File: test_unary_ew.py

package info (click to toggle)
open3d 0.19.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 83,496 kB
  • sloc: cpp: 206,543; python: 27,254; ansic: 8,356; javascript: 1,883; sh: 1,527; makefile: 259; xml: 69
file content (158 lines) | stat: -rw-r--r-- 4,311 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# ----------------------------------------------------------------------------
# -                        Open3D: www.open3d.org                            -
# ----------------------------------------------------------------------------
# Copyright (c) 2018-2024 www.open3d.org
# SPDX-License-Identifier: MIT
# ----------------------------------------------------------------------------

import open3d as o3d
import open3d.core as o3c
import numpy as np
import pytest
import operator

import sys
import os
sys.path.append(os.path.dirname(os.path.realpath(__file__)) + "/..")
from open3d_benchmark import list_tensor_sizes, list_non_bool_dtypes, list_float_dtypes, to_numpy_dtype


class UnaryEWOps:

    @staticmethod
    def sqrt(a):
        return a.sqrt()

    @staticmethod
    def sin(a):
        return a.sin()

    @staticmethod
    def cos(a):
        return a.cos()

    @staticmethod
    def neg(a):
        return a.neg()

    @staticmethod
    def exp(a):
        return a.exp()

    @staticmethod
    def abs(a):
        return a.abs()

    @staticmethod
    def isnan(a):
        return a.isnan()

    @staticmethod
    def isinf(a):
        return a.isinf()

    @staticmethod
    def isfinite(a):
        return a.isfinite()

    @staticmethod
    def floor(a):
        return a.floor()

    @staticmethod
    def ceil(a):
        return a.ceil()

    @staticmethod
    def round(a):
        return a.round()

    @staticmethod
    def trunc(a):
        return a.trunc()

    @staticmethod
    def logical_not(a):
        return a.logical_not()


def list_unary_ops():
    return [
        UnaryEWOps.neg,
        UnaryEWOps.abs,
        UnaryEWOps.isnan,
        UnaryEWOps.isinf,
        UnaryEWOps.isfinite,
        UnaryEWOps.floor,
        UnaryEWOps.ceil,
        UnaryEWOps.round,
        UnaryEWOps.trunc,
        UnaryEWOps.logical_not,
    ]


def list_float_unary_ops():
    return [
        UnaryEWOps.sqrt,
        UnaryEWOps.sin,
        UnaryEWOps.cos,
        UnaryEWOps.exp,
    ]


def to_numpy_unary_op(op):
    conversions = {
        UnaryEWOps.sqrt: np.sqrt,
        UnaryEWOps.sin: np.sin,
        UnaryEWOps.cos: np.cos,
        UnaryEWOps.neg: operator.neg,
        UnaryEWOps.exp: np.exp,
        UnaryEWOps.abs: np.abs,
        UnaryEWOps.isnan: np.isnan,
        UnaryEWOps.isinf: np.isinf,
        UnaryEWOps.isfinite: np.isfinite,
        UnaryEWOps.floor: np.floor,
        UnaryEWOps.ceil: np.ceil,
        UnaryEWOps.round: np.round,
        UnaryEWOps.trunc: np.trunc,
        UnaryEWOps.logical_not: np.logical_not,
    }
    return conversions[op]


@pytest.mark.parametrize("size", list_tensor_sizes())
@pytest.mark.parametrize("dtype", list_non_bool_dtypes())
@pytest.mark.parametrize("op", list_unary_ops())
def test_unary_ew_ops(benchmark, size, dtype, op):
    # Set upper bound to 88 to avoid overflow for exp() op.
    np_a = np.array(np.random.uniform(1, 88, size), dtype=to_numpy_dtype(dtype))
    a = o3c.Tensor(np_a, dtype=dtype, device=o3c.Device("CPU:0"))
    benchmark(op, a)


@pytest.mark.parametrize("size", list_tensor_sizes())
@pytest.mark.parametrize("dtype", list_float_dtypes())
@pytest.mark.parametrize("op", list_float_unary_ops())
def test_float_unary_ew_ops(benchmark, size, dtype, op):
    # Set upper bound to 88 to avoid overflow for exp() op.
    np_a = np.array(np.random.uniform(1, 88, size), dtype=to_numpy_dtype(dtype))
    a = o3c.Tensor(np_a, dtype=dtype, device=o3c.Device("CPU:0"))
    benchmark(op, a)


@pytest.mark.parametrize("size", list_tensor_sizes())
@pytest.mark.parametrize("dtype", list_non_bool_dtypes())
@pytest.mark.parametrize("op", list_unary_ops())
def test_unary_ew_ops_numpy(benchmark, size, dtype, op):
    # Set upper bound to 88 to avoid overflow for exp() op.
    np_a = np.array(np.random.uniform(1, 88, size), dtype=to_numpy_dtype(dtype))
    benchmark(to_numpy_unary_op(op), np_a)


@pytest.mark.parametrize("size", list_tensor_sizes())
@pytest.mark.parametrize("dtype", list_float_dtypes())
@pytest.mark.parametrize("op", list_float_unary_ops())
def test_float_unary_ew_ops_numpy(benchmark, size, dtype, op):
    # Set upper bound to 88 to avoid overflow for exp() op.
    np_a = np.array(np.random.uniform(1, 88, size), dtype=to_numpy_dtype(dtype))
    benchmark(to_numpy_unary_op(op), np_a)