1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
|
/**********************************************************************
generic.cpp - Handle OBGenericData classes.
Copyright (C) 1998-2001 by OpenEye Scientific Software, Inc.
Some portions Copyright (C) 2001-2006 by Geoffrey R. Hutchison
This file is part of the Open Babel project.
For more information, see <http://openbabel.sourceforge.net/>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
***********************************************************************/
#include <openbabel/babelconfig.h>
#include <string>
#include <openbabel/mol.h>
#include <openbabel/generic.h>
#include <openbabel/math/matrix3x3.h>
// needed for msvc to have at least one reference to AtomClass, AliasData in openbabel library
#include <openbabel/atomclass.h>
#include <openbabel/alias.h>
using namespace std;
namespace OpenBabel
{
/** \class OBGenericData generic.h <openbabel/generic.h>
OBGenericData is an abstract base class which defines an interface for
storage, retrieval, and indexing of arbitrary generic data.
Subclasses of OBGenericData can be used to store custom data
on a per-atom, per-bond, per-molecule, or per-residue basis.
Open Babel currently supports a small subset of chemical functionality
as OBGenericData types, which will expand over time to support additional
interconversion (e.g., spectroscopy, dynamics, surfaces...)
For more information on currently supported types, please see
the developer wiki:
http://openbabel.sourceforge.net/wiki/Generic_Data
For your own custom data, either define a custom subclass using
an id from the OBGenericDataType::CustomData0 to
OBGenericDataType::CustomData15 slots,
or store your data as a string and use OBPairData for key/value access.
The latter is <strong>highly</strong> recommended for various text
descriptors
e.g., in QSAR, atom or bond labels, or other textual data.
<strong>New in Open Babel, version 2.1</strong>
is the template-based OBPairTemplate,
which can be used to store arbitrary data types. There are predefined
types OBPairInteger and OBPairFloatingPoint for storing integers and
floating-point values without converting to a string representation.
Also <strong>new</strong> is the "source" or "origin" of a data
entry, enumerated by DataOrigin. This can be accessed by
SetOrigin() and GetOrigin(), as well as via "filtering" methods
in OBBase, allowing you to separate data read in from a file,
added by a user, or assigned by Open Babel internally.
While the library and import routines will set DataOrigin correctly,
you should try to annotate data added by your code. Typically this would
either be userAdded or external. The former refers to something the
user requested as an annotation, while the latter refers to annotations
your code adds automatically.
Example code using OBGenericData:
@code
if (mol.HasData(OBGenericDataType::UnitCell))
{
uc = (OBUnitCell*)mol.GetData(OBGenericDataType::UnitCell);
sprintf(buffer,
"%10.5f%10.5f%10.5f%10.5f%10.5f%10.5f",
uc->GetA(), uc->GetB(), uc->GetC(),
uc->GetAlpha() , uc->GetBeta(), uc->GetGamma());
ofs << buffer << endl;
}
...
vector<OBGenericData*>::iterator k;
vector<OBGenericData*> vdata = mol.GetData();
for (k = vdata.begin();k != vdata.end();++k)
if ((*k)->GetDataType() == OBGenericDataType::PairData)
{
ofs << "> <" << (*k)->GetAttribute() << ">" << endl;
ofs << ((OBPairData*)(*k))->GetValue() << endl << endl;
}
@endcode
Similar code also works for OBGenericData stored in an OBAtom or
OBBond or OBResidue. These examples show use of DataOrigin outside
of the Open Babel library.
@code
string atomLabel; // e.g., from the user adding annotation to an atom
if (!atom.HasData("UserLabel")) // stored textual data as an OBPairData
{
OBPairData *label = new OBPairData;
label->SetAttribute("UserLabel");
label->SetValue(atomLabel);
label->SetOrigin(userInput); // set by user, not by Open Babel
atom.SetData(label);
}
...
if (bond.HasData("DisplayType")) // e.g. in a visualization tool
{
OBPairData *display = dynamic_cast<OBPairData *> bond.GetData("DisplayType");
if (display->GetValue() == "wireframe")
{
... // display a wireframe view
}
}
@endcode
When designing a class derived from OBGenericData you must add a
Clone() function. For classes used with OBMol this is used when
an OBMol object is copied. If your class member variables contain
pointers to atoms or bonds then it will be necessary to ensure
that these are updated in Clone() to refer to the new molecule. Without
these and similar pointers it is more likely that the very simple
clone function
@code
virtual OBGenericData* Clone(OBBase* parent) const
{return new MyNewClass(*this);}
@endcode
and the compiler generated copy constructor would be sufficient.
It is recommended that, if possible, OBGenericData classes do not
store atom and bond pointers. Using atom and bond indices instead
would allow the simple version of Clone() above. See
OBRotameterData::Clone for an example of a more complicated version.
For classes which are not intended to support copying, Clone() can
return NULL
@code
virtual OBGenericData* Clone(OBBase* parent) const
{return NULL;}
@endcode
Clone() is a pure virtual function so that you need to decide what
kind of function you need and include it explicitly.
**/
//
//member functions for OBGenericData class
//
OBGenericData::OBGenericData(const std::string attr, const unsigned int type,
const DataOrigin source):
_attr(attr), _type(type), _source(source)
{ }
/* Use default copy constructor and assignment operators
OBGenericData::OBGenericData(const OBGenericData &src)
{
_type = src.GetDataType();
_attr = src.GetAttribute();
}
OBGenericData& OBGenericData::operator = (const OBGenericData &src)
{
if(this == &src)
return(*this);
_type = src._type;
_attr = src._attr;
return(*this);
}
*/
//
//member functions for OBCommentData class
//
OBCommentData::OBCommentData():
OBGenericData("Comment", OBGenericDataType::CommentData)
{ }
OBCommentData::OBCommentData(const OBCommentData &src) :
OBGenericData(src), _data(src._data)
{ }
//
//member functions for OBExternalBond class
//
OBExternalBond::OBExternalBond(OBAtom *atom,OBBond *bond,int idx):
_idx(idx), _atom(atom), _bond(bond)
{ }
OBExternalBond::OBExternalBond(const OBExternalBond &src):
_idx(src._idx), _atom(src._atom), _bond(src._bond)
{ }
//
//member functions for OBExternalBondData class
//
OBExternalBondData::OBExternalBondData():
OBGenericData("ExternalBondData", OBGenericDataType::ExternalBondData,
perceived)
{ }
void OBExternalBondData::SetData(OBAtom *atom,OBBond *bond,int idx)
{
OBExternalBond xb(atom,bond,idx);
_vexbnd.push_back(xb);
}
//
//member functions for OBPairData class
//
OBPairData::OBPairData() :
OBGenericData("PairData", OBGenericDataType::PairData)
{ }
//
//member functions for OBVirtualBond class
//
OBVirtualBond::OBVirtualBond():
OBGenericData("VirtualBondData", OBGenericDataType::VirtualBondData, perceived),
_bgn(0), _end(0), _ord(0), _stereo(0)
{ }
OBVirtualBond::OBVirtualBond(int bgn,int end,int ord,int stereo):
OBGenericData("VirtualBondData", OBGenericDataType::VirtualBondData, perceived),
_bgn(bgn), _end(end), _ord(ord), _stereo(stereo)
{ }
//
// member functions for OBUnitCell class
//
OBUnitCell::OBUnitCell():
OBGenericData("UnitCell", OBGenericDataType::UnitCell),
_a(0.0), _b(0.0), _c(0.0), _alpha(0.0), _beta(0.0), _gamma(0.0),
_spaceGroup( NULL ), _lattice(Undefined)
{
// We should default to P1 space group unless we know differently
SetSpaceGroup(1);
}
OBUnitCell::OBUnitCell(const OBUnitCell &src) :
OBGenericData("UnitCell", OBGenericDataType::UnitCell),
_a(src._a), _b(src._b), _c(src._c),
_alpha(src._alpha), _beta(src._beta), _gamma(src._gamma),
_offset(src._offset),
_v1(src._v1), _v2(src._v2), _v3(src._v3),
_spaceGroupName(src._spaceGroupName),
_spaceGroup(src._spaceGroup),
_lattice(src._lattice)
{ }
OBUnitCell & OBUnitCell::operator=(const OBUnitCell &src)
{
if(this == &src)
return(*this);
_a = src._a;
_b = src._b;
_c = src._c;
_alpha = src._alpha;
_beta = src._beta;
_gamma = src._gamma;
_offset = src._offset;
_v1 = src._v1;
_v2 = src._v2;
_v3 = src._v3;
_spaceGroup = src._spaceGroup;
_spaceGroupName = src._spaceGroupName;
_lattice = src._lattice;
return(*this);
}
/*!
** The angles and lengths of the unitcell will be calculated from the
** vectors @p v1, @p v2 and @p v3. Those vectors will as well be
** stored internally.
**Implements <a href="http://qsar.sourceforge.net/dicts/blue-obelisk/index.xhtml#convertCartesianIntoNotionalCoordinates">blue-obelisk:convertCartesianIntoNotionalCoordinates</a>
**\brief Sets the vectors, angles and lengths of the unitcell
**\param v1 The x-vector
**\param v2 The y-vector
**\param v3 The z-vector
**\see OBUnitCell::GetCellVectors
*/
void OBUnitCell::SetData(const vector3 v1, const vector3 v2, const vector3 v3)
{
_v1 = v1;
_v2 = v2;
_v3 = v3;
_a = _v1.length();
_b = _v2.length();
_c = _v3.length();
// For PR#1961604 -- somewhat contrived example
if (IsNearZero(_a) && !IsNearZero(_c)) {
_v1 = _v3; // we'll reset _v3 below
_a = _c;
_c = 0.0;
}
// Sanity checks for 1D or 2D translation
if (IsNearZero(_b)) { // 1D
_v2.Set(v1.y(), -v1.x(), v1.z()); // rotate base vector by 90 degrees
_b = 999.999;
_v2 = _b * _v2.normalize(); // set to a large displacement
}
if (IsNearZero(_c)) { // 2D or 1D
_v3 = cross(_v1, _v2);
_c = 999.999;
_v3 = _c * _v3.normalize(); // set to a large displacement
}
_alpha = vectorAngle(_v2, _v3);
_beta = vectorAngle(_v1, _v3);
_gamma = vectorAngle(_v1, _v2);
}
//! Implements <a href="http://qsar.sourceforge.net/dicts/blue-obelisk/index.xhtml#convertNotionalIntoCartesianCoordinates">blue-obelisk:convertNotionalIntoCartesianCoordinates</a>
vector<vector3> OBUnitCell::GetCellVectors()
{
vector<vector3> v;
v.reserve(3);
// no unit cell vectors
if (IsNegligible(_v1.length(), 1.0, 1.0e-9) &&
IsNegligible(_v2.length(), 1.0, 1.0e-9) &&
IsNegligible(_v3.length(), 1.0, 1.0e-9))
{
vector3 temp;
matrix3x3 m = GetOrthoMatrix();
temp = vector3(1.0, 0.0, 0.0);
v.push_back(m * temp);
temp = vector3(0.0, 1.0, 0.0);
v.push_back(m * temp);
temp = vector3(0.0, 0.0, 1.0);
v.push_back(m * temp);
}
else
{
v.push_back(_v1);
// we set these above in case we had a 1D or 2D translation vector system
if (fabs(_b - 999.999) > 1.0e-1)
v.push_back(_v2);
if (fabs(_c - 999.999) > 1.0e-1)
v.push_back(_v3);
}
return v;
}
matrix3x3 OBUnitCell::GetCellMatrix()
{
matrix3x3 m;
if (IsNegligible(_v1.length(), 1.0, 1.0e-9) &&
IsNegligible(_v2.length(), 1.0, 1.0e-9) &&
IsNegligible(_v3.length(), 1.0, 1.0e-9))
{
m = GetOrthoMatrix();
}
else
{
vector3 v1, v2, v3;
v1 = _v1;
v2 = _v2;
v3 = _v3;
m = matrix3x3(v1,v2,v3);
}
return m;
}
// Convert from fractional to Cartesian
//! Implements <a href="http://qsar.sourceforge.net/dicts/blue-obelisk/index.xhtml#calculateOrthogonalisationMatrix">blue-obelisk:calculateOrthogonalisationMatrix</a>
matrix3x3 OBUnitCell::GetOrthoMatrix()
{
matrix3x3 m;
if (IsNearZero(_c) || IsNearZero(_b)) {
// 1D or 2D unit cell
}
// already here, let's not duplicate the work
m.FillOrth(_alpha, _beta, _gamma, _a, _b, _c);
return m;
}
// Based on code in PyMMLib: http://pymmlib.sf.net/
//! Matrix to convert from Cartesian to fractional
//! Implements <a href="http://qsar.sourceforge.net/dicts/blue-obelisk/index.xhtml#convertCartesianIntoFractionalCoordinates">blue-obelisk:convertCartesianIntoFractionalCoordinates</a>
matrix3x3 OBUnitCell::GetFractionalMatrix()
{
matrix3x3 m;
double sinAlpha, sinBeta, sinGamma;
double cosAlpha, cosBeta, cosGamma;
double v;
sinAlpha = sin(_alpha * DEG_TO_RAD);
sinBeta = sin(_beta * DEG_TO_RAD);
sinGamma = sin(_gamma * DEG_TO_RAD);
cosAlpha = cos(_alpha * DEG_TO_RAD);
cosBeta = cos(_beta * DEG_TO_RAD);
cosGamma = cos(_gamma * DEG_TO_RAD);
v = sqrt(1 - SQUARE(cosAlpha) - SQUARE(cosBeta) - SQUARE(cosGamma) +
2 * cosAlpha*cosBeta*cosGamma);
m.Set(0,0, 1.0 / _a);
m.Set(0,1, -cosGamma / (_a * sinGamma) );
m.Set(0,2, (cosGamma * cosAlpha - cosBeta) / (_a * v * sinGamma) );
m.Set(1,0, 0.0);
m.Set(1,1, 1.0 / (_b * sinGamma) );
m.Set(1,2, (cosGamma * cosBeta - cosAlpha) / (_b * v * sinGamma) );
m.Set(2,0, 0.0);
m.Set(2,1, 0.0);
m.Set(2,2, sinGamma / (_c * v) );
return m;
}
OBUnitCell::LatticeType OBUnitCell::GetLatticeType( int spacegroup )
{
// 1-2 Triclinic
// 3-15 Monoclinic
// 16-74 Orthorhombic
// 75-142 Tetragonal
// 143-167 Rhombohedral
// 168-194 Hexagonal
// 195-230 Cubic
if ( spacegroup == 0 && _spaceGroup)
spacegroup = _spaceGroup->GetId();
if ( spacegroup <= 0 )
return OBUnitCell::Undefined;
else if ( spacegroup == 1 ||
spacegroup == 2 )
return OBUnitCell::Triclinic;
else if ( spacegroup >= 3 &&
spacegroup <= 15 )
return OBUnitCell::Monoclinic;
else if ( spacegroup >= 16 &&
spacegroup <= 74 )
return OBUnitCell::Orthorhombic;
else if ( spacegroup >= 75 &&
spacegroup <= 142 )
return OBUnitCell::Tetragonal;
else if ( spacegroup >= 143 &&
spacegroup <= 167 )
return OBUnitCell::Rhombohedral;
else if ( spacegroup >= 168 &&
spacegroup <= 194 )
return OBUnitCell::Hexagonal;
else if ( spacegroup >= 195 &&
spacegroup <= 230 )
return OBUnitCell::Cubic;
//just to be extra sure
else // ( spacegroup > 230 )
return OBUnitCell::Undefined;
}
OBUnitCell::LatticeType OBUnitCell::GetLatticeType()
{
if (_lattice != Undefined)
return _lattice;
else if (_spaceGroup != NULL)
return GetLatticeType(_spaceGroup->GetId());
unsigned int rightAngles = 0;
if (IsApprox(_alpha, 90.0, 1.0e-3)) rightAngles++;
if (IsApprox(_beta, 90.0, 1.0e-3)) rightAngles++;
if (IsApprox(_gamma, 90.0, 1.0e-3)) rightAngles++;
switch (rightAngles)
{
case 3:
if (IsApprox(_a, _b, 1.0e-4) && IsApprox(_b, _c, 1.0e-4))
_lattice = Cubic;
else if (IsApprox(_a, _b, 1.0e-4) || IsApprox(_b, _c, 1.0e-4))
_lattice = Tetragonal;
else
_lattice = Orthorhombic;
break;
case 2:
if ( (IsApprox(_alpha, 120.0, 1.0e-3)
|| IsApprox(_beta, 120.0, 1.0e-3)
|| IsApprox(_gamma, 120.0f, 1.0e-3))
&& (IsApprox(_a, _b, 1.0e-4) || IsApprox(_b, _c, 1.0e-4)) )
_lattice = Hexagonal;
else
_lattice = Monoclinic;
break;
default:
if (IsApprox(_a, _b, 1.0e-4) && IsApprox(_b, _c, 1.0e-4))
_lattice = Rhombohedral;
else
_lattice = Triclinic;
}
return _lattice;
}
int OBUnitCell::GetSpaceGroupNumber( std::string name)
{
static const char * const spacegroups[] = {
"P1", "P-1", "P2", "P2(1)", "C2", "Pm", "Pc", "Cm", "Cc", "P2/m",
"P2(1)/m", "C2/m", "P2/c", "P2(1)/c", "C2/c", "P222", "P222(1)",
"P2(1)2(1)2", "P2(1)2(1)2(1)", "C222(1)", "C222", "F222", "I222",
"I2(1)2(1)2(1)", "Pmm2", "Pmc2(1)", "Pcc2", "Pma2", "Pca2(1)", "Pnc2",
"Pmn2(1)", "Pba2", "Pna2(1)", "Pnn2", "Cmm2", "Cmc2(1)", "Ccc2", "Amm2",
"Abm2", "Ama2", "Aba2", "Fmm2", "Fdd2", "Imm2", "Iba2", "Ima2", "Pmmm",
"Pnnn", "Pccm", "Pban", "Pmma", "Pnna", "Pmna", "Pcca", "Pbam", "Pccn",
"Pbcm", "Pnnm", "Pmmn", "Pbcn", "Pbca", "Pnma", "Cmcm", "Cmca", "Cmmm",
"Cccm", "Cmma", "Ccca", "Fmmm", "Fddd", "Immm", "Ibam", "Ibca", "Imma",
"P4", "P4(1)", "P4(2)", "P4(3)", "I4", "I4(1)", "P-4", "I-4", "P4/m",
"P4(2)/m", "P4/n", "P4(2)/n", "I4/m", "I4(1)/a", "P422", "P42(1)2",
"P4(1)22", "P4(1)2(1)2", "P4(2)22", "P4(2)2(1)2", "P4(3)22", "P4(3)2(1)2",
"I422", "I4(1)22", "P4mm", "P4bm", "P4(2)cm", "P4(2)nm", "P4cc", "P4nc",
"P4(2)mc", "P4(2)bc", "I4mm", "I4cm", "I4(1)md", "I4(1)cd", "P-42m",
"P-42c", "P-42(1)m", "P-42(1)c", "P-4m2", "P-4c2", "P-4b2", "P-4n2",
"I-4m2", "I-4c2", "I-42m", "I-42d", "P4/mmm", "P4/mcc", "P4/nbm",
"P4/nnc", "P4/mbm", "P4/mnc", "P4/nmm", "P4/ncc", "P4(2)/mmc",
"P4(2)/mcm", "P4(2)/nbc", "P4(2)/nnm", "P4(2)/mbc", "P4(2)/mnm",
"P4(2)/nmc", "P4(2)/ncm", "I4/mmm", "I4/mcm", "I4(1)/amd", "I4(1)/acd",
"P3", "P3(1)", "P3(2)", "R3", "P-3", "R-3", "P312", "P321", "P3(1)12",
"P3(1)21", "P3(2)12", "P3(2)21", "R32", "P3m1", "P31m", "P3c1", "P31c",
"R3m", "R3c", "P-31m", "P-31c", "P-3m1", "P-3c1", "R-3m", "R-3c", "P6",
"P6(1)", "P6(5)", "P6(2)", "P6(4)", "P6(3)", "P-6", "P6/m", "P6(3)/m",
"P622", "P6(1)22", "P6(5)22", "P6(2)22", "P6(4)22", "P6(3)22", "P6mm",
"P6cc", "P6(3)cm", "P6(3)mc", "P-6m2", "P-6c2", "P-62m", "P-62c",
"P6/mmm", "P6/mcc", "P6(3)/mcm", "P6(3)/mmc", "P23", "F23", "I23",
"P2(1)3", "I2(1)3", "Pm-3", "Pn-3", "Fm-3", "Fd-3", "Im-3", "Pa-3",
"Ia-3", "P432", "P4(2)32", "F432", "F4(1)32", "I432", "P4(3)32",
"P4(1)32", "I4(1)32", "P-43m", "F4-3m", "I-43m", "P-43n", "F-43c",
"I-43d", "Pm-3m", "Pn-3n", "Pm-3n", "Pn-3m", "Fm-3m", "Fm-3c",
"Fd-3m", "Fd-3c", "Im-3m", "Ia-3d"
};
if (name.length () == 0)
{
if (_spaceGroup != NULL)
return _spaceGroup->GetId();
else
name = _spaceGroupName;
}
static const int numStrings = sizeof( spacegroups ) / sizeof( spacegroups[0] );
for ( int i = 0; i < numStrings; ++i ) {
if (name == spacegroups[i] ) {
return i+1;
}
}
return 0; //presumably never reached
}
// Helper function -- transform fractional coordinates to ensure they lie in the unit cell
vector3 transformedFractionalCoordinate(vector3 originalCoordinate)
{
// ensure the fractional coordinate is entirely within the unit cell
vector3 returnValue(originalCoordinate);
// So if we have -2.08, we take -2.08 - (-2) = -0.08 .... almost what we want
returnValue.SetX(originalCoordinate.x() - int(originalCoordinate.x()) );
returnValue.SetY(originalCoordinate.y() - int(originalCoordinate.y()) );
returnValue.SetZ(originalCoordinate.z() - int(originalCoordinate.z()) );
if (returnValue.x() < 0.0)
returnValue.SetX(returnValue.x() + 1.0);
if (returnValue.y() < 0.0)
returnValue.SetY(returnValue.y() + 1.0);
if (returnValue.z() < 0.0)
returnValue.SetZ(returnValue.z() + 1.0);
return returnValue;
}
void OBUnitCell::FillUnitCell(OBMol *mol)
{
const SpaceGroup *sg = GetSpaceGroup(); // the actual space group and transformations for this unit cell
// For each atom, we loop through: convert the coords back to inverse space, apply the transformations and create new atoms
vector3 uniqueV, newV, updatedCoordinate;
list<vector3> transformedVectors; // list of symmetry-defined copies of the atom
list<vector3>::iterator transformIterator, duplicateIterator;
OBAtom *newAtom;
list<OBAtom*> atoms; // keep the current list of unique atoms -- don't double-create
list<vector3> coordinates; // all coordinates to prevent duplicates
bool foundDuplicate;
FOR_ATOMS_OF_MOL(atom, *mol)
atoms.push_back(&(*atom));
list<OBAtom*>::iterator i;
for (i = atoms.begin(); i != atoms.end(); ++i) {
uniqueV = (*i)->GetVector();
uniqueV *= GetFractionalMatrix();
uniqueV = transformedFractionalCoordinate(uniqueV);
coordinates.push_back(uniqueV);
transformedVectors = sg->Transform(uniqueV);
for (transformIterator = transformedVectors.begin();
transformIterator != transformedVectors.end(); ++transformIterator) {
// coordinates are in reciprocal space -- check if it's in the unit cell
// if not, transform it in place
updatedCoordinate = transformedFractionalCoordinate(*transformIterator);
foundDuplicate = false;
// Check if the transformed coordinate is a duplicate of an atom
for (duplicateIterator = coordinates.begin();
duplicateIterator != coordinates.end(); ++duplicateIterator) {
if (duplicateIterator->distSq(updatedCoordinate) < 1.0e-4) {
foundDuplicate = true;
break;
}
}
if (foundDuplicate)
continue;
coordinates.push_back(updatedCoordinate); // make sure to check the new atom for dupes
newAtom = mol->NewAtom();
newAtom->Duplicate(*i);
newAtom->SetVector(GetOrthoMatrix() * updatedCoordinate);
} // end loop of transformed atoms
(*i)->SetVector(GetOrthoMatrix() * uniqueV); // move the atom back into the unit cell
} // end loop of atoms
SetSpaceGroup(1); // We've now applied the symmetry, so we should act like a P1 unit cell
}
double OBUnitCell::GetCellVolume()
{
double result = 0.0;
switch ( GetLatticeType() )
{
case Triclinic:
result = _a * _b * _c
* sqrt(1
- SQUARE(cos( _alpha * DEG_TO_RAD ))
- SQUARE(cos( _beta * DEG_TO_RAD ))
- SQUARE(cos( _gamma * DEG_TO_RAD ))
+ 2 * cos( _alpha * DEG_TO_RAD ) * cos( _beta * DEG_TO_RAD ) * cos( _gamma * DEG_TO_RAD )
);
break;
case Monoclinic:
result = _a * _b * _c * sin( _beta * DEG_TO_RAD );
break;
case Orthorhombic:
result = _a * _b * _c;
break;
case Tetragonal:
result = _a * _a * _c;
break;
case Rhombohedral:
result = _a * _a * _a
* sqrt(1
- SQUARE(cos( _alpha * DEG_TO_RAD ))
- SQUARE(cos( _beta * DEG_TO_RAD ))
- SQUARE(cos( _gamma * DEG_TO_RAD ))
+ 2 * cos( _alpha * DEG_TO_RAD ) * cos( _beta * DEG_TO_RAD ) * cos( _gamma * DEG_TO_RAD )
);
break;
case Hexagonal:
result = pow( 3.0, 0.333333333 ) * _a * _a * _c / 2;
break;
case Cubic:
result = _a * _a * _a;
break;
default:
result = 0.0;
}
return result;
}
//
// member functions for OBSymmetryData class
//
OBSymmetryData::OBSymmetryData():
OBGenericData("Symmetry", OBGenericDataType::SymmetryData)
{ }
OBSymmetryData::OBSymmetryData(const OBSymmetryData &src) :
OBGenericData(src._attr, src._type, src._source),
_pointGroup(src._pointGroup), _spaceGroup(src._spaceGroup)
{ }
OBSymmetryData & OBSymmetryData::operator=(const OBSymmetryData &src)
{
if(this == &src)
return(*this);
_pointGroup = src._pointGroup;
_spaceGroup = src._spaceGroup;
_source = src._source;
return(*this);
}
OBConformerData::OBConformerData() :
OBGenericData("Conformers", OBGenericDataType::ConformerData)
{ }
OBConformerData::OBConformerData(const OBConformerData &src) :
OBGenericData("Conformers", OBGenericDataType::ConformerData),
_vDimension(src._vDimension),
_vEnergies(src._vEnergies), _vForces(src._vForces),
_vVelocity(src._vVelocity), _vDisplace(src._vDisplace),
_vData(src._vData)
{ }
OBConformerData & OBConformerData::operator=(const OBConformerData &src)
{
if(this == &src)
return(*this);
_source = src._source;
_vDimension = src._vDimension;
_vEnergies = src._vEnergies;
_vForces = src._vForces;
_vVelocity = src._vVelocity;
_vDisplace = src._vDisplace;
_vData = src._vData;
return(*this);
}
//
//member functions for OBRingData class
//
OBRingData::OBRingData() :
OBGenericData("RingData", OBGenericDataType::RingData)
{
_vr.clear();
}
/*!
**\brief OBRingData copy constructor
**\param src reference to original OBRingData object (rhs)
*/
OBRingData::OBRingData(const OBRingData &src)
: OBGenericData(src), //chain to base class
_vr(src._vr) //chain to member classes
{
//no other memeber data
//memory management
vector<OBRing*>::iterator ring;
for(ring = _vr.begin();ring != _vr.end();++ring)
{
OBRing *newring = new OBRing;
(*newring) = (**ring); //copy data to new object
(*ring) = newring; //repoint new pointer to new copy of data
}
}
OBRingData::~OBRingData()
{
vector<OBRing*>::iterator ring;
for (ring = _vr.begin();ring != _vr.end();++ring)
{
delete *ring;
}
}
/*!
**\brief OBRingData assignment operator
**\param src reference to original OBRingData object (rhs)
**\return reference to changed OBRingData object (lhs)
*/
OBRingData& OBRingData::operator =(const OBRingData &src)
{
//on identity, return
if(this == &src)
return(*this);
//chain to base class
OBGenericData::operator =(src);
//member data
//memory management
vector<OBRing*>::iterator ring;
for(ring = _vr.begin();ring != _vr.end();++ring)
{
delete &*ring; //deallocate old rings to prevent memory leak
}
_vr.clear();
_vr = src._vr; //copy vector properties
for(ring = _vr.begin();ring != _vr.end();++ring)
{
if(*ring == 0)
continue;
//allocate and copy ring data
OBRing *newring = new OBRing;
(*newring) = (**ring);
(*ring) = newring; //redirect pointer
}
return(*this);
}
OBRing *OBRingData::BeginRing(std::vector<OBRing*>::iterator &i)
{
i = _vr.begin();
return((i == _vr.end()) ? (OBRing*)NULL : (OBRing*)*i);
}
OBRing *OBRingData::NextRing(std::vector<OBRing*>::iterator &i)
{
++i;
return((i == _vr.end()) ? (OBRing*)NULL : (OBRing*)*i);
}
//
//member functions for OBAngle class - stores all angles
//
/*!
**\brief Angle default constructor
*/
OBAngle::OBAngle():
_vertex(NULL), _termini(NULL, NULL), _radians(0.0)
{ }
/*!
**\brief Angle constructor
*/
OBAngle::OBAngle(OBAtom *vertex,OBAtom *a,OBAtom *b):
_vertex(vertex), _termini(a, b)
{
SortByIndex();
}
/*!
**\brief OBAngle copy constructor
*/
OBAngle::OBAngle(const OBAngle &src):
_vertex(src._vertex), _termini(src._termini), _radians(src._radians)
{ }
/*!
**\brief OBAngle assignment operator
*/
OBAngle& OBAngle::operator = (const OBAngle &src)
{
if (this == &src)
return(*this);
_vertex = src._vertex;
_termini.first = src._termini.first;
_termini.second = src._termini.second;
_radians = src._radians;
return(*this);
}
/*!
**\brief Return OBAngle to its original state
*/
void OBAngle::Clear()
{
_vertex = 0;
_termini.first = 0;
_termini.second = 0;
_radians = 0.0;
return;
}
/*!
**\brief Sets the 3 atoms in the angle
** Parameters are pointers to each OBAtom
*/
void OBAngle::SetAtoms(OBAtom *vertex,OBAtom *a,OBAtom *b)
{
_vertex = vertex;
_termini.first = a;
_termini.second = b;
SortByIndex();
return;
}
/*!
**\brief Sets the 3 atoms in the angle
**\param atoms a triple of OBAtom pointers, the first must be the vertex
*/
void OBAngle::SetAtoms(triple<OBAtom*,OBAtom*,OBAtom*> &atoms)
{
_vertex = atoms.first;
_termini.first = atoms.second;
_termini.second = atoms.third;
SortByIndex();
return;
}
/*!
**\brief Retrieves the 3 atom pointer for the angle (vertex first)
**\return triple of OBAtom pointers
*/
triple<OBAtom*,OBAtom*,OBAtom*> OBAngle::GetAtoms()
{
triple<OBAtom*,OBAtom*,OBAtom*> atoms;
atoms.first = _vertex;
atoms.second = _termini.first;
atoms.third = _termini.second;
return(atoms);
}
/*!
**\brief sorts atoms in angle by order of indices
*/
void OBAngle::SortByIndex()
{
OBAtom *tmp;
if(_termini.first->GetIdx() > _termini.second->GetIdx())
{
tmp = _termini.first;
_termini.first = _termini.second;
_termini.second = tmp;
}
}
/*!
**\brief OBAngle equality operator, is same angle, NOT same value
**\return boolean equality
*/
bool OBAngle::operator ==(const OBAngle &other)
{
return ((_vertex == other._vertex) &&
(_termini.first == other._termini.first) &&
(_termini.second == other._termini.second));
}
//
//member functions for OBAngleData class - stores OBAngle set
//
/*!
**\brief OBAngleData constructor
*/
OBAngleData::OBAngleData()
: OBGenericData("AngleData", OBGenericDataType::AngleData)
{ }
/*!
**\brief OBAngleData copy constructor
*/
OBAngleData::OBAngleData(const OBAngleData &src)
: OBGenericData(src), _angles(src._angles)
{ }
/*!
**\brief OBAngleData assignment operator
*/
OBAngleData& OBAngleData::operator =(const OBAngleData &src)
{
if (this == &src)
return(*this);
_source = src._source;
_angles = src._angles;
return(*this);
}
/*!
**\brief sets OBAngleData to its original state
*/
void OBAngleData::Clear()
{
_angles.clear();
return;
}
/*!
**\brief Adds a new angle to OBAngleData
*/
void OBAngleData::SetData(OBAngle &angle)
{
_angles.push_back(angle);
return;
}
/*!
**\brief Fills an array with the indices of the atoms in the angle (vertex first)
**\param angles pointer to the pointer to an array of angles atom indices
**\return True if successful
*/
bool OBAngleData::FillAngleArray(std::vector<std::vector<unsigned int> > &angles)
{
if(_angles.empty())
return(false);
vector<OBAngle>::iterator angle;
angles.clear();
angles.resize(_angles.size());
unsigned int ct = 0;
for( angle=_angles.begin(); angle!=_angles.end(); angle++,ct++)
{
angles[ct].resize(3);
angles[ct][0] = angle->_vertex->GetIdx() - 1;
angles[ct][1] = angle->_termini.first->GetIdx() - 1;
angles[ct][2] = angle->_termini.second->GetIdx() - 1;
}
return(true);
}
/*!
**\brief Fills an array with the indices of the atoms in the angle (vertex first)
**\param angles pointer to the pointer to an array of angles atom indices
**\param size the current number of rows in the array
**\return int The number of angles
*/
unsigned int OBAngleData::FillAngleArray(int **angles, unsigned int &size)
{
if(_angles.size() > size)
{
delete [] *angles;
*angles = new int[_angles.size()*3];
size = (unsigned int)_angles.size();
}
vector<OBAngle>::iterator angle;
int angleIdx = 0;
for( angle=_angles.begin(); angle!=_angles.end(); ++angle)
{
*angles[angleIdx++] = angle->_vertex->GetIdx();
*angles[angleIdx++] = angle->_termini.first->GetIdx();
*angles[angleIdx++] = angle->_termini.second->GetIdx();
}
return (unsigned int)_angles.size();
}
//
//member functions for OBAngleData class - stores OBAngle set
//
/*!
**\brief OBTorsion constructor
*/
OBTorsion::OBTorsion(OBAtom *a,OBAtom *b, OBAtom *c,OBAtom *d)
{
triple<OBAtom*,OBAtom*,double> ad(a,d,0.0);
_ads.push_back(ad);
_bc.first = b;
_bc.second = c;
}
/*!
**\brief OBTorsion copy constructor
*/
OBTorsion::OBTorsion(const OBTorsion &src)
: _bc(src._bc), _ads(src._ads)
{}
/*!
**\brief Returns all the 4 atom sets in OBTorsion
*/
vector<quad<OBAtom*,OBAtom*,OBAtom*,OBAtom*> > OBTorsion::GetTorsions()
{
quad<OBAtom*,OBAtom*,OBAtom*,OBAtom*> abcd;
abcd.second = _bc.first;
abcd.third = _bc.second;
vector<quad<OBAtom*,OBAtom*,OBAtom*,OBAtom*> > torsions;
vector<triple<OBAtom*,OBAtom*,double> >::iterator ad;
for(ad = _ads.begin();ad != _ads.end();++ad)
{
abcd.first = ad->first;
abcd.fourth = ad->second;
torsions.push_back(abcd);
}
return(torsions);
}
/*!
**\brief OBTorsion assignment operator
*/
OBTorsion& OBTorsion::operator =(const OBTorsion &src)
{
if (this == &src)
return(*this);
_bc = src._bc;
_ads = src._ads;
return(*this);
}
/*!
**\brief Returns the OBTorsion to its original state
*/
void OBTorsion::Clear()
{
_bc.first = 0;
_bc.second = 0;
_ads.erase(_ads.begin(),_ads.end());
}
/*!
**\brief Sets the angle of a torsion in OBTorsion
**\param radians the value to assign to the torsion
**\param index the index into the torsion of the OBTorsion
**\return boolean success
*/
bool OBTorsion::SetAngle(double radians,unsigned int index)
{
if(index >= _ads.size())
return(false);
_ads[index].third = radians;
return(true);
}
/*!
**\brief Obtains the angle of a torsion in OBTorsion
**\param radians the value of the angle is set here
**\param index the index into the torsion of the OBTorsion
**\return boolean success
*/
bool OBTorsion::GetAngle(double &radians, unsigned int index)
{
if(index >= _ads.size())
return false;
radians = _ads[index].third;
return true;
}
unsigned int OBTorsion::GetBondIdx()
{
return(_bc.first->GetBond(_bc.second)->GetIdx());
}
/*!
**\brief determines if torsion has only protons on either the a or d end
**\return boolean
*/
bool OBTorsion::IsProtonRotor()
{
bool Aprotor = true;
bool Dprotor = true;
vector<triple<OBAtom*,OBAtom*,double> >::iterator ad;
for(ad = _ads.begin();ad != _ads.end() && (Aprotor || Dprotor);++ad)
{
if(!ad->first->IsHydrogen())
Aprotor = false;
if(!ad->second->IsHydrogen())
Dprotor = false;
}
return (Aprotor || Dprotor);
}
/*!
**\brief adds a new torsion to the OBTorsion object
*/
bool OBTorsion::AddTorsion(OBAtom *a,OBAtom *b, OBAtom *c,OBAtom *d)
{
if(!Empty() && (b != _bc.first || c != _bc.second))
return(false);
if(Empty())
{
_bc.first = b;
_bc.second = c;
}
triple<OBAtom*,OBAtom*,double> ad(a,d,0.0);
_ads.push_back(ad);
return(true);
}
/*!
**\brief adds a new torsion to the OBTorsion object
*/
bool OBTorsion::AddTorsion(quad<OBAtom*,OBAtom*,OBAtom*,OBAtom*> &atoms)
{
if(!Empty() && (atoms.second != _bc.first || atoms.third != _bc.second))
return(false);
if(Empty())
{
_bc.first = atoms.second;
_bc.second = atoms.third;
}
triple<OBAtom*,OBAtom*,double> ad(atoms.first,atoms.fourth,0.0);
_ads.push_back(ad);
return(true);
}
//\!brief OBTorsionData ctor
OBTorsionData::OBTorsionData()
: OBGenericData("TorsionData", OBGenericDataType::TorsionData)
{ }
//
//member functions for OBTorsionData class - stores OBTorsion set
//
OBTorsionData::OBTorsionData(const OBTorsionData &src)
: OBGenericData(src), _torsions(src._torsions)
{ }
OBTorsionData& OBTorsionData::operator =(const OBTorsionData &src)
{
if (this == &src)
return(*this);
OBGenericData::operator =(src);
_source = src._source;
_torsions = src._torsions;
return(*this);
}
void OBTorsionData::Clear()
{
_torsions.clear();
}
void OBTorsionData::SetData(OBTorsion &torsion)
{
_torsions.push_back(torsion);
}
/*!
**\brief Fills a vector with the indices of the atoms in torsions (ordered abcd)
**\param torsions reference to the vector of abcd atom sets
**\return boolean success
*/
bool OBTorsionData::FillTorsionArray(std::vector<std::vector<unsigned int> > &torsions)
{
if(_torsions.empty())
return(false);
vector<quad<OBAtom*,OBAtom*,OBAtom*,OBAtom*> > tmpquads,quads;
vector<quad<OBAtom*,OBAtom*,OBAtom*,OBAtom*> >::iterator thisQuad;
vector<OBTorsion>::iterator torsion;
//generate set of all 4 atom abcd's from torsion structure
for (torsion = _torsions.begin();torsion != _torsions.end();++torsion)
{
tmpquads = torsion->GetTorsions();
for(thisQuad = tmpquads.begin();thisQuad != tmpquads.end();++thisQuad)
quads.push_back(*thisQuad);
}
//fill array of torsion atoms
torsions.clear();
torsions.resize(quads.size());
unsigned int ct = 0;
for (thisQuad = quads.begin();thisQuad != quads.end();++thisQuad,++ct)
{
torsions[ct].resize(4);
torsions[ct][0] = thisQuad->first->GetIdx()-1;
torsions[ct][1] = thisQuad->second->GetIdx()-1;
torsions[ct][2] = thisQuad->third->GetIdx()-1;
torsions[ct][3] = thisQuad->fourth->GetIdx()-1;
}
return(true);
}
//
// Member functions for OBChiralDarta
//
bool OBChiralData::SetAtom4Refs(std::vector<unsigned int> atom4refs, atomreftype t)
{
if (atom4refs.size() != 4)
{
obErrorLog.ThrowError(__FUNCTION__, "Incorrect number of atoms atom4refs, should be 4", obDebug);
return(false);
}
switch(t){
case input: _atom4refs = atom4refs;break;
case output:_atom4refo = atom4refs;break;
case calcvolume:_atom4refc = atom4refs;break;
default:
obErrorLog.ThrowError(__FUNCTION__, "AtomRefType called is invalid", obDebug);
return(false);
}
return (true);
}
int OBChiralData::AddAtomRef(unsigned int atomref, atomreftype t)
{
switch(t){
case input: _atom4refs.push_back(atomref);break;
case output: _atom4refo.push_back(atomref);break;
case calcvolume:_atom4refc.push_back(atomref);break;
default:
obErrorLog.ThrowError(__FUNCTION__, "AtomRefType called is invalid", obDebug);
return(false);
}
return (_atom4refs.size());
}
unsigned int OBChiralData::GetAtomRef(int a, atomreftype t)
{
switch(t){
case input: return(_atom4refs[a]);break;
case output: return(_atom4refo[a]);break;
case calcvolume: return(_atom4refc[a]);break;
default:
obErrorLog.ThrowError(__FUNCTION__, "AtomRefType called is invalid", obDebug);
return(false);
}
}
std::vector<unsigned int> OBChiralData::GetAtom4Refs(atomreftype t) const
{
switch (t){
case output:
return(_atom4refo);
break;
case input:
return(_atom4refs);
break;
case calcvolume:
return(_atom4refc);
break;
default:
obErrorLog.ThrowError(__FUNCTION__, "AtomRefType called is invalid", obDebug);
return(_atom4refo);
}
}
unsigned int OBChiralData::GetSize(atomreftype t) const
{
switch (t)
{
case output:
return(unsigned int)_atom4refo.size();
break;
case input:
return(unsigned int)_atom4refs.size();
break;
case calcvolume:
return(unsigned int)_atom4refc.size();
default:
obErrorLog.ThrowError(__FUNCTION__, "AtomRefType called is invalid", obDebug);
return(0);
}
}
// Chiral data is a perceived data type. We might read in some chiral info
// but this class derives and converts from whatever is read
OBChiralData::OBChiralData()
: OBGenericData("ChiralData", OBGenericDataType::ChiralData, perceived)
{ }
OBChiralData::OBChiralData(const OBChiralData &src)
: OBGenericData(src)
{
_atom4refs = src._atom4refs;
_atom4refo = src._atom4refo;
_atom4refc = src._atom4refc;
parity = src.parity;
}
OBChiralData & OBChiralData::operator=(const OBChiralData &src)
{
if(this == &src)
return(*this);
_source = src._source;
_atom4refs = src._atom4refs;
_atom4refo = src._atom4refo;
_atom4refc = src._atom4refc;
parity=src.parity;
return(*this);
}
void OBChiralData::Clear()
{
_atom4refs.clear();
parity=0;
_atom4refo.clear();
_atom4refc.clear();
}
//
//member functions for OBVibrationData class
//
/*!
**\brief Assign the data
**\param vLx Normal modes in 1/sqrt(a.u.)
**\param vFrequencies Harmonic frequencies in inverse centimeters
**\param vIntensities Infrared absorption intensities in KM/Mole
*/
void OBVibrationData::SetData(const std::vector< std::vector< vector3 > > & vLx,
const std::vector<double> & vFrequencies,
const std::vector<double> & vIntensities)
{
this->_vLx = vLx;
this->_vFrequencies = vFrequencies;
this->_vIntensities = vIntensities;
}
/*!
**\brief Get the number of frequencies
*/
unsigned int OBVibrationData::GetNumberOfFrequencies() const
{
return !this->_vFrequencies.empty() ? this->_vFrequencies.size() : 0;
}
} //end namespace OpenBabel
//! \file generic.cpp
//! \brief Handle OBGenericData classes. Custom data for atoms, bonds, etc.
|