1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
# ----------------------------------------------------------------------------
# - Open3D: www.open3d.org -
# ----------------------------------------------------------------------------
# Copyright (c) 2018-2024 www.open3d.org
# SPDX-License-Identifier: MIT
# ----------------------------------------------------------------------------
import os
import sys
import numpy as np
import open3d as o3d
import open3d.core as o3c
import pytest
sys.path.append(os.path.dirname(os.path.realpath(__file__)) + "/..")
from open3d_test import list_devices
np.random.seed(0)
@pytest.mark.parametrize("device", list_devices())
def test_knn_index(device):
dtype = o3c.float32
t = o3c.Tensor.zeros((10, 3), dtype, device=device)
nns = o3c.nns.NearestNeighborSearch(t)
assert nns.knn_index()
assert nns.fixed_radius_index(0.1)
assert nns.hybrid_index(0.1)
# Multi radii search is only supported on CPU.
if device.get_type() == o3c.Device.DeviceType.CPU:
assert nns.multi_radius_index()
@pytest.mark.parametrize("device", list_devices())
def test_knn_search(device):
dtype = o3c.float32
dataset_points = o3c.Tensor(
[[0.0, 0.0, 0.0], [0.0, 0.0, 0.1], [0.0, 0.0, 0.2], [0.0, 0.1, 0.0],
[0.0, 0.1, 0.1], [0.0, 0.1, 0.2], [0.0, 0.2, 0.0], [0.0, 0.2, 0.1],
[0.0, 0.2, 0.2], [0.1, 0.0, 0.0]],
dtype=dtype,
device=device)
nns = o3c.nns.NearestNeighborSearch(dataset_points)
nns.knn_index()
# Single query point.
query_points = o3c.Tensor([[0.064705, 0.043921, 0.087843]],
dtype=dtype,
device=device)
indices, distances = nns.knn_search(query_points, 3)
np.testing.assert_equal(indices.cpu().numpy(),
np.array([[1, 4, 9]], dtype=np.int64))
np.testing.assert_allclose(distances.cpu().numpy(),
np.array([[0.00626358, 0.00747938, 0.0108912]],
dtype=np.float64),
rtol=1e-5,
atol=0)
# Multiple query points.
query_points = o3c.Tensor(
[[0.064705, 0.043921, 0.087843], [0.064705, 0.043921, 0.087843]],
dtype=dtype,
device=device)
indices, distances = nns.knn_search(query_points, 3)
np.testing.assert_equal(indices.cpu().numpy(),
np.array([[1, 4, 9], [1, 4, 9]], dtype=np.int64))
np.testing.assert_allclose(distances.cpu().numpy(),
np.array([[0.00626358, 0.00747938, 0.0108912],
[0.00626358, 0.00747938, 0.0108912]],
dtype=np.float64),
rtol=1e-5,
atol=0)
@pytest.mark.parametrize("device", list_devices())
@pytest.mark.parametrize("dtype", [o3c.float32, o3c.float64])
def test_fixed_radius_search(device, dtype):
dataset_points = o3c.Tensor(
[[0.0, 0.0, 0.0], [0.0, 0.0, 0.1], [0.0, 0.0, 0.2], [0.0, 0.1, 0.0],
[0.0, 0.1, 0.1], [0.0, 0.1, 0.2], [0.0, 0.2, 0.0], [0.0, 0.2, 0.1],
[0.0, 0.2, 0.2], [0.1, 0.0, 0.0]],
dtype=dtype,
device=device)
nns = o3c.nns.NearestNeighborSearch(dataset_points)
nns.fixed_radius_index(0.1)
# Single query point.
query_points = o3c.Tensor([[0.064705, 0.043921, 0.087843]],
dtype=dtype,
device=device)
indices, distances, neighbors_row_splits = nns.fixed_radius_search(
query_points, 0.1)
np.testing.assert_equal(indices.cpu().numpy(),
np.array([1, 4], dtype=np.int64))
np.testing.assert_allclose(distances.cpu().numpy(),
np.array([0.00626358, 0.00747938],
dtype=np.float64),
rtol=1e-5,
atol=0)
np.testing.assert_equal(neighbors_row_splits.cpu().numpy(),
np.array([0, 2], dtype=np.int64))
# Multiple query points.
query_points = o3c.Tensor(
[[0.064705, 0.043921, 0.087843], [0.064705, 0.043921, 0.087843]],
dtype=dtype,
device=device)
indices, distances, neighbors_row_splits = nns.fixed_radius_search(
query_points, 0.1)
np.testing.assert_equal(indices.cpu().numpy(),
np.array([1, 4, 1, 4], dtype=np.int64))
np.testing.assert_allclose(
distances.cpu().numpy(),
np.array([0.00626358, 0.00747938, 0.00626358, 0.00747938],
dtype=np.float64),
rtol=1e-5,
atol=0)
np.testing.assert_equal(neighbors_row_splits.cpu().numpy(),
np.array([0, 2, 4], dtype=np.int64))
@pytest.mark.parametrize("dtype", [o3c.float32, o3c.float64])
def test_hybrid_search_random(dtype):
if o3c.cuda.device_count() > 0:
dataset_size, query_size = 1000, 100
radius, k = 0.1, 10
dataset_np = np.random.rand(dataset_size, 3)
dataset_points = o3c.Tensor(dataset_np, dtype=dtype)
dataset_points_cuda = dataset_points.cuda()
nns = o3c.nns.NearestNeighborSearch(dataset_points)
nns_cuda = o3c.nns.NearestNeighborSearch(dataset_points_cuda)
for _ in range(10):
query_np = np.random.rand(query_size, 3)
query_points = o3c.Tensor(query_np, dtype=dtype)
query_points_cuda = query_points.cuda()
nns.hybrid_index(radius)
indices, distances, counts = nns.hybrid_search(
query_points, radius, k)
nns_cuda.hybrid_index(radius)
indices_cuda, distances_cuda, counts_cuda = nns_cuda.hybrid_search(
query_points_cuda, radius, k)
np.testing.assert_allclose(distances.numpy(),
distances_cuda.cpu().numpy(),
rtol=1e-5,
atol=0)
np.testing.assert_equal(indices.numpy(), indices_cuda.cpu().numpy())
np.testing.assert_equal(counts.numpy(), counts_cuda.cpu().numpy())
@pytest.mark.parametrize("dtype", [o3c.float32, o3c.float64])
def test_fixed_radius_search_random(dtype):
if o3c.cuda.device_count() > 0:
dataset_size, query_size = 1000, 100
radius = 0.1
dataset_np = np.random.rand(dataset_size, 3)
dataset_points = o3c.Tensor(dataset_np, dtype=dtype)
dataset_points_cuda = dataset_points.cuda()
nns = o3c.nns.NearestNeighborSearch(dataset_points)
nns_cuda = o3c.nns.NearestNeighborSearch(dataset_points_cuda)
for _ in range(10):
query_np = np.random.rand(query_size, 3)
query_points = o3c.Tensor(query_np, dtype=dtype)
query_points_cuda = query_points.cuda()
nns.fixed_radius_index(radius)
indices, distances, neighbors_row_splits = nns.fixed_radius_search(
query_points, radius)
nns_cuda.fixed_radius_index(radius)
indices_cuda, distances_cuda, neighbors_row_splits_cuda = nns_cuda.fixed_radius_search(
query_points_cuda, radius)
np.testing.assert_equal(neighbors_row_splits.numpy(),
neighbors_row_splits_cuda.cpu().numpy())
np.testing.assert_allclose(distances.numpy(),
distances_cuda.cpu().numpy(),
rtol=1e-5,
atol=0)
np.testing.assert_equal(indices.numpy(), indices_cuda.cpu().numpy())
|