1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
|
/* -*-C++-*-
**********************************************************************
Copyright (C) 2005-2006, eMolecules, Inc. (www.emolecules.com)
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
***********************************************************************
+======================================================================
|
| AUTHOR: Craig A. James, eMolecules, Inc.
|
| DESCRIPTION: CANONICALIZATION OF SMILES
|
| This is a specialized SMILES canonicalization algorithm. Although
| it can be applied in the standard fashion to a whole molecule,
| its real job is to generate canonical SMILES for fragments, or
| "subsets", of the atoms of a molecule.
|
| For example, consider the first three atoms of Oc1ccccc1. With
| a "normal" SMILES canonicalizer, you couldn't generate a SMILES
| for Occ, because it's not a valid molecule. However, this system
| can do exactly that, by taking both the whole molecule (which
| retains the aromaticity), and a "subset" bitmap that specifies
| which atoms are to be included in the SMILES.
|
| Canonicalization is carried out per Weininger et al (J. Chem.
| Inf. Comput. Sci., Vol. 29, No. 2, 1989, pp 97-101), with some
| modifications to handle bond symmetries not foreseen by Weininger
| in that paper.
|
| WARNING - KNOWN BUG: These functions make use of a bitmap vector
| to represent a "fragment" -- a subset of the atoms in a molecule.
| But this means the bonds of the fragment are implicit, not explicit,
| which is incorrect. For example, if you want to break one bond of
| cyclehexane (C1CCCCC1), all six atoms will still be there, so the
| "fragment" will be cyclic. This is relevant when generating fragment
| SMILES for ring systems where breaking a bond can reduce the number
| of ring without removing any atoms. We need to add a pair of bit
| vectors, the atoms AND the bonds, to represent a fragment. (Note
| that this is also an ambiguity in OpenBabel itself, which represents
| a ring as a set of atoms. This is only valid if the ring is a member
| of a SSSR.)
+======================================================================
*/
#include <openbabel/babelconfig.h>
#include <openbabel/mol.h>
#include <openbabel/canon.h>
using namespace std;
namespace OpenBabel {
#define DEBUG 0
/***************************************************************************
* FUNCTION: print_vector_pairs
*
* DESCRIPTION:
* For debugging only: Prints a vector of pair<OBAtom, int>.
***************************************************************************/
#if DEBUG
static void print_vector_pairs(char *prefix, vector<pair<OBAtom*,unsigned int> > &vp) {
vector<pair<OBAtom*,unsigned int> >::iterator vp_iter;
for (vp_iter = vp.begin(); vp_iter != vp.end(); vp_iter++) {
OBAtom *atom = vp_iter->first;
int symclass = vp_iter->second;
cout << prefix << "atom: " << etab.GetSymbol(atom->GetAtomicNum()) << ", idx: " << atom->GetIdx() << ", symclass: " << symclass << "\n";
}
}
#endif
/***************************************************************************
* FUNCTION: CompareXXX
*
* DESCRIPTION:
* Three functions for use by the sort() method of a vector.
***************************************************************************/
// NOTE: Copied from OpenBabel/mol.cpp
static bool CompareUnsigned(const unsigned int &a,const unsigned int &b)
{
return(a<b);
}
static bool ComparePairFirst(const pair<OBAtom*,unsigned int> &a,const pair<OBAtom*,unsigned int> &b)
{
return(a.first->GetIdx() < b.first->GetIdx());
}
static bool ComparePairSecond(const pair<OBAtom*,unsigned int> &a,const pair<OBAtom*,unsigned int> &b)
{
return(a.second < b.second);
}
static bool CompareBondPairSecond(const pair<OBBond*,unsigned int> &a,const pair<OBBond*,unsigned int> &b)
{
return(a.second < b.second);
}
/***************************************************************************
* FUNCTION: GetValence
*
* DESCRIPTION:
* Like OBAtom::GetValence(): Counts the number of neighbors, but
* doesn't count atoms not in the fragment.
***************************************************************************/
static unsigned int GetValence(OBAtom *atom, OBBitVec &frag_atoms)
{
unsigned int count = 0;
OBBond *bond;
OBAtom *nbr;
vector<OBEdgeBase*>::iterator bi;
for (bond = atom->BeginBond(bi); bond; bond = atom->NextBond(bi)) {
nbr = bond->GetNbrAtom(atom);
if (frag_atoms.BitIsSet(nbr->GetIdx()))
count++;
}
return(count);
}
/***************************************************************************
* FUNCTION: GetHvyValence
*
* DESCRIPTION:
* Like OBAtom::GetHvyValence(): Counts the number non-hydrogen
* neighbors, but doesn't count atoms not in the fragment.
***************************************************************************/
static unsigned int GetHvyValence(OBAtom *atom, OBBitVec &frag_atoms)
{
unsigned int count = 0;
OBBond *bond;
OBAtom *nbr;
vector<OBEdgeBase*>::iterator bi;
for (bond = atom->BeginBond(bi); bond; bond = atom->NextBond(bi)) {
nbr = bond->GetNbrAtom(atom);
if (frag_atoms.BitIsSet(nbr->GetIdx()) && !(nbr->IsHydrogen()))
count++;
}
return(count);
}
/***************************************************************************
* FUNCTION: GetHvyBondSum
*
* DESCRIPTION:
* Sums the bond order over the bonds from this atom to other atoms
* in the fragment. Single = 1, double = 2, triple = 3, aromatic = 1.6,
* but sum is rounded to nearest integer.
*
* This is used for fragment symmetry perception instead of the "implicit
* valence" used by the standard OpenBabel symmetry perception. It
* has the same effect, but we don't have to worry about hydrogen counts,
* EXCEPT for aromatic N, where the difference between n and [nH] is
* critical.
***************************************************************************/
static unsigned int GetHvyBondSum(OBAtom *atom, OBBitVec &frag_atoms)
{
float count = 0.0;
OBBond *bond;
OBAtom *nbr;
vector<OBEdgeBase*>::iterator bi;
for (bond = atom->BeginBond(bi); bond; bond = atom->NextBond(bi)) {
nbr = bond->GetNbrAtom(atom);
if (frag_atoms.BitIsSet(nbr->GetIdx()) && !(nbr->IsHydrogen())) {
if (bond->IsSingle()) count += 1.0;
else if (bond->IsDouble()) count += 2.0;
else if (bond->IsTriple()) count += 3.0;
else if (bond->IsAromatic()) count += 1.6;
}
}
if (atom->GetAtomicNum() == 7 && atom->IsAromatic() && atom->GetImplicitValence() == 3) {
count += 1; // [nH] - add another bond
}
return(int(count + 0.5)); // round to nearest int
}
/***************************************************************************
* FUNCTION: GetGTDVector
*
* DESCRIPTION:
*
* Calculates the graph theoretical distance of each atom.
* Vector is indexed from zero.
*
* NOTE: Copied from OpenBabel/mol.cpp
*
* NOTE: "Indexed from zero" means it's one off from the atom->GetIdx()
* that's used to index atoms inside the molecule!
*
* NOTE: This function is hard to decipher, and seems to be misnamed.
* A "distance" should be be between two atoms, but there's more here
* than that. It seems to be doing a breadth-first search to find the
* most-distant atom from each atom, and reporting the number of steps
* (which happens to be the graph-theoretical distance) to that atom.
* The name "Graph Theoretical Distance" is thus misleading.
***************************************************************************/
static bool GetGTDVector(OBMol *pmol,
OBBitVec &frag_atoms,
vector<int> >d)
{
gtd.clear();
gtd.resize(pmol->NumAtoms());
int gtdcount, natom;
OBBitVec used, curr, next;
OBAtom *atom, *atom1;
OBBond *bond;
vector<OBNodeBase*>::iterator ai;
vector<OBEdgeBase*>::iterator j;
next.Clear();
for (atom = pmol->BeginAtom(ai); atom; atom = pmol->NextAtom(ai)) {
int idx = atom->GetIdx();
if (!frag_atoms.BitIsOn(idx)) { // Not in this fragment?
gtd[idx-1] = 0;
continue;
}
gtdcount = 0;
used.Clear();curr.Clear();
used.SetBitOn(idx);
curr.SetBitOn(idx);
while (!curr.IsEmpty()) {
next.Clear();
for (natom = curr.NextBit(-1);natom != curr.EndBit();natom = curr.NextBit(natom)) {
atom1 = pmol->GetAtom(natom);
if (!frag_atoms.BitIsOn(atom1->GetIdx()))
continue;
for (bond = atom1->BeginBond(j);bond;bond = atom1->NextBond(j)) {
int nbr_idx = bond->GetNbrAtomIdx(atom1);
if ( frag_atoms.BitIsOn(nbr_idx)
&& !used.BitIsOn(nbr_idx)
&& !curr.BitIsOn(nbr_idx)
&& !(bond->GetNbrAtom(atom1))->IsHydrogen())
next.SetBitOn(nbr_idx);
}
}
used |= next;
curr = next;
gtdcount++;
}
gtd[idx-1] = gtdcount;
}
#if DEBUG
cout << " GetGTDVector: ";
vector<int>::iterator ii;
for (ii = gtd.begin(); ii != gtd.end(); ii++)
cout << *ii << " ";
cout << "\n";
#endif
return(true);
}
/***************************************************************************
* FUNCTION: FindRingAtoms
*
* DESCRIPTION:
* Finds all atoms that are part of a ring in the current fragment.
* We start with the whole molecule's rings, and eliminate any that
* have atoms not in the subset. For the rings that are left, mark
* each atom of the ring as a ring atom.
*
* Returns a bit vector where TRUE means it's a ring atom.
***************************************************************************/
static void FindRingAtoms(OBMol *pmol, OBBitVec &frag_atoms, OBBitVec &ring_atoms)
{
vector<OBRing*> sssRings;
vector<OBRing*>::iterator ri;
ring_atoms.Resize(pmol->NumAtoms());
ring_atoms.Clear();
sssRings = pmol->GetSSSR();
for (ri = sssRings.begin(); ri != sssRings.end(); ri++) {
OBRing *ring = *ri;
OBBitVec bvtmp = frag_atoms & ring->_pathset; // intersection: fragment and ring
if (bvtmp == ring->_pathset) // all ring atoms in fragment?
ring_atoms |= ring->_pathset; // yes - add this ring's atoms
}
}
/***************************************************************************
* FUNCTION: GetGIVector
*
* DESCRIPTION:
* NOTE: Copied from OpenBabel/mol.cpp
*
* Calculates a set of graph invariant indexes using the graph theoretical
* distance, number of connected heavy atoms, aromatic boolean, ring
* boolean, atomic number, and summation of bond orders connected to the
* atom.
*
* We have to recalculate which atoms are in rings by taking the fragment's
* atoms into account when we generate the graph invarients.
*
* Vector is indexed from zero (not one, like atom->GetIdx()).
*
* NOTE: This may need to be extended to include the bond-invariant properties,
* particularly the size of all rings the bond is in (from a SSSR).
***************************************************************************/
static void GetGIVector(OBMol *pmol,
OBBitVec &frag_atoms,
vector<unsigned int> &vid)
{
// Prepare the vector...
vid.clear();
vid.resize(pmol->NumAtoms());
// The "graph theoretical distance" for each atom (see comments in the function)
vector<int> v;
GetGTDVector(pmol, frag_atoms, v);
// Compute the ring atoms for this particular fragment (set of atoms)
OBBitVec ring_atoms;
FindRingAtoms(pmol, frag_atoms, ring_atoms);
int i;
OBAtom *atom;
vector<OBNodeBase*>::iterator ai;
for (i=0, atom = pmol->BeginAtom(ai); atom; atom = pmol->NextAtom(ai)) {
vid[i] = 0;
if (frag_atoms.BitIsOn(atom->GetIdx())) {
vid[i] =
v[i] // 10 bits: graph-theoretical distance
| (GetHvyValence(atom,frag_atoms) <<10) // 4 bits: heavy valence
| (((atom->IsAromatic()) ? 1 : 0) <<14) // 1 bit: aromaticity
| (((ring_atoms.BitIsOn(atom->GetIdx())) ? 1 : 0)<<15) // 1 bit: ring atom
| (atom->GetAtomicNum() <<16) // 7 bits: atomic number
| (GetHvyBondSum(atom, frag_atoms) <<23) // 4 bits: heavy bond sum
| ((7 + atom->GetFormalCharge()) <<27); // 4 bits: formal charge
}
i++;
}
#if DEBUG
cout << " GetGIVector: ";
vector<unsigned int>::iterator ii;
for (ii = vid.begin(); ii != vid.end(); ii++)
cout << *ii << " ";
cout << "\n";
#endif
}
/***************************************************************************
* FUNCTION: CreateNewClassVector
*
* DESCRIPTION:
* NOTE: Derived from OpenBabel/mol.cpp
*
* Creates a new vector of symmetry classes based on an existing
* vector. (Helper routine to GetGIDVector.) On return, vp2 will
* have newly-extended connectivity sums, but the numbers (the class
* IDs) are very large.
*
* (Comments by CJ) This appears to compute the "extended connectivity
* sums" similar to those described by Weininger, Morgan, etc. It uses
* vp1 as its starting point (the current connectivity sums), and puts
* the new sums in vp2. Note that vp1 is modified along the way.
*
* Note that, per Weininger's warning, this assumes the initial class
* ID's are less than 100, which is a BAD assumption, e.g. OCC...CCN
* would have more than 100 symmetry classes if the chain is more than
* 98 carbons long. Should change this to use Weininger's product of
* corresponding primes.
***************************************************************************/
static void CreateNewClassVector(vector<pair<OBAtom*,unsigned int> > &vp1,
vector<pair<OBAtom*,unsigned int> > &vp2,
OBBitVec &frag_atoms, int natoms)
{
int m,id;
OBAtom *atom, *nbr;
vector<OBEdgeBase*>::iterator nbr_iter;
vector<unsigned int>::iterator k;
vector<pair<OBAtom*,unsigned int> >::iterator vp_iter;
#if DEBUG
cout << "CreateNewClassVector: START\n";
print_vector_pairs(" ", vp1);
#endif
// There may be fewer atoms than in the whole molecule, so we can't
// index the vp1 array by atom->GetIdx(). Instead, create a quick
// mapping vector of idx-to-index for vp1.
vector<int> idx2index(natoms+1, -1); // natoms + 1
int index = 0;
for (vp_iter = vp1.begin(); vp_iter != vp1.end(); vp_iter++) {
int idx = vp_iter->first->GetIdx();
idx2index[idx] = index++;
}
// vp2 will hold the newly-extended symmetry classes
vp2.resize(vp1.size());
vp2.clear();
// Loop over original atoms.
// Create a new extended varient for each atom. Get its neighbors' class ID's,
// sort them into ascending order, and create a sum of (c0 + c1*10^2 + c2*10^4 + ...)
// which becomes the new class ID (where c0 is the current classID).
for (vp_iter = vp1.begin(); vp_iter != vp1.end(); vp_iter++) {
atom = vp_iter->first;
id = vp_iter->second;
vector<unsigned int> vtmp;
for (nbr = atom->BeginNbrAtom(nbr_iter); nbr; nbr = atom->NextNbrAtom(nbr_iter)) {
int idx = nbr->GetIdx();
if (frag_atoms.BitIsOn(idx))
vtmp.push_back(vp1[idx2index[idx]].second);
}
sort(vtmp.begin(),vtmp.end(),CompareUnsigned);
for (m = 100, k = vtmp.begin(); k != vtmp.end(); k++, m*=100)
id += *k * m;
vp2.push_back(pair<OBAtom*,unsigned int> (atom, id));
}
#if DEBUG
cout << "CreateNewClassVector: FINISH\n";
print_vector_pairs(" ", vp2);
#endif
}
/***************************************************************************
* FUNCTION: CountAndRenumberClasses
*
* DESCRIPTION:
* NOTE: Copied from OpenBabel/mol.cpp
*
* Counts the number of unique symmetry classes in a list.
*
* (NOTE: CJ -- It also appears to MODIFY the list. It sorts it in order
* of class ID, then renumbers the ID's zero through N-1. See the comments
* in CreateNewClassVector() about how it returns very large numbers for the
* class IDs it creates. These are replaced by lower, sequential numbers here.)
***************************************************************************/
static void CountAndRenumberClasses(vector<pair<OBAtom*,unsigned int> > &vp,
unsigned int &count)
{
count = 1;
vector<pair<OBAtom*,unsigned int> >::iterator k;
sort(vp.begin(),vp.end(),ComparePairSecond);
k = vp.begin();
if (k != vp.end()) {
unsigned int id = k->second;
k->second = 1;
++k;
for (;k != vp.end(); ++k) {
if (k->second != id) {
id = k->second;
k->second = ++count;
}
else
k->second = count;
}
}
}
/***************************************************************************
* FUNCTION: ExtendInvarients
*
* DESCRIPTION:
* This is the core of symmetry analysis. Starting with a set of
* classes on each atom, it "spreads" them using a sum-of-invarients
* of each atom's class and its neighbors' classes. This iterates
* until a stable solution is found (further spreading doesn't
* change the answer).
*
* RETURNS: The number of distinct symmetry classes found.
***************************************************************************/
static int ExtendInvarients(vector<pair<OBAtom*, unsigned int> > &symmetry_classes,
OBBitVec &frag_atoms, int nfragatoms, int natoms)
{
unsigned int nclasses1, nclasses2;
vector<pair<OBAtom*,unsigned int> > tmp_classes;
// How many classes are we starting with? (The "renumber" part isn't relevant.)
CountAndRenumberClasses(symmetry_classes, nclasses1);
// LOOP: Do extended sum-of-invarients until no further changes are
// noted. (Note: This is inefficient, as it re-computes extended sums
// and re-sorts the entire list each time. You can save a lot of time by
// only recomputing and resorting within regions where there is a tie
// initially. But it's a lot more code.)
if (nclasses1 < nfragatoms) {
for (int i = 0; i < 100;i++) { //sanity check - shouldn't ever hit this number
CreateNewClassVector(symmetry_classes, tmp_classes, frag_atoms, natoms);
CountAndRenumberClasses(tmp_classes, nclasses2);
symmetry_classes = tmp_classes;
if (nclasses1 == nclasses2) break;
nclasses1 = nclasses2;
}
}
return nclasses1;
}
/***************************************************************************
* FUNCTION: CalculateSymmetry
*
* DESCRIPTION:
* Calculates a set of canonical symmetry identifiers for a molecule.
* Atoms with the same symmetry ID are symmetrically equivalent. By
* "canonical", we mean it generates a repeatable labelling of the
* atoms, i.e. the same fragment will get the same symmetry labels in
* any molecule in which it occurs.
*
* Vector is indexed from zero, corresponding to (atom->GetIdx() - 1).
*
* The bit vector "frag_atoms" specifies a fragment of the molecule,
* where each bit represents the presence or absence of the atom in
* the fragment. Symmetry is computed as though the fragment is the
* only part that exists.
***************************************************************************/
static int CalculateSymmetry(OBMol *pmol,
OBBitVec &frag_atoms,
vector<pair<OBAtom*, unsigned int> > &symmetry_classes)
{
vector<unsigned int> vgi;
vector<OBNodeBase*>::iterator j;
OBAtom *atom;
// How many atoms, and how many do we care about?
int natoms = pmol->NumAtoms();
int nfragatoms = frag_atoms.CountBits();
#if DEBUG
for (atom = pmol->BeginAtom(j); atom; atom = pmol->NextAtom(j)) {
if (frag_atoms[atom->GetIdx()])
cout << etab.GetSymbol(atom->GetAtomicNum()) << " ";
}
cout << "\n";
#endif
// Get vector of graph invariants. These are the starting "symmetry classes".
GetGIVector(pmol, frag_atoms, vgi);
// Create a vector-of-pairs, associating each atom with its Class ID.
for (atom = pmol->BeginAtom(j); atom; atom = pmol->NextAtom(j)) {
int idx = atom->GetIdx();
if (frag_atoms.BitIsOn(idx))
symmetry_classes.push_back(pair<OBAtom*, unsigned int> (atom, vgi[idx-1]));
}
// The heart of the matter: Do extended sum-of-invarients until no further
// changes are noted.
int nclasses = ExtendInvarients(symmetry_classes, frag_atoms, nfragatoms, natoms);
return nclasses;
}
/***************************************************************************
* FUNCTION: BreakChiralTies
*
* DESCRIPTION:
* After the achiral symmetry analysis ChiralSymmetry() is done, but
* before the "tie breaker" step (see CanonicalLabels(), below), there
* may be two (or more) chiral centers in the same symmetry class that
* actually have different chirality. This function finds such chiral
* centers, and compares their chirality. If it finds that two atoms
* in the same symmetry class have the same chirality, it leaves them
* alone, but if they have opposite chirality, it breaks the tie
* between the two atoms.
*
* Actually, it's more subtle than that. Suppose there are a bunch of
* chiral atoms in the same symmetry class. The the class is divided
* into two classes: All atoms with one chirality go into one class,
* and all atoms with the opposite chirality go in the other class.
*
* INPUTS:
* pmol the molecule
* frag_atoms atoms of the molecules in this fragment
* atom_sym_classes vector of atom/symclass pairs
*
***************************************************************************/
static void BreakChiralTies(OBMol *pmol,
OBBitVec &frag_atoms, int nfragatoms,
vector<pair<OBAtom*, unsigned int> > &atom_sym_classes)
{
vector<pair<OBAtom*,unsigned int> > vp1, vp2;
// for keeping track of atoms we've already considered
OBBitVec used_atoms;
used_atoms.Clear();
used_atoms.Resize(pmol->NumAtoms()+1);
// Convert the atom/class pairs to an array indexed by atom idx.
// This is just for convenience in the next step. Note that there
// will be "holes" in this vector since it's a molecule fragment.
vector<unsigned int> idx2sym_class;
idx2sym_class.resize(pmol->NumAtoms()+1);
vector<pair<OBAtom*,unsigned int> >::iterator api;
for (api = atom_sym_classes.begin(); api < atom_sym_classes.end(); api++)
idx2sym_class[api->first->GetIdx()] = api->second;
// Loop over all atoms...
vector<OBNodeBase*>::iterator ai, aj;
for (OBAtom *atom = pmol->BeginAtom(ai); atom; atom = pmol->NextAtom(ai)) {
int idx = atom->GetIdx();
// We only want: unused, chiral, and part of this fragment.
if (!frag_atoms[idx])
continue;
if (used_atoms[idx])
continue;
used_atoms.SetBitOn(idx);
if (GetValence(atom, frag_atoms) < 4) // Valence relative to this fragment
continue;
if (!atom->IsChiral())
continue;
// Get its symmetry class
int symclass = idx2sym_class[idx];
// Start the vector of "same class" atoms by adding this atom
vector<OBAtom *> same_class;
same_class.push_back(atom);
// Inner Loop: Find all other atoms with the same symmetry class
OBAtom *atom2;
aj = ai;
for (atom2 = pmol->NextAtom(aj) ; atom2; atom2 = pmol->NextAtom(aj)) {
int idx2 = atom2->GetIdx();
if (used_atoms[idx2])
continue;
if (idx2sym_class[idx2] == symclass) {
same_class.push_back(atom2);
used_atoms.SetBitOn(idx2);
}
}
// Unless at least two atoms in the class, there are no ties to break
if (same_class.size() < 2)
continue;
#if DEBUG
cout << "BreakChiralTies: same_class = ";
vector<OBAtom*>::iterator ia;
for (ia = same_class.begin(); ia != same_class.end(); ia++)
cout << (*ia)->GetIdx() << " ";
cout << "\n";
#endif
// Create a vector of each atom's neighbors, and sort them
// (the neighbors) by symmetry class. When this step is through,
// we'll be able to compare the 3D coordinates.
vector<pair<OBAtom*, vector<OBAtom*> > > sorted_neighbors;
vector<OBAtom*>::iterator iatom;
for (iatom = same_class.begin(); iatom != same_class.end(); iatom++) {
// Gather the neighbors, and sort them by symmetry class
vector<pair<OBAtom*,unsigned int> > neighbors; // pair: neighbor/symclass
FOR_NBORS_OF_ATOM(i_nbr, (*iatom)) {
OBAtom *nbr = &(*i_nbr);
int idx = nbr->GetIdx();
if (frag_atoms[idx])
neighbors.push_back(pair<OBAtom*,unsigned int>(nbr, idx2sym_class[idx]));
}
sort(neighbors.begin(), neighbors.end(), ComparePairSecond);
// Copy the sorted neighbors to a simple vector (we don't care
// about the symclass any more now that they're sorted).
vector<OBAtom*> sorted;
vector<pair<OBAtom *, unsigned int> >::iterator ni;
for (ni = neighbors.begin(); ni != neighbors.end(); ni++)
sorted.push_back((*ni).first);
// Now put the chiral atom, and its sorted neighbors, into a vector.
sorted_neighbors.push_back(pair<OBAtom*, vector<OBAtom*> >(*iatom, sorted));
}
// See the comments in cansmilesformat.cpp::GetChiralStereo regarding
// "torsion". If two atoms' neighbors, sorted the same way, have torsion
// angles with the same sign (both positive or both negative torsions),
// then their chiralities match, otherwise they're opposite chiralities.
// Using this fact, divide the atoms in this symmetry class into two groups.
OBAtom *ref_atom = sorted_neighbors[0].first;
vector<OBAtom*> ref_neighbors = sorted_neighbors[0].second;
double t1 = CalcTorsionAngle(ref_neighbors[0]->GetVector(),
ref_neighbors[1]->GetVector(),
ref_neighbors[2]->GetVector(),
ref_neighbors[3]->GetVector());
vector<OBAtom*> symclass1, symclass2;
symclass1.push_back(ref_atom);
for (int i = 1; i < sorted_neighbors.size(); i++) {
OBAtom *atom = sorted_neighbors[i].first;
vector<OBAtom*>neighbors = sorted_neighbors[i].second;
double t2 = CalcTorsionAngle(neighbors[0]->GetVector(),
neighbors[1]->GetVector(),
neighbors[2]->GetVector(),
neighbors[3]->GetVector());
if (t1*t2 >= 0.0)
symclass1.push_back(atom); // t1 & t2 have same signs ==> same chirality
else
symclass2.push_back(atom); // t1 & t2 have opposite signs ==> opposite chirality
}
// If there's nothing in symclass2, then we don't have to split
// the symmetry class.
if (symclass2.empty())
continue;
#if DEBUG
cout << "Time to break chiral ties...\n";
#endif
// Time to break the class in two. Double all symmetry classes
// Then, either add one or subtract one to all the atoms in symclass2,
// the atoms that didn't match the chirality of the "reference" class above.
// The add-or-subtract decision is based on t1, the "torsion angle" calculated
// above; by doing this, we force a consistent choice of '@' or '@@' for the,
// two chiral centers; otherwise it's arbitrary and you'll get two different SMILES.
for (int i = 0; i < atom_sym_classes.size(); i++) {
atom_sym_classes[i].second *= 2;
for (int j = 0; j < symclass2.size(); j++) {
if (symclass2[j] == atom_sym_classes[i].first) {
if (t1 > 0)
atom_sym_classes[i].second += 1;
else
atom_sym_classes[i].second -= 1;
}
}
}
// Now propagate the change across the whole molecule with the
// extended sum-of-invariants.
ExtendInvarients(atom_sym_classes, frag_atoms, nfragatoms, pmol->NumAtoms());
}
}
/***************************************************************************
* FUNCTION: FindConjugatedEZBonds
*
* DESCRIPTION:
* When generating a canonical SMILES for an E/Z double bond, the
* system needs to choose between two equivalent representations,
* e.g. C/C=C/C vs. C\C=C\C, and C/C=C\C vs. C\C=C/C. The function
* FixCisTransBonds() below does this by selecting the lowest atom
* in the canonical ordering, and if it's going to be "\", it "flips"
* all of the Up/Down designations around the double bond so that
* the first symbol printed is always "/".
*
* However, it's trickier than that. Consider:
*
* C\C=C/C=C/C
*
* If you just flip the two up/down bonds around the first double
* bond, you'll get the second double bond wrong. So to flip the
* first one, you need to identify all of the conjugated double bonds,
* and flip them as a set.
*
* This function "walks" outward from a double bond and identifies
* all neighboring double bonds, continuing until either a single
* bond is encountered with no up/down designation, or the neighboring
* bond isn't a double bond.
*
* On return, "flip_bonds" will be a set of single bonds that must
* all be "flipped" (Up/Down reversed) as a set.
***************************************************************************/
static void FindConjugatedEZBonds(OBAtom *atom,
OBBitVec &flip_bonds,
OBBitVec &visited_atoms)
{
visited_atoms.SetBitOn(atom->GetIdx());
FOR_BONDS_OF_ATOM(bi, atom) {
OBBond *bond = &(*bi);
// Filter out bonds that can't be part of
// conjugated double-bond chain
if (!bond->IsSingle()) // only care about single-bonded neighbors
continue;
if (!bond->IsUp() && !bond->IsDown()) // bond must be marked up or down
continue;
OBAtom *nbr = bond->GetNbrAtom(atom);
if (visited_atoms[nbr->GetIdx()]) // been there already?
continue;
// Ok, it's marked and it's single: this bond is part of the "flip set"
flip_bonds.SetBitOn(bond->GetIdx());
// Now see if the neighbor atom also has a double bond, and if so
// recursively carry the markings forward.
if (nbr->HasDoubleBond()) // neighbor must also have double bond
FindConjugatedEZBonds(nbr, flip_bonds, visited_atoms);
}
// Now recursively call this function on the other atom across
// the double bond from this one.
FOR_BONDS_OF_ATOM(bond, atom) {
if (bond->IsDouble()) {
OBAtom *nbr = bond->GetNbrAtom(atom);
if (visited_atoms[nbr->GetIdx()])
break;
FindConjugatedEZBonds(nbr, flip_bonds, visited_atoms);
break;
}
}
#if DEBUG
cout << "FindConjugatedEZBonds: atom " << atom->GetIdx() << ": " << flip_bonds << "\n";
#endif
}
/***************************************************************************
* FUNCTION: FixCisTransBonds
*
* DESCRIPTION:
*
* NOTE: THIS ALGORITHM IS NOT SUFFICIENT. It canonicalizes certain
* aspects of cis/trans chirality, but it misses some important
* cases. In particular, all symmetry analysis is done without taking
* cis/trans information into account; only after the symmetry analysis
* is done that the cis/trans double bonds are "canonicalized" by either
* erasing the cis/trans bonds (when symmetry makes it not cis/trans), or
* by rearranging the up/down bonds into a canonical configuration.
*
* Here's an example of a molecule that won't canonicalize properly:
*
*
* X Y The canonicalizer will think this is
* \ / symmetrical because it doesn't take the
* A D double bonds into account when determining
* \ / \ the chirality of D.
* B==C E==F
* \
* G
*
* To fix this, we need to do a "tie breaker" between A and G using their
* cis/trans information, in the same fashion that we do tie-breaking of
* chiral centers, above.
*
* Other than that, here are the normal comments...
*
* This function fixes two problems in a molecule:
*
* 1. Many molecules have cis/trans markings that are bogus - the
* molecule is actually symmetrical at one or both ends of the
* double bond.
*
* 2. Many molecules have only two or three of the cis/trans bonds
* marked as "up" and "down" bonds, when all of them should be
* marked.
*
* Using the symmetry classes, this function fixes these problems.
***************************************************************************/
static void FixCisTransBonds(OBMol *pmol,
OBBitVec &frag_atoms,
vector<unsigned int> &symmetry_classes,
vector<unsigned int> &canonical_labels)
{
// Bit vector records which bonds are discovered to actually be up/down.
// Some bonds may be marked up/down but after symmetry analysis we learn
// that they are not.
OBBitVec cis_trans_bonds(pmol->NumBonds() + 1);
cis_trans_bonds.Clear();
FOR_BONDS_OF_MOL(dbi, pmol) {
OBBond *dbl_bond = &(*dbi);
// Not a double bond?
if (!dbl_bond->IsDouble() || dbl_bond->IsAromatic())
continue;
bool is_cis_trans = true;
// Find the single bonds around the atoms connected by the double bond.
// While we're at it, note whether the pair of atoms on either end are
// identical, in which case it's not cis/trans.
OBAtom *a1 = dbl_bond->GetBeginAtom();
OBAtom *a2 = dbl_bond->GetEndAtom();
#if DEBUG
cout << "FixCisTransBonds: dbl_bond = " << dbl_bond->GetIdx() << ", atoms = " << a1->GetIdx() << ", " << a2->GetIdx() << ")\n";
cout << " canonical labels = " << canonical_labels[a1->GetIdx()-1] << ", " << canonical_labels[a2->GetIdx()-1] << "\n";
#endif
// neighbors of atom1 and atom2
OBBond *a1_b1 = NULL, *a1_b2 = NULL, *a2_b1 = NULL, *a2_b2 = NULL;
int symclass = -1;
FOR_BONDS_OF_ATOM(bi, a1) {
OBBond *b = &(*bi);
if ((b) == (dbl_bond)) continue; // skip the double bond we're working on
if (b->IsSingle() || b->IsAromatic()) {
if (symclass >= 0 && symclass == symmetry_classes[b->GetNbrAtom(a1)->GetIdx()-1]) {
is_cis_trans = false; // two atoms, and both atoms the same
}
symclass = symmetry_classes[b->GetNbrAtom(a1)->GetIdx()-1];
if (NULL == a1_b1)
a1_b1 = b; // remember 1st bond of Atom1
else
a1_b2 = b; // remember 2nd bond of Atom1
} else {
is_cis_trans = false; // it's not a single bond, can't be cis/trans
}
}
symclass = -1;
FOR_BONDS_OF_ATOM(bi, a2) {
OBBond *b = &(*bi);
if (b == dbl_bond) continue;
if (b->IsSingle() || b->IsAromatic()) {
if (symclass >= 0 && symclass == symmetry_classes[b->GetNbrAtom(a2)->GetIdx()-1]) {
is_cis_trans = false; // second connection, but both atoms the same
}
symclass = symmetry_classes[b->GetNbrAtom(a2)->GetIdx()-1];
if (NULL == a2_b1)
a2_b1 = b; // remember 1st bond of Atom2
else
a2_b2 = b; // remember 2nd bond of Atom2
} else {
is_cis_trans = false; // it's not a single bond, can't be cis/trans
}
}
// Check that both atoms on the double bond have at least one
// other neighbor;
int v1 = GetValence(a1, frag_atoms);
int v2 = GetValence(a2, frag_atoms);
if (v1 < 2 || v1 > 3 || v2 < 2 || v2 > 3) {
is_cis_trans = false;
}
// Now check that at least two are marked cis/trans.
if (is_cis_trans) {
int count = 0;
if (a1_b1 && (a1_b1->IsUp() || a1_b1->IsDown())) count++;
if (a1_b2 && (a1_b2->IsUp() || a1_b2->IsDown())) count++;
if (a2_b1 && (a2_b1->IsUp() || a2_b1->IsDown())) count++;
if (a2_b2 && (a2_b2->IsUp() || a2_b2->IsDown())) count++;
if (count < 2) {
is_cis_trans = false;
}
}
if (is_cis_trans) {
// It's cis/trans, so record the fact for each bond. Later, we'll clear
// out any Up/Down bonds that aren't in this cis_trans_bonds bitmap.
if (a1_b1) cis_trans_bonds.SetBitOn(a1_b1->GetIdx());
if (a1_b2) cis_trans_bonds.SetBitOn(a1_b2->GetIdx());
if (a2_b1) cis_trans_bonds.SetBitOn(a2_b1->GetIdx());
if (a2_b2) cis_trans_bonds.SetBitOn(a2_b2->GetIdx());
// Now we know we have a double bond with two, three, or four
// single-bond neighbors, of which at least two are marked as cis/trans.
// In this case, make sure all bonds have appropriate up/down markings,
// and change the up/down marks to a canonical form.
#define CT_MATCH(b1, b2) \
b1->IsUp() ? b2->SetDown() : (b1->IsDown() ? b2->SetUp() : (b2->IsUp() ? b1->SetDown() : (b2->IsDown() ? b1->SetUp() : b1->SetDown())))
#if DEBUG
cout << " Is cis/trans - matching: \n";
#endif
// Make sure all bonds are actually marked
if (a1_b1 && a1_b2) {CT_MATCH(a1_b1, a1_b2);}
if (a2_b1 && a2_b2) {CT_MATCH(a2_b1, a2_b2);}
// Find the neighbor atom with the lowest canonical label
vector<pair<OBBond*, int> > bsym;
if (a1_b1) bsym.push_back(pair<OBBond*, int>(a1_b1, canonical_labels[a1_b1->GetNbrAtom(a1)->GetIdx() - 1]));
if (a1_b2) bsym.push_back(pair<OBBond*, int>(a1_b2, canonical_labels[a1_b2->GetNbrAtom(a1)->GetIdx() - 1]));
if (a2_b1) bsym.push_back(pair<OBBond*, int>(a2_b1, canonical_labels[a2_b1->GetNbrAtom(a2)->GetIdx() - 1]));
if (a2_b2) bsym.push_back(pair<OBBond*, int>(a2_b2, canonical_labels[a2_b2->GetNbrAtom(a2)->GetIdx() - 1]));
sort(bsym.begin(), bsym.end(), CompareBondPairSecond);
// If the lowest-symmetry-class bond is Down, flip everything.
if (bsym[0].first->IsUp()) {
// Find the set of conjugated double/single bonds that all
// need to be flipped as a unit.
OBBitVec flip_bonds(pmol->NumBonds() + 1);
OBBitVec visited_atoms(pmol->NumAtoms() + 1);
FindConjugatedEZBonds(a1, flip_bonds, visited_atoms);
// Flip them all.
FOR_BONDS_OF_MOL(bi, pmol) {
OBBond *b = &(*bi);
if (flip_bonds[b->GetIdx()]) {
if (b->IsUp())
b->SetDown();
else if (b->IsDown())
b->SetUp();
}
}
}
}
}
// OK, we've determined which bonds really are cis/trans, and we've
// got the up/down right on all of them. The final step is to
// remove any Up/Down marks on bonds that we determined weren't
// really up or down.
FOR_BONDS_OF_MOL(bi, pmol) {
OBBond *b = &(*bi);
int idx = b->GetIdx();
if (!cis_trans_bonds[idx]) {
b->UnsetUp();
b->UnsetDown();
}
}
}
/***************************************************************************
* FUNCTION: CanonicalLabels
*
* DESCRIPTION:
* Generates a canonical labeling of the atoms of a molecule, and as
* a side benefit, returns the symmetry classes of the molecule.
*
* To create a canonical labeling, we need every node to have a unique
* label. The canonical symmetry classes (see CalculateSymmetry(),
* above) are a good start, but the atoms in each symmetry class are
* still indistinguishable. For writing a canonical string, we need
* to create an arbitrary, but canonical (repeatable) distinction
* between the atoms in each symmetry class -- "break the ties" in the
* symmetry values.
*
* To break ties, we sort into symetry-class order, double all class
* IDs, then arbitrarily subtract one from the first repeated symmetry
* class, thus breaking the tie (see Weininger et al). With this new
* set of symmetry classes, we repeat the extended-connectivity sums
* to "spread" the broken symmetry class, and check again. This is
* repeated until all symmetry is gone and every atom has a unique
* label.
*
* RETURNS:
* symmetry_classes - A vector, indexed by [ OBAtom::GetIdx() - 1].
* canonical_labels - A vector, indexed by [ OBAtom::GetIdx() - 1].
***************************************************************************/
void CanonicalLabels(OBMol *pmol,
OBBitVec &frag_atoms,
vector<unsigned int> &symmetry_classes,
vector<unsigned int> &canonical_labels) // on input: symclasses
{
vector<pair<OBAtom*,unsigned int> > atom_sym_classes, vp1, vp2;
vector<OBNodeBase*>::iterator j;
unsigned int nclass1, nclass2; //number of classes
int i;
int nfragatoms = frag_atoms.CountBits();
int natoms = pmol->NumAtoms();
// Start by calculating symmetry classes, without accounting for chiral centers
nclass1 = CalculateSymmetry(pmol, frag_atoms, atom_sym_classes);
#if DEBUG
cout << "BEFORE TieBreaker: nclass1 = " << nclass1 << ", nfragatoms = " << nfragatoms << "\n";
print_vector_pairs(" ", atom_sym_classes);
#endif
// Deal with chiral symmetry
BreakChiralTies(pmol, frag_atoms, nfragatoms, atom_sym_classes);
// The symmetry classes are the starting point for the canonical labels
vp1 = atom_sym_classes;
if (nclass1 < nfragatoms) {
int tie_broken = 1;
while (tie_broken) {
tie_broken = 0;
int last_rank = -1;
for (i = 0; i < vp1.size(); i++) {
vp1[i].second *= 2; // Double symmetry classes
if (vp1[i].second == last_rank && !tie_broken) {
vp1[i-1].second -= 1; // Break a tie
tie_broken = 1;
}
last_rank = vp1[i].second;
}
if (tie_broken) {
for (i = 0; i < 100;i++) { //sanity check - shouldn't ever hit this number
CreateNewClassVector(vp1, vp2, frag_atoms, natoms);
CountAndRenumberClasses(vp2, nclass2);
vp1 = vp2;
if (nclass1 == nclass2) break;
nclass1 = nclass2;
}
} else {
CountAndRenumberClasses(vp1, nclass1); // no more ties - undo the doublings
}
}
}
#if DEBUG
cout << "AFTER TieBreaker: nclass1 = " << nclass1 << ", nfragatoms = " << nfragatoms << "\n";
print_vector_pairs(" ", vp1);
#endif
// For return values, convert vectors of atom/int pairs into one-dimensional
// vectors of int, indexed by atom->GetIdx().
//
// Since we're working with a molecular fragment, the symmetry-class and
// canonical-label vectors are both shorter than the number of atoms in
// the molecule. To fix it, we append all of the non-fragment atoms to
// the end, with a very large value, then, re-sort the vector by the
// atom's GetIdx() number, and finally copy the result so that the vector
// corresponds to the atoms' order in the molecule.
#define NO_SYMCLASS 0x7FFFFFFF
// Add non-fragment atoms so vector is same length as natoms in molecule
for (OBAtom *atom = pmol->BeginAtom(j); atom; atom = pmol->NextAtom(j))
if (!frag_atoms.BitIsOn(atom->GetIdx())) {
atom_sym_classes.push_back(pair<OBAtom*,unsigned int> (atom, NO_SYMCLASS));
vp1.push_back(pair<OBAtom*,unsigned int> (atom, NO_SYMCLASS));
}
vector<pair<OBAtom*,unsigned int> >::iterator k;
// Sort and copy symmetry classes
symmetry_classes.clear();
sort(atom_sym_classes.begin(),atom_sym_classes.end(),ComparePairFirst);
for (k = atom_sym_classes.begin();k != atom_sym_classes.end();k++)
symmetry_classes.push_back(k->second);
// Sort and copy canonical labels
canonical_labels.clear();
sort(vp1.begin(),vp1.end(),ComparePairFirst);
for (k = vp1.begin();k != vp1.end();k++)
canonical_labels.push_back(k->second);
// Deal with cis/trans double bonds.
FixCisTransBonds(pmol, frag_atoms, symmetry_classes, canonical_labels);
}
} // namespace OpenBabel
//! \file canon.cpp
//! \brief Canonical numbering of SMILES, molecules and fragments
|