1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
|
# ----------------------------------------------------------------------------
# - Open3D: www.open3d.org -
# ----------------------------------------------------------------------------
# Copyright (c) 2018-2024 www.open3d.org
# SPDX-License-Identifier: MIT
# ----------------------------------------------------------------------------
import open3d as o3d
import open3d.core as o3c
from open3d.t.geometry import Image
import numpy as np
import pytest
import pickle
import tempfile
import sys
import os
sys.path.append(os.path.dirname(os.path.realpath(__file__)) + "/../..")
from open3d_test import list_devices
@pytest.mark.parametrize("device", list_devices())
def test_to_linear_transform(device):
TOL = {"rtol": 1e-7, "atol": 1e-7}
# reference data
input_data = np.array((10, 25, 0, 13, 5, 40), dtype=np.uint8).reshape(
(2, 3, 1))
output_ref = input_data / 255.
negative_image_ref = 1. - input_data / 255.
saturate_ref = np.array((180, 255, 0, 240, 80, 255),
dtype=np.uint8).reshape((2, 3, 1))
t_input = o3c.Tensor(input_data, dtype=o3c.uint8, device=device)
t_input3 = o3c.Tensor(np.broadcast_to(input_data, shape=(2, 3, 3)),
dtype=o3c.uint8,
device=device)
input1 = Image(t_input)
# UInt8 -> Float32: auto scale = 1./255
output1 = input1.to(o3c.float32)
assert output1.dtype == o3c.float32
np.testing.assert_allclose(output1.as_tensor().cpu().numpy(), output_ref,
**TOL)
# 3 channels
input3 = Image(t_input3)
output3 = input3.to(o3c.float32)
np.testing.assert_allclose(output3.as_tensor().cpu().numpy(),
np.broadcast_to(output_ref, (2, 3, 3)), **TOL)
# LinearTransform to negative image
output1.linear_transform(scale=-1, offset=1)
np.testing.assert_allclose(output1.as_tensor().cpu().numpy(),
negative_image_ref)
# 3 channels
output3.linear_transform(scale=-1, offset=1)
np.testing.assert_allclose(output3.as_tensor().cpu().numpy(),
np.broadcast_to(negative_image_ref, (2, 3, 3)),
**TOL)
# UInt8 -> UInt16: auto scale = 1
output1 = input1.to(o3c.uint16)
assert output1.dtype == o3c.uint16
np.testing.assert_allclose(output1.as_tensor().cpu().numpy(), input_data,
**TOL)
# 3 channels
output3 = input3.to(o3c.uint16)
np.testing.assert_allclose(output3.as_tensor().cpu().numpy(),
np.broadcast_to(input_data, (2, 3, 3)), **TOL)
# Saturation to [0, 255]
output1 = input1.linear_transform(scale=20, offset=-20)
np.testing.assert_allclose(output1.as_tensor().cpu().numpy(), saturate_ref,
**TOL)
# 3 channels
output3 = input3.linear_transform(scale=20, offset=-20)
np.testing.assert_allclose(output3.as_tensor().cpu().numpy(),
np.broadcast_to(saturate_ref, (2, 3, 3)), **TOL)
@pytest.mark.parametrize("device", list_devices())
def test_buffer_protocol_cpu(device):
if device.get_type() == o3c.Device.DeviceType.CPU:
# (rows, cols) -> (rows, cols, 1)
src_t = np.array([[0, 1, 2], [3, 4, 5]], dtype=np.float32)
im = Image(o3d.core.Tensor.from_numpy(src_t))
dst_t = np.asarray(im)
np.testing.assert_array_equal(src_t[..., None], dst_t)
# Check that the memory is shared.
dst_t[0, 0, 0] = 100
new_dst_t = np.asarray(im)
np.testing.assert_array_equal(dst_t, new_dst_t)
# (rows, cols, channels) -> (rows, cols, channels)
src_t = np.arange(18, dtype=np.float32).reshape((2, 3, 3))
im = Image(o3d.core.Tensor.from_numpy(src_t))
dst_t = np.asarray(im)
np.testing.assert_array_equal(src_t, dst_t)
# Check that the memory is shared.
dst_t[0, 0, 0] = 100
new_dst_t = np.asarray(im)
np.testing.assert_array_equal(dst_t, new_dst_t)
else:
# (rows, cols) -> (rows, cols, 1)
src_t = np.array([[0, 1, 2], [3, 4, 5]], dtype=np.float32)
im = Image(o3d.core.Tensor.from_numpy(src_t))
im = im.to(device=device)
# Ideally we shall test exception if .cpu() is not called, but
# pytest.raises() cannot catch this exception for some reason.
dst_t = np.asarray(im.cpu())
np.testing.assert_array_equal(src_t[..., None], dst_t)
# (rows, cols, channels) -> (rows, cols, channels)
src_t = np.arange(18, dtype=np.float32).reshape((2, 3, 3))
im = Image(o3d.core.Tensor.from_numpy(src_t))
im = im.to(device=device)
dst_t = np.asarray(im.cpu())
np.testing.assert_array_equal(src_t, dst_t)
@pytest.mark.parametrize("device", list_devices())
def test_pickle(device):
img = Image(o3c.Tensor.ones((10, 10, 3), o3c.uint8, device))
with tempfile.TemporaryDirectory() as temp_dir:
file_name = f"{temp_dir}/img.pkl"
pickle.dump(img, open(file_name, "wb"))
img_load = pickle.load(open(file_name, "rb"))
assert img_load.as_tensor().allclose(img.as_tensor())
assert img_load.device == img.device and img_load.dtype == o3c.uint8
|