1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
|
# ----------------------------------------------------------------------------
# - Open3D: www.open3d.org -
# ----------------------------------------------------------------------------
# Copyright (c) 2018-2024 www.open3d.org
# SPDX-License-Identifier: MIT
# ----------------------------------------------------------------------------
import open3d as o3d
import numpy as np
from scipy.spatial import cKDTree
import pytest
import mltest
if o3d._build_config['BUILD_PYTORCH_OPS']:
import torch
if o3d._build_config['BUILD_TENSORFLOW_OPS']:
import tensorflow as tf
# skip all tests if the tf ops were not built and disable warnings caused by
# tensorflow
pytestmark = mltest.default_marks
# the supported dtypes for the point coordinates
dtypes = pytest.mark.parametrize('dtype', [np.float32, np.float64])
@dtypes
@mltest.parametrize.ml_cpu_only
@pytest.mark.parametrize('num_points_queries', [(10, 5), (31, 33), (33, 31),
(123, 345)])
@pytest.mark.parametrize('metric', ['L1', 'L2'])
@pytest.mark.parametrize('ignore_query_point', [False, True])
@pytest.mark.parametrize('return_distances', [False, True])
@pytest.mark.parametrize('normalize_distances', [False, True])
@pytest.mark.parametrize('index_dtype', ['int32', 'int64'])
def test_radius_search(dtype, ml, num_points_queries, metric,
ignore_query_point, return_distances,
normalize_distances, index_dtype):
rng = np.random.RandomState(123)
num_points, num_queries = num_points_queries
points = rng.random(size=(num_points, 3)).astype(dtype)
if ignore_query_point:
queries = points
else:
queries = rng.random(size=(num_queries, 3)).astype(dtype)
radii = rng.uniform(0.1, 0.3, size=queries.shape[:1]).astype(dtype)
# kd tree for computing the ground truth
tree = cKDTree(points, copy_data=True)
p_norm = {'L1': 1, 'L2': 2, 'Linf': np.inf}[metric]
gt_neighbors_index = [
tree.query_ball_point(q, r, p=p_norm) for q, r in zip(queries, radii)
]
if ml.module.__name__ == 'tensorflow':
index_dtype_ = {'int32': tf.int32, 'int64': tf.int64}[index_dtype]
elif ml.module.__name__ == 'torch':
index_dtype_ = {'int32': torch.int32, 'int64': torch.int64}[index_dtype]
else:
raise Exception('Unsupported ml framework')
layer = ml.layers.RadiusSearch(metric=metric,
ignore_query_point=ignore_query_point,
return_distances=return_distances,
normalize_distances=normalize_distances,
index_dtype=index_dtype_)
ans = mltest.run_op(
ml,
ml.device,
True,
layer,
points,
queries=queries,
radii=radii,
)
index_dtype_np = {'int32': np.int32, 'int64': np.int64}[index_dtype]
assert ans.neighbors_index.dtype == index_dtype_np
for i, q in enumerate(queries):
# check neighbors
start = ans.neighbors_row_splits[i]
end = ans.neighbors_row_splits[i + 1]
q_neighbors_index = ans.neighbors_index[start:end]
gt_set = set(gt_neighbors_index[i])
if ignore_query_point:
gt_set.remove(i)
assert gt_set == set(q_neighbors_index)
# check distances
if return_distances:
q_neighbors_dist = ans.neighbors_distance[start:end]
for j, dist in zip(q_neighbors_index, q_neighbors_dist):
if metric == 'L2':
gt_dist = np.sum((q - points[j])**2)
if normalize_distances:
gt_dist /= radii[i]**2
else:
gt_dist = np.linalg.norm(q - points[j], ord=p_norm)
if normalize_distances:
gt_dist /= radii[i]
np.testing.assert_allclose(dist, gt_dist, rtol=1e-7, atol=1e-7)
@mltest.parametrize.ml_cpu_only
def test_radius_search_empty_point_sets(ml):
rng = np.random.RandomState(123)
dtype = np.float32
# no query points
points = rng.random(size=(100, 3)).astype(dtype)
queries = rng.random(size=(0, 3)).astype(dtype)
radii = rng.uniform(0.1, 0.3, size=(0,)).astype(dtype)
layer = ml.layers.RadiusSearch(return_distances=True)
ans = mltest.run_op(
ml,
ml.device,
True,
layer,
points,
queries=queries,
radii=radii,
)
assert ans.neighbors_index.shape == (0,)
assert ans.neighbors_row_splits.shape == (1,)
assert ans.neighbors_distance.shape == (0,)
# no input points
points = rng.random(size=(0, 3)).astype(dtype)
queries = rng.random(size=(100, 3)).astype(dtype)
radii = rng.uniform(0.1, 0.3, size=(100,)).astype(dtype)
ans = mltest.run_op(
ml,
ml.device,
True,
layer,
points,
queries=queries,
radii=radii,
)
assert ans.neighbors_index.shape == (0,)
assert ans.neighbors_row_splits.shape == (101,)
np.testing.assert_array_equal(np.zeros_like(ans.neighbors_row_splits),
ans.neighbors_row_splits)
assert ans.neighbors_distance.shape == (0,)
@mltest.parametrize.ml_cpu_only
@pytest.mark.parametrize('batch_size', [2, 3, 8])
def test_radius_search_batches(ml, batch_size):
dtype = np.float32
metric = 'L2'
p_norm = {'L1': 1, 'L2': 2, 'Linf': np.inf}[metric]
ignore_query_point = False
return_distances = True
normalize_distances = True
rng = np.random.RandomState(123)
# create array defining start and end of each batch
points_row_splits = np.zeros(shape=(batch_size + 1,), dtype=np.int64)
queries_row_splits = np.zeros(shape=(batch_size + 1,), dtype=np.int64)
for i in range(batch_size):
points_row_splits[i + 1] = rng.randint(15) + points_row_splits[i]
queries_row_splits[i + 1] = rng.randint(15) + queries_row_splits[i]
num_points = points_row_splits[-1]
num_queries = queries_row_splits[-1]
points = rng.random(size=(num_points, 3)).astype(dtype)
if ignore_query_point:
queries = points
queries_row_splits = points_row_splits
else:
queries = rng.random(size=(num_queries, 3)).astype(dtype)
radii = rng.uniform(0.1, 0.3, size=queries.shape[:1]).astype(dtype)
# kd trees for computing the ground truth
gt_neighbors_index = []
for i in range(batch_size):
points_i = points[points_row_splits[i]:points_row_splits[i + 1]]
queries_i = queries[queries_row_splits[i]:queries_row_splits[i + 1]]
radii_i = radii[queries_row_splits[i]:queries_row_splits[i + 1]]
tree = cKDTree(points_i, copy_data=True)
gt_neighbors_index.extend([
list(tree.query_ball_point(q, r, p=p_norm) + points_row_splits[i])
for q, r in zip(queries_i, radii_i)
])
layer = ml.layers.RadiusSearch(metric=metric,
ignore_query_point=ignore_query_point,
normalize_distances=normalize_distances,
return_distances=return_distances)
ans = mltest.run_op(ml,
ml.device,
True,
layer,
points,
queries=queries,
radii=radii,
points_row_splits=points_row_splits,
queries_row_splits=queries_row_splits)
for i, q in enumerate(queries):
# check neighbors
start = ans.neighbors_row_splits[i]
end = ans.neighbors_row_splits[i + 1]
q_neighbors_index = ans.neighbors_index[start:end]
gt_set = set(gt_neighbors_index[i])
if ignore_query_point:
gt_set.remove(i)
assert gt_set == set(q_neighbors_index)
# check distances
if return_distances:
q_neighbors_dist = ans.neighbors_distance[start:end]
for j, dist in zip(q_neighbors_index, q_neighbors_dist):
if metric == 'L2':
gt_dist = np.sum((q - points[j])**2)
if normalize_distances:
gt_dist /= radii[i]**2
else:
gt_dist = np.linalg.norm(q - points[j], ord=p_norm)
if normalize_distances:
gt_dist /= radii[i]
np.testing.assert_allclose(dist, gt_dist, rtol=1e-7, atol=1e-7)
|