File: NumpyIO.cpp

package info (click to toggle)
open3d 0.19.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 83,496 kB
  • sloc: cpp: 206,543; python: 27,254; ansic: 8,356; javascript: 1,883; sh: 1,527; makefile: 259; xml: 69
file content (161 lines) | stat: -rw-r--r-- 5,505 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
// ----------------------------------------------------------------------------
// -                        Open3D: www.open3d.org                            -
// ----------------------------------------------------------------------------
// Copyright (c) 2018-2024 www.open3d.org
// SPDX-License-Identifier: MIT
// ----------------------------------------------------------------------------

#include "open3d/t/io/NumpyIO.h"

#include <cmath>
#include <limits>

#include "open3d/t/io/NumpyIO.h"
#include "open3d/utility/FileSystem.h"
#include "open3d/utility/Logging.h"
#include "tests/Tests.h"
#include "tests/core/CoreTest.h"

namespace open3d {
namespace tests {

class NumpyIOPermuteDevices : public PermuteDevices {};
INSTANTIATE_TEST_SUITE_P(Tensor,
                         NumpyIOPermuteDevices,
                         testing::ValuesIn(PermuteDevices::TestCases()));

TEST_P(NumpyIOPermuteDevices, NpyWriteRead) {
    const core::Device device = GetParam();
    const std::string file_name = "tensor.npy";

    core::Tensor t;
    core::Tensor t_load;

    // 2x2 tensor.
    t = core::Tensor::Init<float>({{1, 2}, {3, 4}}, device);
    t.Save(file_name);
    t_load = core::Tensor::Load(file_name);
    EXPECT_TRUE(t.AllClose(t_load.To(device)));

    // Non-contiguous tensor will be stored as contiguous tensor.
    t = core::Tensor::Init<float>(
            {{{0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11}},
             {{12, 13, 14, 15}, {16, 17, 18, 19}, {20, 21, 22, 23}}},
            device);
    // t[0:2:1, 0:3:2, 0:4:2]
    t = t.Slice(0, 0, 2, 1).Slice(1, 0, 3, 2).Slice(2, 0, 4, 2);
    t.Save(file_name);
    EXPECT_FALSE(t.IsContiguous());
    t_load = core::Tensor::Load(file_name);
    EXPECT_TRUE(t_load.IsContiguous());
    EXPECT_EQ(t_load.GetShape(), core::SizeVector({2, 2, 2}));
    EXPECT_EQ(t_load.ToFlatVector<float>(),
              std::vector<float>({0, 2, 8, 10, 12, 14, 20, 22}));

    // {} tensor (scalar).
    t = core::Tensor::Init<float>(3.14, device);
    t.Save(file_name);
    t_load = core::Tensor::Load(file_name);
    EXPECT_TRUE(t.AllClose(t_load.To(device)));

    // {0} tensor.
    t = core::Tensor::Ones({0}, core::Float32, device);
    t.Save(file_name);
    t_load = core::Tensor::Load(file_name);
    EXPECT_TRUE(t.AllClose(t_load.To(device)));

    // {0, 0} tensor.
    t = core::Tensor::Ones({0, 0}, core::Float32, device);
    t.Save(file_name);
    t_load = core::Tensor::Load(file_name);
    EXPECT_TRUE(t.AllClose(t_load.To(device)));

    // {0, 1, 0} tensor.
    t = core::Tensor::Ones({0, 1, 0}, core::Float32, device);
    t.Save(file_name);
    t_load = core::Tensor::Load(file_name);
    EXPECT_TRUE(t.AllClose(t_load.To(device)));

    // Clean up.
    utility::filesystem::RemoveFile(file_name);
}

TEST_P(NumpyIOPermuteDevices, NpzWriteRead) {
    const core::Device device = GetParam();
    const std::string file_name = "tensors.npz";

    // Empty map.
    t::io::WriteNpz(file_name, {});
    std::unordered_map<std::string, core::Tensor> empty_tensor_map =
            t::io::ReadNpz(file_name);
    EXPECT_EQ(empty_tensor_map.size(), 0);

    core::Tensor t;
    core::Tensor t_load;

    // t0: 2x2 tensor.
    core::Tensor t0 = core::Tensor::Init<int32_t>({{1, 2}, {3, 4}}, device);

    // t1: Non-contiguous tensor will be stored as contiguous tensor.
    // t1 sliced with [0:2:1, 0:3:2, 0:4:2].
    core::Tensor t1 = core::Tensor::Init<float>(
            {{{0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11}},
             {{12, 13, 14, 15}, {16, 17, 18, 19}, {20, 21, 22, 23}}},
            device);
    t1 = t1.Slice(0, 0, 2, 1).Slice(1, 0, 3, 2).Slice(2, 0, 4, 2);

    // t2: {} tensor (scalar).
    core::Tensor t2 = core::Tensor::Init<float>(3.14, device);

    // t3: {0} tensor.
    core::Tensor t3 = core::Tensor::Ones({0}, core::Float32, device);

    // t4: {0, 0} tensor.
    core::Tensor t4 = core::Tensor::Ones({0, 0}, core::Float32, device);

    // t5: {0, 1, 0} tensor.
    core::Tensor t5 = core::Tensor::Ones({0, 1, 0}, core::Float32, device);

    // Write t0 to t5.
    t::io::WriteNpz(file_name, {{"t0", t0},
                                {"t1", t1},
                                {"t2", t2},
                                {"t3", t3},
                                {"t4", t4},
                                {"t5", t5}});

    // Read from npz
    std::unordered_map<std::string, core::Tensor> tensor_map =
            t::io::ReadNpz(file_name);
    EXPECT_EQ(tensor_map.size(), 6);

    core::Tensor t0_load = tensor_map.at("t0");
    EXPECT_TRUE(t0.AllClose(t0_load.To(device)));
    EXPECT_EQ(t0.GetDtype(), t0_load.GetDtype());

    core::Tensor t1_load = tensor_map.at("t1");
    EXPECT_TRUE(t1.AllClose(t1_load.To(device)));
    EXPECT_EQ(t1.GetDtype(), t1_load.GetDtype());

    core::Tensor t2_load = tensor_map.at("t2");
    EXPECT_TRUE(t2.AllClose(t2_load.To(device)));
    EXPECT_EQ(t2.GetDtype(), t2_load.GetDtype());

    core::Tensor t3_load = tensor_map.at("t3");
    EXPECT_TRUE(t3.AllClose(t3_load.To(device)));
    EXPECT_EQ(t3.GetDtype(), t3_load.GetDtype());

    core::Tensor t4_load = tensor_map.at("t4");
    EXPECT_TRUE(t4.AllClose(t4_load.To(device)));
    EXPECT_EQ(t4.GetDtype(), t4_load.GetDtype());

    core::Tensor t5_load = tensor_map.at("t5");
    EXPECT_TRUE(t5.AllClose(t5_load.To(device)));
    EXPECT_EQ(t5.GetDtype(), t5_load.GetDtype());

    // Clean up.
    utility::filesystem::RemoveFile(file_name);
}

}  // namespace tests
}  // namespace open3d