0.GetDtype(), t0_load.GetDtype());
core::Tensor t1_load = tensor_map.at("t1");
EXPECT_TRUE(t1.AllClose(t1_load.To(device)));
EXPECT_EQ(t1.GetDtype(), t1_load.GetDtype());
core::Tensor t2_load = tensor_map.at("t2");
EXPECT_TRUE(t2.AllClose(t2_load.To(device)));
EXPECT_EQ(t2.GetDtype(), t2_load.GetDtype());
core::Tensor t3_load = tensor_map.at("t3");
EXPECT_TRUE(t3.AllClose(t3_load.To(device)));
EXPECT_EQ(t3.GetDtype(), t3_load.GetDtype());
core::Tensor t4_load = tensor_map.at("t4");
EXPECT_TRUE(t4.AllClose(t4_load.To(device)));
EXPECT_EQ(t4.GetDtype(), t4_load.GetDtype());
core::Tensor t5_load = tensor_map.at("t5");
EXPECT_TRUE(t5.AllClose(t5_load.To(device)));
EXPECT_EQ(t5.GetDtype(), t5_load.GetDtype());
// Clean up.
utility::filesystem::RemoveFile(file_name);
}
} // namespace tests
} // namespace open3d
|