File: test_ragged_to_dense.py

package info (click to toggle)
open3d 0.19.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 83,496 kB
  • sloc: cpp: 206,543; python: 27,254; ansic: 8,356; javascript: 1,883; sh: 1,527; makefile: 259; xml: 69
file content (99 lines) | stat: -rw-r--r-- 3,583 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
# ----------------------------------------------------------------------------
# -                        Open3D: www.open3d.org                            -
# ----------------------------------------------------------------------------
# Copyright (c) 2018-2024 www.open3d.org
# SPDX-License-Identifier: MIT
# ----------------------------------------------------------------------------

import open3d as o3d
import numpy as np
import pytest
import mltest

# skip all tests if the tf ops were not built and disable warnings caused by
# tensorflow
pytestmark = mltest.default_marks

# the supported dtypes for the values
dtypes = pytest.mark.parametrize('dtype',
                                 [np.int32, np.int64, np.float32, np.float64])

# this op is only available for torch


@dtypes
@mltest.parametrize.ml_torch_only
def test_ragged_to_dense(dtype, ml):

    values = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], dtype=dtype)
    row_splits = np.array([0, 2, 4, 4, 5, 12, 13], dtype=np.int64)
    out_col_size = 4
    default_value = np.array(-1, dtype=dtype)

    ans = mltest.run_op(ml, ml.device, True, ml.ops.ragged_to_dense, values,
                        row_splits, out_col_size, default_value)

    expected = np.full((row_splits.shape[0] - 1, out_col_size), default_value)
    for i in range(row_splits.shape[0] - 1):
        for j, value_idx in enumerate(range(row_splits[i], row_splits[i + 1])):
            if j < expected.shape[1]:
                expected[i, j] = values[value_idx]

    np.testing.assert_equal(ans, expected)


# test with more dimensions
@dtypes
@mltest.parametrize.ml_torch_only
def test_ragged_to_dense_more_dims(dtype, ml):

    values = np.array([[0, 0], [1, 1], [2, 2], [3, 3], [4, 4], [5, 5], [6, 6],
                       [7, 7], [8, 8], [9, 9], [10, 10], [11, 11], [12, 12]],
                      dtype=dtype)
    row_splits = np.array([0, 2, 4, 4, 5, 12, 13], dtype=np.int64)
    out_col_size = 4
    default_value = np.array([-1, -1], dtype=dtype)

    ans = mltest.run_op(ml, ml.device, True, ml.ops.ragged_to_dense, values,
                        row_splits, out_col_size, default_value)

    expected = np.full((
        row_splits.shape[0] - 1,
        out_col_size,
    ) + default_value.shape, default_value)
    for i in range(row_splits.shape[0] - 1):
        for j, value_idx in enumerate(range(row_splits[i], row_splits[i + 1])):
            if j < expected.shape[1]:
                expected[i, j] = values[value_idx]

    np.testing.assert_equal(ans, expected)


# test with larger random data
@dtypes
@mltest.parametrize.ml_torch_only
@pytest.mark.parametrize('seed', [123, 456])
def test_ragged_to_dense_random(dtype, ml, seed):

    rng = np.random.RandomState(seed)

    values = rng.random(size=(10000,)).astype(dtype)
    row_splits = [0]
    while row_splits[-1] < values.shape[0]:
        row_splits.append(row_splits[-1] + rng.randint(0, 10))
    row_splits[-1] = values.shape[0]
    row_splits = np.array(row_splits, dtype=np.int64)
    out_col_size = rng.randint(1, 37)

    default_value = np.array(-1, dtype=dtype)

    ans = mltest.run_op(ml, ml.device, True, ml.ops.ragged_to_dense, values,
                        row_splits, out_col_size, default_value)

    expected = np.full((row_splits.shape[0] - 1, out_col_size), default_value)
    for i in range(row_splits.shape[0] - 1):
        for j, value_idx in enumerate(range(row_splits[i], row_splits[i + 1])):
            if j < expected.shape[1]:
                expected[i, j] = values[value_idx]

    np.testing.assert_equal(ans, expected)