File: math.cpp

package info (click to toggle)
openbabel 2.2.0-2
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 37,188 kB
  • ctags: 47,193
  • sloc: cpp: 237,858; ansic: 85,555; cs: 22,219; java: 14,377; sh: 9,876; perl: 5,432; python: 4,319; pascal: 793; makefile: 683; xml: 97; ruby: 54
file content (399 lines) | stat: -rw-r--r-- 11,398 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
/**********************************************************************
math.cpp - Unit tests for the math code in OpenBabel

Copyright (C) 1998-2001 by OpenEye Scientific Software, Inc.
Copyright (C) 2001-2006 Geoffrey R. Hutchison
Copyright (C) 2006 Benoit Jacob
 
This file is part of the Open Babel project.
For more information, see <http://openbabel.sourceforge.net/>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation version 2 of the License.
 
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.
***********************************************************************/

// used to set import/export for Cygwin DLLs
#ifdef WIN32
#define USING_OBDLL
#endif

#include <openbabel/babelconfig.h>
#include <openbabel/math/matrix3x3.h>
#include <openbabel/obutil.h>

#include <iostream>
#include <stdlib.h>
#include <string.h>

#define REPEAT 1000

#define VERIFY(expr) \
  if( expr ) verify_ok(); \
  else verify_not_ok( __STRING(expr), __LINE__ )

#define TEST(func) \
  strcpy( currentFunc, __STRING(func) ); \
  tmp = failedCount; \
  cout << "# math: entering " << currentFunc << endl; \
  for( int i = 0; i < REPEAT; i++ ) func(); \
  if( failedCount == tmp ) cout << "# math: passed " << currentFunc << endl; \
  else cout << "# math: failed " << currentFunc << endl

using namespace std;
using namespace OpenBabel;

OBRandom randomizer;
int testCount = 0;
int failedCount = 0;
char currentFunc [256];
int tmp;

void verify_ok()
{
  cout << "ok " << ++testCount << "\n";
}

void verify_not_ok( const char *expr, int line )
{
  failedCount++;
  cout << "not ok " << ++testCount << " - In " << currentFunc
       << "(), in line " << line << ", in file " << __FILE__
       << ": expression ( " << expr << " ) is false.\n";
}

void pickRandom( double & d )
{
  d = randomizer.NextFloat() * 2.0 - 1.0;
}

void pickRandom( vector3 & v )
{
  pickRandom( v.x() );
  pickRandom( v.y() );
  pickRandom( v.z() );
}

void pickRandom( matrix3x3 & m )
{
  for( int row = 0; row < 3; row++ )
    for( int column = 0; column < 3; column++ )
      pickRandom( m( row, column ) );
}

bool compare( const double & d1, const double & d2, double precision = 1e-6 )
{
  return IsApprox( d1, d2, precision );
}

bool compare( const vector3 & v1, const vector3 & v2, double precision = 1e-6 )
{
  return v1.IsApprox( v2, precision );
}

bool compare( const matrix3x3 & m1, const matrix3x3 & m2 )
{
  bool ret = true;
  for( int i = 0; i < 3; i++ )
    ret &= compare( m1.GetColumn(i), m2.GetColumn(i) );
  return ret;
}

// tests the constructors, accessors, mutators of class vector3.
void testBasics_vector3()
{
  double d[3];
  vector3 v1, v2, v3;

  // test compare() itself, assuming Set() works
  v1.Set( 1.0, 0.0, 0.0 );
  v2.Set( 1.0, 1e-20, 0.0 );
  v3.Set( 1.0, 0.1, 0.0 );
  VERIFY( compare( v1, v2 ) );
  VERIFY( ! compare( v2, v3 ) );

  // test constructors and operator=
  pickRandom( d[0] );
  pickRandom( d[1] );
  pickRandom( d[2] );
  v1 = vector3( d[0], d[1], d[2] );
  v2 = vector3( v1 );
  v3 = v1;
  VERIFY( compare( v1, v2 ) );
  VERIFY( compare( v1, v3 ) );

  // test constant operator()
  VERIFY( compare( static_cast<const vector3>(v1).x(), d[0] ) );
  VERIFY( compare( static_cast<const vector3>(v1).y(), d[1] ) );
  VERIFY( compare( static_cast<const vector3>(v1).z(), d[2] ) );

  // test Get
  v1.Get( d );
  VERIFY( compare( v1.x(), d[0] ) );
  VERIFY( compare( v1.y(), d[1] ) );
  VERIFY( compare( v1.z(), d[2] ) );

  // test non-constant operator(), Set, SetX, SetY, SetZ
  pickRandom( d[0] );
  pickRandom( d[1] );
  pickRandom( d[2] );
  v1.x() = d[0];
  v1.y() = d[1];
  v1.z() = d[2];
  VERIFY( compare( v1.x(), d[0] ) );
  VERIFY( compare( v1.y(), d[1] ) );
  VERIFY( compare( v1.z(), d[2] ) );
  v2.Set( d );
  VERIFY( compare( v1, v2 ) );
  v3.SetX( d[0] );
  v3.SetY( d[1] );
  v3.SetZ( d[2] );
  VERIFY( compare( v1, v3 ) );
}

void testBasics_matrix3x3()
{
  double d[3][3] = { { 1.0, 0.0, 0.0 },
                     { 0.0, 1.0, 0.0 },
                     { 0.0, 0.0, 1.0 } };
  double x;
  matrix3x3 m1, m2, m3;
  vector3 v1, v2;
  int i, j;

  // test constructors and operator=
  m1 = matrix3x3(1.0);
  m2 = matrix3x3(d);
  VERIFY( compare( m1, m2 ) );

  // test GetArray
  static double e[3][3]; // without "static", compiler optimizations can
                         // produce bugs.
  pickRandom( m2 );
  m2.GetArray( & e[0][0] );
  m3 = matrix3x3(e);
  VERIFY( compare( m2, m3 ) );

  // test const operator() and Get()
  for( i = 0; i < 3; i++ )
    for( j = 0; j < 3; j++ )
    {
      VERIFY( compare( static_cast<const matrix3x3>(m2)(i,j), e[i][j] ) );
      x = m2.Get( i, j );
      VERIFY( compare( x, e[i][j] ) );
    }

  // test non-const operator() and Set()
  for( i = 0; i < 3; i++ )
    for( j = 0; j < 3; j++ )
      m1(i,j) = m2(i,j);
  VERIFY( compare( m1, m2 ) );
  for( i = 0; i < 3; i++ )
    for( j = 0; j < 3; j++ )
      m3.Set(i,j, m2(i,j) );
  VERIFY( compare( m3, m2 ) );

  // test SetColumn(), GetColumn(), SetRow(), GetRow(), transpose()
  for( i = 0; i < 3; i++ )
  {
    pickRandom( v1 );
    m1.SetRow( i, v1 );
    v2 = m1.GetRow( i );
    VERIFY( compare( v1, v2 ) );
    m1.SetColumn( i, v1 );
    v2 = m1.GetColumn( i );
    VERIFY( compare( v1, v2 ) );
    m1 = m1.transpose();
    v2 = m1.GetRow( i );
    VERIFY( compare( v1, v2 ) );
  }
}

void testArithmeticOperators()
{
  matrix3x3 mat1(1.0), mat2;
  vector3 vec1 = VZero, vec2;
  pickRandom( mat2 );
  pickRandom( vec2 );

  VERIFY( compare( mat2, mat1 * mat2 ) );
  VERIFY( compare( mat2, mat2 * mat1 ) );
  VERIFY( compare( vec2, mat1 * vec2 ) );
  VERIFY( compare( vec2, vec1 + vec2 ) );

  matrix3x3 mat3; pickRandom(mat3);
  vector3 vec3; pickRandom(vec3);
  pickRandom(mat1);
  pickRandom(vec1);

  VERIFY( compare( ( mat1 * mat2 ) * vec1,
                   mat1 * ( mat2 * vec1 )
                 ) );

  VERIFY( compare( vec1 * -3.0, - vec1 - vec1 - vec1 ) );
  VERIFY( compare( 2.0 * vec1, vec1 + vec1 ) );

  double a1, a2;
  do pickRandom(a1); while( a1 == 0.0 );
  pickRandom(a2);
  VERIFY( compare( vec1 * ( a1 + a2 ), vec1 * a1 + vec1 * a2 ) );
  VERIFY( compare( ( a1 - a2 ) * vec1, a1 * vec1 - a2 * vec1 ) );
  VERIFY( compare( ( vec1 / a1 ) * a1, vec1, 1e-5 ) );

  vec3 = vec1; vec3 += vec2;
  VERIFY( compare( vec1 + vec2, vec3 ) );
  vec3 = vec1; vec3 -= vec2;
  VERIFY( compare( vec1 - vec2, vec3 ) );
  vec3 = vec1; vec3 *= a1;
  VERIFY( compare( vec1 * a1, vec3 ) );
  vec3 = vec1; vec3 /= a1;
  VERIFY( compare( vec1 / a1, vec3 ) );
}

void testDistancesAnglesOrthogonality()
{
  vector3 v1, v2, v3;
  do pickRandom( v1 ); while( v1.length() == 0 );
  VERIFY( compare( v1.length_2(), v1.length() * v1.length() ) );
  v1.createOrthoVector( v2 );
  VERIFY( compare( v2.length(), 1.0 ) );
  v1.normalize();
  v1.createOrthoVector( v2 );
  VERIFY( compare( v1.length(), 1.0 ) );
  VERIFY( IsNegligible( dot( v1, v2 ), 1.0, 1e-6 ) );

  matrix3x3 m1;
  m1.SetColumn( 0, v1 );
  m1.SetColumn( 1, v2 );
  m1.SetColumn( 2, cross( v1, v2 ) );
  VERIFY( m1.isOrthogonal() );

  pickRandom( v1 );
  pickRandom( v2 );
  double c = dot( v1, v2 ), s = cross( v1, v2 ).length();
  VERIFY( compare( c, cos( vectorAngle( v1, v2 ) * DEG_TO_RAD ) * v1.length() * v2.length() ) );
  VERIFY( compare( s, sin( vectorAngle( v1, v2 ) * DEG_TO_RAD ) * v1.length() * v2.length() ) );

  VERIFY( compare( v1.distSq(v2), (v1-v2).length_2() ) );

  double t;
  pickRandom(t);
  VERIFY( compare( fabs(t), Point2Plane( v1 + t * VY, v1, v1 + 5.0 * VX - 3.0 * VZ, v1 - VX + VZ ) ) );
}

// Test the inversion of matrices and the matrix product. Get an
// invertible random matrix, invert it, multiply and check if the
// resulting matrix is the unit matrix.
void testInversion()
{
  matrix3x3 rnd;
  do pickRandom( rnd ); while( rnd.determinant() < 1e-3 );
  matrix3x3 result = rnd * rnd.inverse();
  VERIFY( result.isUnitMatrix() );
}

// Test the eigenvalue finder. Set up a diagonal matrix and conjugate
// by a rotation. That way we obtain a symmetric matrix that can be
// diagonalized. Check if the eigenvalue finder reveals the original
// diagonal elements.
void testEigenvalues()
{
  matrix3x3 Diagonal;
  for(int i=0; i<3; i++)
    for(int j=0; j<3; j++)
      Diagonal.Set(i, j, 0.0);
  Diagonal.Set(0, 0, randomizer.NextFloat());
  Diagonal.Set(1, 1, Diagonal.Get(0,0)+fabs(randomizer.NextFloat()));
  Diagonal.Set(2, 2, Diagonal.Get(1,1)+fabs(randomizer.NextFloat()));

  // test the isDiagonal() method
  VERIFY( Diagonal.isDiagonal() );

  matrix3x3 rndRotation;
  rndRotation.randomRotation(randomizer);

  // check that rndRotation is really a rotation, i.e. that randomRotation() works
  VERIFY( rndRotation.isOrthogonal() );
  
  matrix3x3 toDiagonalize = rndRotation * Diagonal * rndRotation.inverse();
  VERIFY( toDiagonalize.isSymmetric() );
  
  vector3 eigenvals;
  toDiagonalize.findEigenvectorsIfSymmetric(eigenvals);
  
  for(unsigned int j=0; j<3; j++)
    VERIFY( IsNegligible( eigenvals[j] - Diagonal.Get(j,j), Diagonal.Get(2,2) ) );
  
  VERIFY( eigenvals[0] < eigenvals[1] &&  eigenvals[1] < eigenvals[2] );
}

// Test the eigenvector finder. Set up a symmetric diagonal matrix and
// diagonalize it. The that conjugation with the computed eigenvectors
// really gives a diagonal matrix. Calculate the matrix-vector
// products directly to see if the vectors found are eigenvectors
// indeed, and if the computed eigenvalues are correct.
void testEigenvectors()
{
  matrix3x3 rnd;
  pickRandom( rnd );
  rnd.Set(0,1, rnd.Get(1,0));
  rnd.Set(0,2, rnd.Get(2,0));
  rnd.Set(1,2, rnd.Get(2,1));
  vector3 eigenvals;
  matrix3x3 eigenvects = rnd.findEigenvectorsIfSymmetric(eigenvals);
  
  // Check if the eigenvects are normalized and mutually orthogonal
  VERIFY( eigenvects.isOrthogonal() );
  
  // for an orthogonal matrix, the inverse should equal the transpose
  VERIFY( compare( eigenvects.inverse(), eigenvects.transpose() ) );

  matrix3x3 shouldBeDiagonal = eigenvects.inverse() * rnd * eigenvects;
  VERIFY( shouldBeDiagonal.isDiagonal() );
  
  for(unsigned int j=0; j<3; j++)
    VERIFY( compare( shouldBeDiagonal.Get(j,j), eigenvals[j] ) );
  
  for(unsigned int i=0; i<3; i++ )
    {
      vector3 EV = eigenvects.GetColumn(i);
      VERIFY( compare( rnd*EV, eigenvals[i]*EV ) );
    }
}

int main(int argc,char *argv[])
{
  // turn off slow sync with C-style output (we don't use it anyway).
  std::ios::sync_with_stdio(false);

  if (argc != 1)
  {
    cout << "Usage: math" << endl;
    cout << "   Tests OpenBabel's math code." << endl;
    return 0;
  }
  
  cout << "# math: repeating each test " << REPEAT << " times" << endl;
  
  randomizer.TimeSeed();

  TEST( testBasics_vector3 );
  TEST( testBasics_matrix3x3 );
  TEST( testArithmeticOperators );
  TEST( testDistancesAnglesOrthogonality );
  TEST( testInversion );
  TEST( testEigenvalues );
  TEST( testEigenvectors );

  cout << "1.." << testCount << endl;

  if( failedCount == 0 ) cout << "# math: all tests are successful" << endl;
  else cout << "# math: " << failedCount << " out of "
            << testCount << " tests failed." << endl;
  return 0;
}