1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
|
# ----------------------------------------------------------------------------
# - Open3D: www.open3d.org -
# ----------------------------------------------------------------------------
# Copyright (c) 2018-2024 www.open3d.org
# SPDX-License-Identifier: MIT
# ----------------------------------------------------------------------------
import open3d as o3d
import numpy as np
import pytest
import mltest
import torch
# skip all tests if the tf ops were not built and disable warnings caused by
# tensorflow
pytestmark = mltest.default_marks
# the supported dtypes for the values
dtypes = pytest.mark.parametrize('dtype',
[np.int32, np.int64, np.float32, np.float64])
# this class is only available for torch
@dtypes
@mltest.parametrize.ml_torch_only
def test_creation(dtype, ml):
values = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], dtype=dtype)
row_splits = np.array([0, 2, 4, 4, 5, 12, 13], dtype=np.int64)
# From numpy arrays
r_tensor = ml.classes.RaggedTensor.from_row_splits(values, row_splits)
for i, tensor in enumerate(r_tensor):
np.testing.assert_equal(mltest.to_numpy(tensor),
values[row_splits[i]:row_splits[i + 1]])
# From List
r_tensor = ml.classes.RaggedTensor.from_row_splits(list(values),
list(row_splits))
for i, tensor in enumerate(r_tensor):
np.testing.assert_equal(mltest.to_numpy(tensor),
values[row_splits[i]:row_splits[i + 1]])
# Incompatible tensors.
# Non zero first element.
row_splits = np.array([1, 2, 4, 4, 5, 12, 13], dtype=np.int64)
with np.testing.assert_raises(RuntimeError):
ml.classes.RaggedTensor.from_row_splits(values, row_splits)
# Rank > 1.
row_splits = np.array([[0, 2, 4, 4, 5, 12, 13]], dtype=np.int64)
with np.testing.assert_raises(RuntimeError):
ml.classes.RaggedTensor.from_row_splits(values, row_splits)
# Not increasing monotonically.
row_splits = np.array([[0, 2, 4, 6, 5, 12, 13]], dtype=np.int64)
with np.testing.assert_raises(RuntimeError):
ml.classes.RaggedTensor.from_row_splits(values, row_splits)
# Wrong dtype.
row_splits = np.array([0, 2, 4, 4, 5, 12, 13], dtype=np.float32)
with np.testing.assert_raises(RuntimeError):
ml.classes.RaggedTensor.from_row_splits(values, row_splits)
# test with more dimensions
@dtypes
@mltest.parametrize.ml_torch_only
def test_creation_more_dims(dtype, ml):
values = np.array([[0, 0], [1, 1], [2, 2], [3, 3], [4, 4], [5, 5], [6, 6],
[7, 7], [8, 8], [9, 9], [10, 10], [11, 11], [12, 12]],
dtype=dtype)
row_splits = np.array([0, 2, 4, 4, 5, 12, 13], dtype=np.int64)
# From numpy arrays
r_tensor = ml.classes.RaggedTensor.from_row_splits(values, row_splits)
for i, tensor in enumerate(r_tensor):
np.testing.assert_equal(mltest.to_numpy(tensor),
values[row_splits[i]:row_splits[i + 1]])
# From List
r_tensor = ml.classes.RaggedTensor.from_row_splits(list(values),
list(row_splits))
for i, tensor in enumerate(r_tensor):
np.testing.assert_equal(mltest.to_numpy(tensor),
values[row_splits[i]:row_splits[i + 1]])
@mltest.parametrize.ml_torch_only
def test_backprop(ml):
# Create 3 different RaggedTensors and torch.tensor
t_1 = torch.randn(10, 3, requires_grad=True)
row_splits = torch.tensor([0, 4, 6, 6, 8, 10])
r_1 = ml.classes.RaggedTensor.from_row_splits(t_1.detach().numpy(),
row_splits)
r_1.requires_grad = True
t_2 = torch.randn(10, 3, requires_grad=True)
r_2 = ml.classes.RaggedTensor.from_row_splits(t_2.detach().numpy(),
row_splits)
r_2.requires_grad = True
t_3 = torch.randn(10, 3, requires_grad=True)
r_3 = ml.classes.RaggedTensor.from_row_splits(t_3.detach().numpy(),
row_splits)
r_3.requires_grad = True
r_ans = (r_1 + r_2) * r_3
t_ans = (t_1 + t_2) * t_3
np.testing.assert_equal(mltest.to_numpy(t_ans),
mltest.to_numpy(r_ans.values))
# Compute gradients
t_ans.sum().backward()
r_ans.values.sum().backward()
np.testing.assert_equal(mltest.to_numpy(t_1.grad),
mltest.to_numpy(r_1.values.grad))
@dtypes
@mltest.parametrize.ml_torch_only
def test_binary_ew_ops(dtype, ml):
# Binary Ops.
t_1 = torch.from_numpy(
np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
dtype=dtype)).to(ml.device)
t_2 = torch.from_numpy(
np.array([2, 3, 6, 3, 11, 3, 43, 12, 8, 15, 12, 87, 45],
dtype=dtype)).to(ml.device)
row_splits = torch.from_numpy(
np.array([0, 2, 4, 4, 5, 12, 13], dtype=np.int64)).to(ml.device)
a = ml.classes.RaggedTensor.from_row_splits(t_1, row_splits)
b = ml.classes.RaggedTensor.from_row_splits(t_2, row_splits)
np.testing.assert_equal(
(a + b).values.cpu().numpy(),
np.array([2, 4, 8, 6, 15, 8, 49, 19, 16, 24, 22, 98, 57]))
np.testing.assert_equal(
(a - b).values.cpu().numpy(),
np.array([-2, -2, -4, 0, -7, 2, -37, -5, 0, -6, -2, -76, -33]))
np.testing.assert_equal(
(a * b).values.cpu().numpy(),
np.array([0, 3, 12, 9, 44, 15, 258, 84, 64, 135, 120, 957, 540]))
np.testing.assert_equal((a / b).values.cpu().numpy(),
(t_1 / t_2).cpu().numpy())
np.testing.assert_equal((a // b).values.cpu().numpy(),
np.array([0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0]))
# Assignment Ops.
a = ml.classes.RaggedTensor.from_row_splits(t_1, row_splits)
a += b
np.testing.assert_equal(
a.values.cpu().numpy(),
np.array([2, 4, 8, 6, 15, 8, 49, 19, 16, 24, 22, 98, 57]))
a = ml.classes.RaggedTensor.from_row_splits(t_1, row_splits)
a -= b
np.testing.assert_equal(
a.values.cpu().numpy(),
np.array([-2, -2, -4, 0, -7, 2, -37, -5, 0, -6, -2, -76, -33]))
a = ml.classes.RaggedTensor.from_row_splits(t_1, row_splits)
a *= b
np.testing.assert_equal(
a.values.cpu().numpy(),
np.array([0, 3, 12, 9, 44, 15, 258, 84, 64, 135, 120, 957, 540]))
a = ml.classes.RaggedTensor.from_row_splits(t_1, row_splits)
a //= b
np.testing.assert_equal(a.values.cpu().numpy(),
np.array([0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0]))
# Failure cases with incompatible shape.
# Different row_splits.
row_splits = [0, 4, 5, 13]
a = ml.classes.RaggedTensor.from_row_splits(t_1, row_splits)
row_splits = [0, 4, 6, 13]
b = ml.classes.RaggedTensor.from_row_splits(t_2, row_splits)
with np.testing.assert_raises(ValueError):
a + b
with np.testing.assert_raises(ValueError):
a += b
# Different length
row_splits = [0, 4, 5, 13]
a = ml.classes.RaggedTensor.from_row_splits(t_1, row_splits)
row_splits = [0, 4, 13]
b = ml.classes.RaggedTensor.from_row_splits(t_2, row_splits)
with np.testing.assert_raises(ValueError):
a + b
with np.testing.assert_raises(ValueError):
a += b
|