1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
|
/*
* 2-channel UHJ Decoder
*
* Copyright (c) Chris Robinson <chris.kcat@gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "config.h"
#include <algorithm>
#include <array>
#include <bit>
#include <cerrno>
#include <cstddef>
#include <cstring>
#include <fstream>
#include <iostream>
#include <memory>
#include <numbers>
#include <ranges>
#include <span>
#include <string>
#include <string_view>
#include <system_error>
#include <vector>
#include "alnumeric.h"
#include "alstring.h"
#include "filesystem.h"
#include "fmt/base.h"
#include "fmt/ostream.h"
#include "fmt/std.h"
#include "opthelpers.h"
#include "phase_shifter.h"
#include "vector.h"
#include "sndfile.h"
#include "win_main_utf8.h"
#if HAVE_CXXMODULES
import gsl;
#else
#include "gsl/gsl"
#endif
namespace {
using namespace std::string_view_literals;
using SndFilePtr = std::unique_ptr<SNDFILE, decltype([](SNDFILE *sndfile) { sf_close(sndfile); })>;
constexpr auto SUBTYPE_BFORMAT_FLOAT = std::bit_cast<std::array<char,16>>(std::to_array<u8>({
0x03, 0x00, 0x00, 0x00, 0x21, 0x07, 0xd3, 0x11, 0x86, 0x44, 0xc8, 0xc1,
0xca, 0x00, 0x00, 0x00
}));
void fwrite16le(u16 const value, std::ostream &f)
{
auto data = std::bit_cast<std::array<char,2>>(value);
if constexpr(std::endian::native == std::endian::big)
std::ranges::reverse(data);
f.write(data.data(), std::ssize(data));
}
void fwrite32le(u32 const value, std::ostream &f)
{
auto data = std::bit_cast<std::array<char,4>>(value);
if constexpr(std::endian::native == std::endian::big)
std::ranges::reverse(data);
f.write(data.data(), std::ssize(data));
}
auto f32AsLEBytes(f32 const value) -> std::array<char,4>
{
auto ret = std::bit_cast<std::array<char,4>>(value);
if constexpr(std::endian::native == std::endian::big)
std::ranges::reverse(ret);
return ret;
}
constexpr auto BufferLineSize = 1024u;
using FloatBufferLine = std::array<f32, BufferLineSize>;
struct UhjDecoder {
constexpr static auto sFilterDelay = 1024_uz;
alignas(16) std::array<f32, BufferLineSize+sFilterDelay> mS{};
alignas(16) std::array<f32, BufferLineSize+sFilterDelay> mD{};
alignas(16) std::array<f32, BufferLineSize+sFilterDelay> mT{};
alignas(16) std::array<f32, BufferLineSize+sFilterDelay> mQ{};
/* History for the FIR filter. */
alignas(16) std::array<f32, sFilterDelay-1> mDTHistory{};
alignas(16) std::array<f32, sFilterDelay-1> mSHistory{};
alignas(16) std::array<f32, BufferLineSize + sFilterDelay*2> mTemp{};
void decode(std::span<f32 const> InSamples, usize InChannels,
std::span<FloatBufferLine> OutSamples, usize SamplesToDo);
void decode2(std::span<f32 const> InSamples,
std::span<FloatBufferLine> OutSamples, usize SamplesToDo);
};
auto const PShift = PhaseShifterT<UhjDecoder::sFilterDelay*2>{};
/* Decoding UHJ is done as:
*
* S = Left + Right
* D = Left - Right
*
* W = 0.981532*S + 0.197484*j(0.828331*D + 0.767820*T)
* X = 0.418496*S - j(0.828331*D + 0.767820*T)
* Y = 0.795968*D - 0.676392*T + j(0.186633*S)
* Z = 1.023332*Q
*
* where j is a +90 degree phase shift. 3-channel UHJ excludes Q, while 2-
* channel excludes Q and T. The B-Format signal reconstructed from 2-channel
* UHJ should not be run through a normal B-Format decoder, as it needs
* different shelf filters.
*
* NOTE: Some sources specify
*
* S = (Left + Right)/2
* D = (Left - Right)/2
*
* However, this is incorrect. It's halving Left and Right even though they
* were already halved during encoding, causing S and D to be half what they
* initially were at the encoding stage. This division is not present in
* Gerzon's original paper for deriving Sigma (S) or Delta (D) from the L and R
* signals. As proof, taking Y for example:
*
* Y = 0.795968*D - 0.676392*T + j(0.186633*S)
*
* * Plug in the encoding parameters, using ? as a placeholder for whether S
* and D should receive an extra 0.5 factor
* Y = 0.795968*(j(-0.3420201*W + 0.5098604*X) + 0.6554516*Y)*? -
* 0.676392*(j(-0.1432*W + 0.6512*X) - 0.7071068*Y) +
* 0.186633*j(0.9396926*W + 0.1855740*X)*?
*
* * Move common factors in
* Y = (j(-0.3420201*0.795968*?*W + 0.5098604*0.795968*?*X) + 0.6554516*0.795968*?*Y) -
* (j(-0.1432*0.676392*W + 0.6512*0.676392*X) - 0.7071068*0.676392*Y) +
* j(0.9396926*0.186633*?*W + 0.1855740*0.186633*?*X)
*
* * Clean up extraneous groupings
* Y = j(-0.3420201*0.795968*?*W + 0.5098604*0.795968*?*X) + 0.6554516*0.795968*?*Y -
* j(-0.1432*0.676392*W + 0.6512*0.676392*X) + 0.7071068*0.676392*Y +
* j*(0.9396926*0.186633*?*W + 0.1855740*0.186633*?*X)
*
* * Move phase shifts together and combine them
* Y = j(-0.3420201*0.795968*?*W + 0.5098604*0.795968*?*X - -0.1432*0.676392*W -
* 0.6512*0.676392*X + 0.9396926*0.186633*?*W + 0.1855740*0.186633*?*X) +
* 0.6554516*0.795968*?*Y + 0.7071068*0.676392*Y
*
* * Reorder terms
* Y = j(-0.3420201*0.795968*?*W + 0.1432*0.676392*W + 0.9396926*0.186633*?*W +
* 0.5098604*0.795968*?*X + -0.6512*0.676392*X + 0.1855740*0.186633*?*X) +
* 0.7071068*0.676392*Y + 0.6554516*0.795968*?*Y
*
* * Move common factors out
* Y = j((-0.3420201*0.795968*? + 0.1432*0.676392 + 0.9396926*0.186633*?)*W +
* ( 0.5098604*0.795968*? + -0.6512*0.676392 + 0.1855740*0.186633*?)*X) +
* (0.7071068*0.676392 + 0.6554516*0.795968*?)*Y
*
* * Result w/ 0.5 factor:
* -0.3420201*0.795968*0.5 + 0.1432*0.676392 + 0.9396926*0.186633*0.5 = 0.04843*W
* 0.5098604*0.795968*0.5 + -0.6512*0.676392 + 0.1855740*0.186633*0.5 = -0.22023*X
* 0.7071068*0.676392 + 0.6554516*0.795968*0.5 = 0.73914*Y
* -> Y = j(0.04843*W + -0.22023*X) + 0.73914*Y
*
* * Result w/o 0.5 factor:
* -0.3420201*0.795968 + 0.1432*0.676392 + 0.9396926*0.186633 = 0.00000*W
* 0.5098604*0.795968 + -0.6512*0.676392 + 0.1855740*0.186633 = 0.00000*X
* 0.7071068*0.676392 + 0.6554516*0.795968 = 1.00000*Y
* -> Y = j(0.00000*W + 0.00000*X) + 1.00000*Y
*
* Not halving produces a result matching the original input.
*/
void UhjDecoder::decode(std::span<f32 const> const InSamples, usize const InChannels,
std::span<FloatBufferLine> const OutSamples, usize const SamplesToDo)
{
ASSUME(SamplesToDo > 0);
auto woutput = std::span{OutSamples[0]};
auto xoutput = std::span{OutSamples[1]};
auto youtput = std::span{OutSamples[2]};
/* Add a delay to the input channels, to align it with the all-passed
* signal.
*/
/* S = Left + Right */
for(auto i = 0_uz;i < SamplesToDo;++i)
mS[sFilterDelay+i] = InSamples[i*InChannels + 0] + InSamples[i*InChannels + 1];
/* D = Left - Right */
for(auto i = 0_uz;i < SamplesToDo;++i)
mD[sFilterDelay+i] = InSamples[i*InChannels + 0] - InSamples[i*InChannels + 1];
if(InChannels > 2)
{
/* T */
for(auto i = 0_uz;i < SamplesToDo;++i)
mT[sFilterDelay+i] = InSamples[i*InChannels + 2];
}
if(InChannels > 3)
{
/* Q */
for(auto i = 0_uz;i < SamplesToDo;++i)
mQ[sFilterDelay+i] = InSamples[i*InChannels + 3];
}
/* Precompute j(0.828331*D + 0.767820*T) and store in xoutput. */
auto tmpiter = std::ranges::copy(mDTHistory, mTemp.begin()).out;
std::ranges::transform(mD | std::views::take(SamplesToDo+sFilterDelay), mT, tmpiter,
[](f32 const d, f32 const t) noexcept { return 0.828331f*d + 0.767820f*t; });
std::ranges::copy(mTemp | std::views::drop(SamplesToDo) | std::views::take(mDTHistory.size()),
mDTHistory.begin());
PShift.process(xoutput.first(SamplesToDo), mTemp);
/* W = 0.981532*S + 0.197484*j(0.828331*D + 0.767820*T) */
std::ranges::transform(mS | std::views::take(SamplesToDo), xoutput, woutput.begin(),
[](f32 const s, f32 const jdt) -> f32 { return 0.981532f*s + 0.197484f*jdt; });
/* X = 0.418496*S - j(0.828331*D + 0.767820*T) */
std::ranges::transform(mS | std::views::take(SamplesToDo), xoutput, xoutput.begin(),
[](f32 const s, f32 const jdt) -> f32 { return 0.418496f*s - jdt; });
/* Precompute j*S and store in youtput. */
tmpiter = std::ranges::copy(mSHistory, mTemp.begin()).out;
std::ranges::copy(mS | std::views::take(SamplesToDo+sFilterDelay), tmpiter);
std::ranges::copy(mTemp | std::views::drop(SamplesToDo) | std::views::take(mSHistory.size()),
mSHistory.begin());
PShift.process(youtput.first(SamplesToDo), mTemp);
for(auto i = 0_uz;i < SamplesToDo;++i)
{
/* Y = 0.795968*D - 0.676392*T + j(0.186633*S) */
youtput[i] = 0.795968f*mD[i] - 0.676392f*mT[i] + 0.186633f*youtput[i];
}
if(OutSamples.size() > 3)
{
auto const zoutput = std::span{OutSamples[3]};
/* Z = 1.023332*Q */
std::ranges::transform(mQ | std::views::take(SamplesToDo), zoutput.begin(),
[](f32 const q) noexcept -> f32 { return 1.023332f*q; });
}
auto const get_end = std::views::drop(SamplesToDo) | std::views::take(sFilterDelay);
std::ranges::copy(mS | get_end, mS.begin());
std::ranges::copy(mD | get_end, mD.begin());
std::ranges::copy(mT | get_end, mT.begin());
std::ranges::copy(mQ | get_end, mQ.begin());
}
/* This is an alternative equation for decoding 2-channel UHJ. Not sure what
* the intended benefit is over the above equation as this slightly reduces the
* amount of the original left response and has more of the phase-shifted
* forward response on the left response.
*
* This decoding is done as:
*
* S = Left + Right
* D = Left - Right
*
* W = 0.981530*S + j*0.163585*D
* X = 0.418504*S - j*0.828347*D
* Y = 0.762956*D + j*0.384230*S
*
* where j is a +90 degree phase shift.
*
* NOTE: As above, S and D should not be halved. The only consequence of
* halving here is merely a -6dB reduction in output, but it's still incorrect.
*/
void UhjDecoder::decode2(std::span<f32 const> const InSamples,
std::span<FloatBufferLine> const OutSamples, usize const SamplesToDo)
{
ASSUME(SamplesToDo > 0);
auto woutput = std::span{OutSamples[0]};
auto xoutput = std::span{OutSamples[1]};
auto youtput = std::span{OutSamples[2]};
/* S = Left + Right */
for(auto i = 0_uz;i < SamplesToDo;++i)
mS[sFilterDelay+i] = InSamples[i*2 + 0] + InSamples[i*2 + 1];
/* D = Left - Right */
for(auto i = 0_uz;i < SamplesToDo;++i)
mD[sFilterDelay+i] = InSamples[i*2 + 0] - InSamples[i*2 + 1];
/* Precompute j*D and store in xoutput. */
auto tmpiter = std::ranges::copy(mDTHistory, mTemp.begin()).out;
std::ranges::copy(mD | std::views::take(SamplesToDo+sFilterDelay), tmpiter);
std::ranges::copy(mTemp | std::views::drop(SamplesToDo) | std::views::take(mDTHistory.size()),
mDTHistory.begin());
PShift.process(xoutput.first(SamplesToDo), mTemp);
/* W = 0.981530*S + j*0.163585*D */
std::ranges::transform(mS | std::views::take(SamplesToDo), xoutput, woutput.begin(),
[](f32 const s, f32 const jd) -> f32 { return 0.981530f*s + 0.163585f*jd; });
/* X = 0.418504*S - j*0.828347*D */
std::ranges::transform(mS | std::views::take(SamplesToDo), xoutput, xoutput.begin(),
[](f32 const s, f32 const jd) -> f32 { return 0.418504f*s - 0.828347f*jd; });
/* Precompute j*S and store in youtput. */
tmpiter = std::ranges::copy(mSHistory, mTemp.begin()).out;
std::ranges::copy(mS | std::views::take(SamplesToDo+sFilterDelay), tmpiter);
std::ranges::copy(mTemp | std::views::drop(SamplesToDo) | std::views::take(mSHistory.size()),
mSHistory.begin());
PShift.process(youtput.first(SamplesToDo), mTemp);
/* Y = 0.762956*D + j*0.384230*S */
std::ranges::transform(mD | std::views::take(SamplesToDo), youtput, youtput.begin(),
[](f32 const d, f32 const js) -> f32 { return 0.762956f*d + 0.384230f*js; });
auto const get_end = std::views::drop(SamplesToDo) | std::views::take(sFilterDelay);
std::ranges::copy(mS | get_end, mS.begin());
std::ranges::copy(mD | get_end, mD.begin());
}
auto main(std::span<std::string_view> args) -> int
{
if(args.size() < 2 || args[1] == "-h" || args[1] == "--help")
{
fmt::println("Usage: {} <[options] filename.wav...>\n\n"
" Options:\n"
" --general Use the general equations for 2-channel UHJ (default).\n"
" --alternative Use the alternative equations for 2-channel UHJ.\n"
"\n"
"Note: When decoding 2-channel UHJ to an .amb file, the result should not use\n"
"the normal B-Format shelf filters! Only 3- and 4-channel UHJ can accurately\n"
"reconstruct the original B-Format signal.",
args[0]);
return 1;
}
args = args.subspan(1);
auto num_files = 0_uz;
auto num_decoded = 0_uz;
auto use_general = true;
std::ranges::for_each(args, [&num_files,&num_decoded,&use_general](std::string_view const arg)
{
if(arg == "--general"sv)
{
use_general = true;
return;
}
if(arg == "--alternative"sv)
{
use_general = false;
return;
}
++num_files;
auto ininfo = SF_INFO{};
auto infile = SndFilePtr{sf_open(std::string{arg}.c_str(), SFM_READ, &ininfo)};
if(!infile)
{
fmt::println(std::cerr, "Failed to open {}", arg);
return;
}
if(sf_command(infile.get(), SFC_WAVEX_GET_AMBISONIC, nullptr, 0) == SF_AMBISONIC_B_FORMAT)
{
fmt::println(std::cerr, "{} is already B-Format", arg);
return;
}
auto const inchannels = gsl::narrow<u32>(ininfo.channels);
auto outchans = u32{};
if(inchannels == 2)
outchans = 3;
else if(inchannels == 3 || inchannels == 4)
outchans = inchannels;
else
{
fmt::println(std::cerr, "{} is not a 2-, 3-, or 4-channel file", arg);
return;
}
fmt::println("Converting {} from {}-channel UHJ{}...", arg, inchannels,
(inchannels == 2) ? use_general ? " (general)" : " (alternative)" : "");
auto outname = fs::path(al::char_as_u8(arg)).stem().replace_extension(u8".amb");
auto outfile = std::ofstream{outname, std::ios_base::binary};
if(!outfile.is_open())
{
fmt::println(std::cerr, "Failed to create {}", outname);
return;
}
outfile.write("RIFF", 4);
fwrite32le(0xFFFFFFFF, outfile); // 'RIFF' header len; filled in at close
outfile.write("WAVE", 4);
outfile.write("fmt ", 4);
fwrite32le(40, outfile); // 'fmt ' header len; 40 bytes for EXTENSIBLE
// 16-bit val, format type id (extensible: 0xFFFE)
fwrite16le(0xFFFE, outfile);
// 16-bit val, channel count
fwrite16le(gsl::narrow<u16>(outchans), outfile);
// 32-bit val, frequency
fwrite32le(gsl::narrow<u32>(ininfo.samplerate), outfile);
// 32-bit val, bytes per second
fwrite32le(gsl::narrow<u32>(ininfo.samplerate)*outchans*u32{sizeof(f32)}, outfile);
// 16-bit val, frame size
fwrite16le(gsl::narrow<u16>(sizeof(f32)*outchans), outfile);
// 16-bit val, bits per sample
fwrite16le(gsl::narrow<u16>(sizeof(f32)*8), outfile);
// 16-bit val, extra byte count
fwrite16le(22, outfile);
// 16-bit val, valid bits per sample
fwrite16le(gsl::narrow<u16>(sizeof(f32)*8), outfile);
// 32-bit val, channel mask
fwrite32le(0, outfile);
// 16 byte GUID, sub-type format
outfile.write(SUBTYPE_BFORMAT_FLOAT.data(), std::ssize(SUBTYPE_BFORMAT_FLOAT));
outfile.write("data", 4);
fwrite32le(0xFFFFFFFF, outfile); // 'data' header len; filled in at close
if(!outfile)
{
fmt::println(std::cerr, "Error writing wave file header: {} ({})",
std::generic_category().message(errno), errno);
return;
}
const auto DataStart = std::streamoff{outfile.tellp()};
auto decoder = std::make_unique<UhjDecoder>();
auto inmem = std::vector<f32>(usize{BufferLineSize} * inchannels);
auto decmem = al::vector<std::array<f32, BufferLineSize>, 16>(outchans);
auto outmem = std::vector<char>(usize{BufferLineSize}*outchans*sizeof(f32));
/* A number of initial samples need to be skipped to cut the lead-in
* from the all-pass filter delay. The same number of samples need to
* be fed through the decoder after reaching the end of the input file
* to ensure none of the original input is lost.
*/
auto LeadIn = usize{UhjDecoder::sFilterDelay};
auto LeadOut = usize{UhjDecoder::sFilterDelay};
while(LeadOut > 0)
{
auto got = al::saturate_cast<usize>(sf_readf_float(infile.get(), inmem.data(),
BufferLineSize));
if(got < BufferLineSize)
{
auto const remaining = std::min(BufferLineSize - got, LeadOut);
std::ranges::fill(inmem | std::views::drop(got*inchannels), 0.0f);
got += remaining;
LeadOut -= remaining;
}
if(inchannels > 2 || use_general)
decoder->decode(inmem, inchannels, decmem, got);
else
decoder->decode2(inmem, decmem, got);
if(LeadIn >= got)
{
LeadIn -= got;
continue;
}
got -= LeadIn;
auto oiter = outmem.begin();
for(auto i = 0_uz;i < got;++i)
{
/* Attenuate by -3dB for FuMa output levels. */
static constexpr auto inv_sqrt2 = gsl::narrow_cast<f32>(1.0/std::numbers::sqrt2);
for(auto j = 0_uz;j < outchans;++j)
oiter = std::ranges::copy(f32AsLEBytes(decmem[j][LeadIn+i]*inv_sqrt2), oiter)
.out;
}
LeadIn = 0;
if(!outfile.write(outmem.data(), std::distance(outmem.begin(), oiter)))
{
fmt::println(std::cerr, "Error writing wave data: {} ({})",
std::generic_category().message(errno), errno);
break;
}
}
if(auto const DataEnd = std::streamoff{outfile.tellp()}; DataEnd > DataStart)
{
auto const dataLen = DataEnd - DataStart;
if(outfile.seekp(4))
fwrite32le(gsl::narrow<u32>(DataEnd-8), outfile); // 'WAVE' header len
if(outfile.seekp(DataStart-4))
fwrite32le(gsl::narrow<u32>(dataLen), outfile); // 'data' header len
}
outfile.flush();
++num_decoded;
});
if(num_decoded == 0)
fmt::println(std::cerr, "Failed to decode any input files");
else if(num_decoded < num_files)
fmt::println(std::cerr, "Decoded {} of {} files", num_decoded, num_files);
else
fmt::println("Decoded {} file{}", num_decoded, (num_decoded==1)?"":"s");
return 0;
}
} /* namespace */
auto main(int const argc, char **const argv) -> int
{
auto args = std::vector<std::string_view>(gsl::narrow<unsigned>(argc));
std::ranges::copy(std::views::counted(argv, argc), args.begin());
return main(std::span{args});
}
|