1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
import logging
import re
from typing import (
TYPE_CHECKING,
Any,
Dict,
Generic,
List,
Optional,
Set,
Type,
TypeVar,
Union,
cast,
)
from pydantic import BaseModel
from openapi_pydantic.compat import (
DEFS_KEY,
PYDANTIC_V2,
JsonSchemaMode,
models_json_schema,
v1_schema,
)
from . import Components, OpenAPI, Reference, Schema, schema_validate
logger = logging.getLogger(__name__)
PydanticType = TypeVar("PydanticType", bound=BaseModel)
ref_prefix = "#/components/schemas/"
ref_template = "#/components/schemas/{model}"
class PydanticSchema(Schema, Generic[PydanticType]):
"""Special `Schema` class to indicate a reference from pydantic class"""
schema_class: Type[PydanticType]
"""the class that is used for generate the schema"""
def get_mode(
cls: Type[BaseModel], default: JsonSchemaMode = "validation"
) -> JsonSchemaMode:
"""Get the JSON schema mode for a model class.
The mode can be either "validation" or "serialization". In validation mode,
computed fields are dropped and optional fields remain optional. In
serialization mode, computed and optional fields are required.
"""
if not hasattr(cls, "model_config"):
return default
mode = cls.model_config.get("json_schema_mode", default)
if mode not in ("validation", "serialization"):
raise ValueError(f"invalid json_schema_mode: {mode}")
return cast(JsonSchemaMode, mode)
if TYPE_CHECKING:
class GenerateOpenAPI30Schema: ...
elif PYDANTIC_V2:
from enum import Enum
from pydantic.json_schema import GenerateJsonSchema, JsonSchemaValue
from pydantic_core import core_schema
class GenerateOpenAPI30Schema(GenerateJsonSchema):
"""Modify the schema generation for OpenAPI 3.0."""
def nullable_schema(
self,
schema: core_schema.NullableSchema,
) -> JsonSchemaValue:
"""Generates a JSON schema that matches a schema that allows null values.
In OpenAPI 3.0, types can not be None, but a special "nullable" field is
available.
"""
inner_json_schema = self.generate_inner(schema["schema"])
inner_json_schema["nullable"] = True
return inner_json_schema
def literal_schema(self, schema: core_schema.LiteralSchema) -> JsonSchemaValue:
"""Generates a JSON schema that matches a literal value.
In OpenAPI 3.0, the "const" keyword is not supported, so this
version of this method skips that optimization.
"""
expected = [
v.value if isinstance(v, Enum) else v for v in schema["expected"]
]
types = {type(e) for e in expected}
if types == {str}:
return {"enum": expected, "type": "string"}
elif types == {int}:
return {"enum": expected, "type": "integer"}
elif types == {float}:
return {"enum": expected, "type": "number"}
elif types == {bool}:
return {"enum": expected, "type": "boolean"}
elif types == {list}:
return {"enum": expected, "type": "array"}
# there is not None case because if it's mixed it hits the final `else`
# if it's a single Literal[None] then it becomes a `const` schema above
else:
return {"enum": expected}
else:
class GenerateOpenAPI30Schema: ...
def construct_open_api_with_schema_class(
open_api: OpenAPI,
schema_classes: Optional[List[Type[BaseModel]]] = None,
scan_for_pydantic_schema_reference: bool = True,
by_alias: bool = True,
) -> OpenAPI:
"""
Construct a new OpenAPI object, utilising pydantic classes to produce JSON schemas.
:param open_api: the base `OpenAPI` object
:param schema_classes: Pydantic classes that their schema will be used
"#/components/schemas" values
:param scan_for_pydantic_schema_reference: flag to indicate if scanning for
`PydanticSchemaReference` class
is needed for "#/components/schemas"
value updates
:param by_alias: construct schema by alias (default is True)
:return: new OpenAPI object with "#/components/schemas" values updated.
If there is no update in "#/components/schemas" values, the original
`open_api` will be returned.
"""
copy_func = getattr(open_api, "model_copy" if PYDANTIC_V2 else "copy")
new_open_api: OpenAPI = copy_func(deep=True)
if scan_for_pydantic_schema_reference:
extracted_schema_classes = _handle_pydantic_schema(new_open_api)
if schema_classes:
schema_classes = list({*schema_classes, *extracted_schema_classes})
else:
schema_classes = extracted_schema_classes
if not schema_classes:
return open_api
schema_classes.sort(key=lambda x: x.__name__)
logger.debug("schema_classes: %s", schema_classes)
# update new_open_api with new #/components/schemas
if PYDANTIC_V2:
_key_map, schema_definitions = models_json_schema(
[(c, get_mode(c)) for c in schema_classes],
by_alias=by_alias,
ref_template=ref_template,
schema_generator=GenerateOpenAPI30Schema,
)
else:
schema_definitions = v1_schema(
schema_classes, by_alias=by_alias, ref_prefix=ref_prefix
)
if not new_open_api.components:
new_open_api.components = Components()
if new_open_api.components.schemas:
for existing_key in new_open_api.components.schemas:
if existing_key in schema_definitions[DEFS_KEY]:
logger.warning(
f'"{existing_key}" already exists in {ref_prefix}. '
f'The value of "{ref_prefix}{existing_key}" will be overwritten.'
)
new_open_api.components.schemas.update(_validate_schemas(schema_definitions))
else:
new_open_api.components.schemas = _validate_schemas(schema_definitions)
return new_open_api
def _validate_schemas(
schema_definitions: Dict[str, Any]
) -> Dict[str, Union[Reference, Schema]]:
"""Convert JSON Schema definitions to parsed OpenAPI objects"""
# Note: if an error occurs in schema_validate(), it may indicate that
# the generated JSON schemas are not compatible with the version
# of OpenAPI this module depends on.
return {
key: schema_validate(schema_dict)
for key, schema_dict in schema_definitions[DEFS_KEY].items()
}
def _handle_pydantic_schema(open_api: OpenAPI) -> List[Type[BaseModel]]:
"""
This function traverses the `OpenAPI` object and
1. Replaces the `PydanticSchema` object with `Reference` object, with correct ref
value;
2. Extracts the involved schema class from `PydanticSchema` object.
**This function will mutate the input `OpenAPI` object.**
:param open_api: the `OpenAPI` object to be traversed and mutated
:return: a list of schema classes extracted from `PydanticSchema` objects
"""
pydantic_types: Set[Type[BaseModel]] = set()
def _traverse(obj: Any) -> None:
if isinstance(obj, BaseModel):
fields = getattr(
obj, "model_fields_set" if PYDANTIC_V2 else "__fields_set__"
)
for field in fields:
child_obj = obj.__getattribute__(field)
if isinstance(child_obj, PydanticSchema):
logger.debug("PydanticSchema found in %s: %s", obj, child_obj)
obj.__setattr__(field, _construct_ref_obj(child_obj))
pydantic_types.add(child_obj.schema_class)
else:
_traverse(child_obj)
elif isinstance(obj, list):
for index, elem in enumerate(obj):
if isinstance(elem, PydanticSchema):
logger.debug(f"PydanticSchema found in list: {elem}")
obj[index] = _construct_ref_obj(elem)
pydantic_types.add(elem.schema_class)
else:
_traverse(elem)
elif isinstance(obj, dict):
for key, value in obj.items():
if isinstance(value, PydanticSchema):
logger.debug(f"PydanticSchema found in dict: {value}")
obj[key] = _construct_ref_obj(value)
pydantic_types.add(value.schema_class)
else:
_traverse(value)
_traverse(open_api)
return list(pydantic_types)
def _construct_ref_obj(pydantic_schema: PydanticSchema[PydanticType]) -> Reference:
"""
Construct a reference object from the Pydantic schema name
characters in the schema name that are invalid/problematic
for JSONschema $ref names will get replaced with underscores.
Especially needed for Pydantic generic Models with brackets "[]"
see: https://github.com/pydantic/pydantic/blob/aee6057378ccfec02126bf9c984a9b6d6b411777/pydantic/json_schema.py#L2031
"""
ref_name = re.sub(
r"[^a-zA-Z0-9.\-_]", "_", pydantic_schema.schema_class.__name__
).replace(".", "__")
ref_obj = Reference(**{"$ref": ref_prefix + ref_name})
logger.debug(f"ref_obj={ref_obj}")
return ref_obj
|