1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
|
/*
* SOFA utility methods for inspecting SOFA file metrics and determining HRTF
* utility compatible layouts.
*
* Copyright (C) 2018-2019 Christopher Fitzgerald
* Copyright (C) 2019 Christopher Robinson
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Or visit: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
*/
#include "config.h"
#include "sofa-support.h"
#include <algorithm>
#include <array>
#include <cmath>
#include <cstdio>
#include <span>
#include <utility>
#include <vector>
#include "fmt/base.h"
#include "fmt/ranges.h"
#include "mysofa.h"
namespace {
using double3 = std::array<double,3>;
/* Produces a sorted array of unique elements from a particular axis of the
* triplets array. The filters are used to focus on particular coordinates
* of other axes as necessary. The epsilons are used to constrain the
* equality of unique elements.
*/
std::vector<double> GetUniquelySortedElems(const std::vector<double3> &aers, const unsigned axis,
const std::array<const double*,3> &filters, const std::array<double,3> &epsilons)
{
std::vector<double> elems;
for(const double3 &aer : aers)
{
const double elem{aer[axis]};
auto j = unsigned{};
for(j = 0;j < 3;j++)
{
if(filters[j] && std::abs(aer[j] - *filters[j]) > epsilons[j])
break;
}
if(j < 3)
continue;
auto iter = elems.begin();
for(;iter != elems.end();++iter)
{
const double delta{elem - *iter};
if(delta > epsilons[axis]) continue;
if(delta >= -epsilons[axis]) break;
iter = elems.emplace(iter, elem);
break;
}
if(iter == elems.end())
elems.emplace_back(elem);
}
return elems;
}
/* Given a list of azimuths, this will produce the smallest step size that can
* uniformly cover the list. Ideally this will be over half, but in degenerate
* cases this can fall to a minimum of 5 (the lower limit).
*/
double GetUniformAzimStep(const double epsilon, const std::vector<double> &elems)
{
if(elems.size() < 5) return 0.0;
/* Get the maximum count possible, given the first two elements. It would
* be impossible to have more than this since the first element must be
* included.
*/
auto count = static_cast<unsigned>(std::ceil(360.0 / (elems[1]-elems[0])));
count = std::min(count, 255u);
for(;count >= 5;--count)
{
/* Given the stepping value for this number of elements, check each
* multiple to ensure there's a matching element.
*/
const double step{360.0 / count};
bool good{true};
size_t idx{1u};
for(auto mult=1u;mult < count && good;++mult)
{
const double target{step*mult + elems[0]};
while(idx < elems.size() && target-elems[idx] > epsilon)
++idx;
good &= (idx < elems.size()) && !(std::abs(target-elems[idx++]) > epsilon);
}
if(good)
return step;
}
return 0.0;
}
/* Given a list of elevations, this will produce the smallest step size that
* can uniformly cover the list. Ideally this will be over half, but in
* degenerate cases this can fall to a minimum of 5 (the lower limit).
*/
double GetUniformElevStep(const double epsilon, std::vector<double> &elems)
{
if(elems.size() < 5) return 0.0;
/* Reverse the elevations so it increments starting with -90 (flipped from
* +90). This makes it easier to work out a proper stepping value.
*/
std::ranges::reverse(elems);
for(auto &v : elems) v *= -1.0;
auto count = static_cast<unsigned>(std::ceil(180.0 / (elems[1]-elems[0])));
count = std::min(count, 255u);
double ret{0.0};
for(;count >= 5;--count)
{
const double step{180.0 / count};
bool good{true};
size_t idx{1u};
/* Elevations don't need to match all multiples if there's not enough
* elements to check. Missing elevations can be synthesized.
*/
for(auto mult=1u;mult <= count && idx < elems.size() && good;++mult)
{
const double target{step*mult + elems[0]};
while(idx < elems.size() && target-elems[idx] > epsilon)
++idx;
good &= !(idx < elems.size()) || !(std::abs(target-elems[idx++]) > epsilon);
}
if(good)
{
ret = step;
break;
}
}
/* Re-reverse the elevations to restore the correct order. */
for(auto &v : elems) v *= -1.0;
std::ranges::reverse(elems);
return ret;
}
} // namespace
const char *SofaErrorStr(int err)
{
switch(err)
{
case MYSOFA_OK: return "OK";
case MYSOFA_INVALID_FORMAT: return "Invalid format";
case MYSOFA_UNSUPPORTED_FORMAT: return "Unsupported format";
case MYSOFA_INTERNAL_ERROR: return "Internal error";
case MYSOFA_NO_MEMORY: return "Out of memory";
case MYSOFA_READ_ERROR: return "Read error";
}
return "Unknown";
}
auto GetCompatibleLayout(const std::span<const float> xyzs) -> std::vector<SofaField>
{
auto aers = std::vector(xyzs.size()/3, double3{});
for(size_t i{0u};i < aers.size();++i)
{
std::array vals{xyzs[i*3], xyzs[i*3 + 1], xyzs[i*3 + 2]};
mysofa_c2s(vals.data());
aers[i] = {vals[0], vals[1], vals[2]};
}
const auto radii = GetUniquelySortedElems(aers, 2, {}, {0.1, 0.1, 0.001});
auto fds = std::vector<SofaField>{};
fds.reserve(radii.size());
for(const double dist : radii)
{
auto elevs = GetUniquelySortedElems(aers, 1, {nullptr, nullptr, &dist}, {0.1, 0.1, 0.001});
/* Remove elevations that don't have a valid set of azimuths. */
std::erase_if(elevs, [&dist,&aers](const double ev) -> bool
{
const auto azims = GetUniquelySortedElems(aers, 0, {nullptr, &ev, &dist},
{0.1, 0.1, 0.001});
if(std::abs(ev) > 89.999)
return azims.size() != 1;
if(azims.empty() || !(std::abs(azims[0]) < 0.1))
return true;
return GetUniformAzimStep(0.1, azims) <= 0.0;
});
double step{GetUniformElevStep(0.1, elevs)};
if(step <= 0.0)
{
if(elevs.empty())
fmt::println("No usable elevations on field distance {:f}.", dist);
else
{
fmt::println("Non-uniform elevations on field distance {:.3f}.\nGot: {:+.2f}",
dist, fmt::join(elevs, ", "));
}
continue;
}
auto evStart = 0u;
for(auto ei=0u;ei < elevs.size();ei++)
{
if(!(elevs[ei] < 0.0))
{
fmt::println("Too many missing elevations on field distance {:f}.", dist);
return fds;
}
const auto eif = (90.0+elevs[ei]) / step;
const auto ev_start = std::round(eif);
if(std::abs(eif - ev_start) < (0.1/step))
{
evStart = static_cast<unsigned>(ev_start);
break;
}
}
const auto evCount = static_cast<unsigned>(std::round(180.0 / step)) + 1;
if(evCount < 5)
{
fmt::println("Too few uniform elevations on field distance {:f}.", dist);
continue;
}
SofaField field{};
field.mDistance = dist;
field.mEvCount = evCount;
field.mEvStart = evStart;
field.mAzCounts.resize(evCount, 0u);
auto &azCounts = field.mAzCounts;
for(unsigned ei{evStart};ei < evCount;ei++)
{
double ev{-90.0 + ei*180.0/(evCount - 1)};
auto azims = GetUniquelySortedElems(aers, 0, {nullptr, &ev, &dist}, {0.1, 0.1, 0.001});
if(ei == 0 || ei == (evCount-1))
{
if(azims.size() != 1)
{
fmt::println("Non-singular poles on field distance {:f}.", dist);
return fds;
}
azCounts[ei] = 1;
}
else
{
step = GetUniformAzimStep(0.1, azims);
if(step <= 0.0)
{
fmt::println("Non-uniform azimuths on elevation {:f}, field distance {:f}.",
ev, dist);
return fds;
}
azCounts[ei] = static_cast<unsigned>(std::round(360.0f / step));
}
}
fds.emplace_back(std::move(field));
}
return fds;
}
|