1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
|
#include "obtest.h"
#include <openbabel/mol.h>
#include <openbabel/obconversion.h>
#include <openbabel/stereo/tetrahedral.h>
#include <openbabel/stereo/cistrans.h>
#include <openbabel/stereo/squareplanar.h>
#include <openbabel/graphsym.h>
#include <openbabel/canon.h>
using namespace std;
using namespace OpenBabel;
/*
* Stereo classes have their own tests. This file tests if the smiles
* format uses them correctly.
*/
void testTetrahedralStereo1()
{
cout << "testTetrahedralStereo1()" << endl;
// read a smiles string
OBMol mol;
OBConversion conv;
OB_REQUIRE( conv.SetInFormat("smi") );
cout << "smiles: C[C@H](O)N" << endl;
OB_REQUIRE( conv.ReadString(&mol, "C[C@H](O)N") );
// get the stereo data
OB_REQUIRE( mol.HasData(OBGenericDataType::StereoData) );
std::vector<OBGenericData *> stereoData = mol.GetAllData(OBGenericDataType::StereoData);
OB_REQUIRE( stereoData.size() == 1 );
// convert to tetrahedral data
OB_REQUIRE( ((OBStereoBase*)stereoData[0])->GetType() == OBStereo::Tetrahedral );
OBTetrahedralStereo *ts = dynamic_cast<OBTetrahedralStereo*>(stereoData[0]);
OB_REQUIRE( ts );
// print the configuration
cout << *ts << endl;
// construct a valid configuration here
//
// C[C@H](O)N
// 0 1 2 3 4 <- ids
//
OBTetrahedralStereo::Config cfg(1, 0, OBStereo::MakeRefs(4, 3, 2), OBStereo::Clockwise);
// compare stereochemistry
OB_REQUIRE( ts->GetConfig() == cfg );
cout << endl;
}
void genericSmilesCanonicalTest(const std::string &smiles)
{
cout << "Testing generic smiles <-> canonical smiles" << endl;
// read a smiles string
OBMol mol;
OBConversion conv;
OB_REQUIRE( conv.SetInFormat("smi") );
OB_REQUIRE( conv.SetOutFormat("can") );
cout << "smiles: " << smiles << endl;
// read a smiles string
OB_REQUIRE( conv.ReadString(&mol, smiles) );
// store the stereo data for the smiles string using unique symmetry ids
std::vector<OBTetrahedralStereo::Config> tetrahedral1;
std::vector<OBCisTransStereo::Config> cistrans1;
std::vector<OBSquarePlanarStereo::Config> squareplanar1;
// get the stereo data
OB_ASSERT( mol.HasData(OBGenericDataType::StereoData) );
std::vector<OBGenericData *> stereoData = mol.GetAllData(OBGenericDataType::StereoData);
std::vector<unsigned int> canlbls;
std::vector<unsigned int> symclasses;
OBGraphSym gs1(&mol);
gs1.GetSymmetry(symclasses);
CanonicalLabels(&mol, symclasses, canlbls);
cout << "mol.NumAtoms = " << mol.NumAtoms() << endl;
for (std::vector<OBGenericData*>::iterator data = stereoData.begin(); data != stereoData.end(); ++data) {
if (((OBStereoBase*)*data)->GetType() == OBStereo::Tetrahedral) {
// convert to tetrahedral data
OBTetrahedralStereo *ts = dynamic_cast<OBTetrahedralStereo*>(*data);
OB_REQUIRE( ts );
OB_ASSERT( ts->IsValid() );
if (!ts->IsValid())
continue;
OBTetrahedralStereo::Config config = ts->GetConfig();
// convert atom ids to symmetry ids
if (mol.GetAtomById(config.center))
config.center = canlbls.at( mol.GetAtomById(config.center)->GetIdx() - 1 );
if (mol.GetAtomById(config.from))
config.from = canlbls.at( mol.GetAtomById(config.from)->GetIdx() - 1 );
if (mol.GetAtomById(config.refs[0]))
config.refs[0] = canlbls.at( mol.GetAtomById(config.refs[0])->GetIdx() - 1 );
if (mol.GetAtomById(config.refs[1]))
config.refs[1] = canlbls.at( mol.GetAtomById(config.refs[1])->GetIdx() - 1 );
if (mol.GetAtomById(config.refs[2]))
config.refs[2] = canlbls.at( mol.GetAtomById(config.refs[2])->GetIdx() - 1 );
cout << "Config with symmetry ids: " << config << endl;
tetrahedral1.push_back(config);
} else
if (((OBStereoBase*)*data)->GetType() == OBStereo::CisTrans) {
// convert to tetrahedral data
OBCisTransStereo *ct = dynamic_cast<OBCisTransStereo*>(*data);
OB_REQUIRE( ct );
OB_ASSERT( ct->IsValid() );
OBCisTransStereo::Config config = ct->GetConfig();
// convert atom ids to symmetry ids
config.begin = canlbls.at( mol.GetAtomById(config.begin)->GetIdx() - 1 );
config.end = canlbls.at( mol.GetAtomById(config.end)->GetIdx() - 1 );
if (mol.GetAtomById(config.refs[0]))
config.refs[0] = canlbls.at( mol.GetAtomById(config.refs[0])->GetIdx() - 1 );
if (mol.GetAtomById(config.refs[1]))
config.refs[1] = canlbls.at( mol.GetAtomById(config.refs[1])->GetIdx() - 1 );
if (mol.GetAtomById(config.refs[2]))
config.refs[2] = canlbls.at( mol.GetAtomById(config.refs[2])->GetIdx() - 1 );
if (mol.GetAtomById(config.refs[3]))
config.refs[3] = canlbls.at( mol.GetAtomById(config.refs[3])->GetIdx() - 1 );
cout << "Config with symmetry ids: " << config << endl;
cistrans1.push_back(config);
} else
if (((OBStereoBase*)*data)->GetType() == OBStereo::SquarePlanar) {
// convert to tetrahedral data
OBSquarePlanarStereo *sp = dynamic_cast<OBSquarePlanarStereo*>(*data);
OB_REQUIRE( sp );
OB_ASSERT( sp->IsValid() );
if (!sp->IsValid())
continue;
OBSquarePlanarStereo::Config config = sp->GetConfig();
// convert atom ids to symmetry ids
if (mol.GetAtomById(config.center))
config.center = canlbls.at( mol.GetAtomById(config.center)->GetIdx() - 1 );
if (mol.GetAtomById(config.refs[0]))
config.refs[0] = canlbls.at( mol.GetAtomById(config.refs[0])->GetIdx() - 1 );
if (mol.GetAtomById(config.refs[1]))
config.refs[1] = canlbls.at( mol.GetAtomById(config.refs[1])->GetIdx() - 1 );
if (mol.GetAtomById(config.refs[2]))
config.refs[2] = canlbls.at( mol.GetAtomById(config.refs[2])->GetIdx() - 1 );
if (mol.GetAtomById(config.refs[3]))
config.refs[3] = canlbls.at( mol.GetAtomById(config.refs[3])->GetIdx() - 1 );
cout << "Config with symmetry ids: " << config << endl;
squareplanar1.push_back(config);
}
}
// write to can smiles
std::string canSmiles = conv.WriteString(&mol);
cout << "canSmiles: " << canSmiles;
// read can smiles in again
OB_REQUIRE( conv.ReadString(&mol, canSmiles) );
// store the stereo data for the smiles string using unique symmetry ids
std::vector<OBTetrahedralStereo::Config> tetrahedral2;
std::vector<OBCisTransStereo::Config> cistrans2;
std::vector<OBSquarePlanarStereo::Config> squareplanar2;
// get the stereo data
OB_ASSERT( mol.HasData(OBGenericDataType::StereoData) );
stereoData = mol.GetAllData(OBGenericDataType::StereoData);
OBGraphSym gs2(&mol);
gs2.GetSymmetry(symclasses);
CanonicalLabels(&mol, symclasses, canlbls);
cout << "mol.NumAtoms = " << mol.NumAtoms() << endl;
for (std::vector<OBGenericData*>::iterator data = stereoData.begin(); data != stereoData.end(); ++data) {
if (((OBStereoBase*)*data)->GetType() == OBStereo::Tetrahedral) {
// convert to tetrahedral data
OBTetrahedralStereo *ts = dynamic_cast<OBTetrahedralStereo*>(*data);
OB_REQUIRE( ts );
OB_ASSERT( ts->IsValid() );
OBTetrahedralStereo::Config config = ts->GetConfig();
// convert atom ids to symmetry ids
if (mol.GetAtomById(config.center))
config.center = canlbls.at( mol.GetAtomById(config.center)->GetIdx() - 1 );
if (mol.GetAtomById(config.from))
config.from = canlbls.at( mol.GetAtomById(config.from)->GetIdx() - 1 );
if (mol.GetAtomById(config.refs[0]))
config.refs[0] = canlbls.at( mol.GetAtomById(config.refs[0])->GetIdx() - 1 );
if (mol.GetAtomById(config.refs[1]))
config.refs[1] = canlbls.at( mol.GetAtomById(config.refs[1])->GetIdx() - 1 );
if (mol.GetAtomById(config.refs[2]))
config.refs[2] = canlbls.at( mol.GetAtomById(config.refs[2])->GetIdx() - 1 );
cout << "Config with symmetry ids: " << config << endl;
tetrahedral2.push_back(config);
}
if (((OBStereoBase*)*data)->GetType() == OBStereo::CisTrans) {
// convert to tetrahedral data
OBCisTransStereo *ct = dynamic_cast<OBCisTransStereo*>(*data);
OB_REQUIRE( ct );
OB_ASSERT( ct->IsValid() );
OBCisTransStereo::Config config = ct->GetConfig();
// convert atom ids to symmetry ids
config.begin = canlbls.at( mol.GetAtomById(config.begin)->GetIdx() - 1 );
config.end = canlbls.at( mol.GetAtomById(config.end)->GetIdx() - 1 );
if (mol.GetAtomById(config.refs[0]))
config.refs[0] = canlbls.at( mol.GetAtomById(config.refs[0])->GetIdx() - 1 );
if (mol.GetAtomById(config.refs[1]))
config.refs[1] = canlbls.at( mol.GetAtomById(config.refs[1])->GetIdx() - 1 );
if (mol.GetAtomById(config.refs[2]))
config.refs[2] = canlbls.at( mol.GetAtomById(config.refs[2])->GetIdx() - 1 );
if (mol.GetAtomById(config.refs[3]))
config.refs[3] = canlbls.at( mol.GetAtomById(config.refs[3])->GetIdx() - 1 );
cout << "Config with symmetry ids: " << config << endl;
cistrans2.push_back(config);
} else
if (((OBStereoBase*)*data)->GetType() == OBStereo::SquarePlanar) {
// convert to tetrahedral data
OBSquarePlanarStereo *sp = dynamic_cast<OBSquarePlanarStereo*>(*data);
OB_REQUIRE( sp );
OB_ASSERT( sp->IsValid() );
OBSquarePlanarStereo::Config config = sp->GetConfig();
// convert atom ids to symmetry ids
if (mol.GetAtomById(config.center))
config.center = canlbls.at( mol.GetAtomById(config.center)->GetIdx() - 1 );
if (mol.GetAtomById(config.refs[0]))
config.refs[0] = canlbls.at( mol.GetAtomById(config.refs[0])->GetIdx() - 1 );
if (mol.GetAtomById(config.refs[1]))
config.refs[1] = canlbls.at( mol.GetAtomById(config.refs[1])->GetIdx() - 1 );
if (mol.GetAtomById(config.refs[2]))
config.refs[2] = canlbls.at( mol.GetAtomById(config.refs[2])->GetIdx() - 1 );
if (mol.GetAtomById(config.refs[3]))
config.refs[3] = canlbls.at( mol.GetAtomById(config.refs[3])->GetIdx() - 1 );
cout << "Config with symmetry ids: " << config << endl;
squareplanar2.push_back(config);
}
}
// compare the tetrahedral structs
OB_ASSERT( tetrahedral1.size() == tetrahedral2.size() );
for (unsigned int i = 0; i < tetrahedral1.size(); ++i) {
for (unsigned int j = 0; j < tetrahedral2.size(); ++j) {
if (tetrahedral1[i].center == tetrahedral2[j].center)
OB_ASSERT( tetrahedral1[i] == tetrahedral2[j] );
if ( tetrahedral1[i] != tetrahedral2[j] ) {
cout << "1 = " << tetrahedral1[i] << endl;
cout << "2 = " << tetrahedral2[j] << endl;
}
}
}
// compare the cistrans structs
OB_ASSERT( cistrans1.size() == cistrans2.size() );
for (unsigned int i = 0; i < cistrans1.size(); ++i) {
for (unsigned int j = 0; j < cistrans2.size(); ++j) {
if ((cistrans1[i].begin == cistrans2[j].begin) && (cistrans1[i].end == cistrans2[j].end))
OB_ASSERT( cistrans1[i] == cistrans2[j] );
if ((cistrans1[i].begin == cistrans2[j].end) && (cistrans1[i].end == cistrans2[j].begin))
OB_ASSERT( cistrans1[i] == cistrans2[j] );
}
}
// compare the square-planar structs
OB_ASSERT( squareplanar1.size() == squareplanar2.size() );
for (unsigned int i = 0; i < squareplanar1.size(); ++i) {
for (unsigned int j = 0; j < squareplanar2.size(); ++j) {
if (squareplanar1[i].center == squareplanar2[j].center)
OB_ASSERT( squareplanar1[i] == squareplanar2[j] );
if ( squareplanar1[i] != squareplanar2[j] ) {
cout << "1 = " << squareplanar1[i] << endl;
cout << "2 = " << squareplanar2[j] << endl;
}
}
}
cout << "." << endl << endl;
}
int smilestest(int argc, char* argv[])
{
int defaultchoice = 1;
int choice = defaultchoice;
if (argc > 1) {
if(sscanf(argv[1], "%d", &choice) != 1) {
printf("Couldn't parse that input as a number\n");
return -1;
}
}
// Define location of file formats for testing
#ifdef FORMATDIR
char env[BUFF_SIZE];
snprintf(env, BUFF_SIZE, "BABEL_LIBDIR=%s", FORMATDIR);
putenv(env);
#endif
switch(choice) {
case 1:
testTetrahedralStereo1();
// Tetrahedral
genericSmilesCanonicalTest("C[C@H](O)N");
genericSmilesCanonicalTest("Cl[C@@](CCl)(I)Br");
// CisTrans
genericSmilesCanonicalTest("Cl/C=C/F");
break;
case 2:
// SquarePlanar
genericSmilesCanonicalTest("F[Po](Cl)(Br)I");
genericSmilesCanonicalTest("F[Po@SP1](Cl)(Br)I");
genericSmilesCanonicalTest("F[Po@SP2](Br)(Cl)I");
genericSmilesCanonicalTest("F[Po@SP3](Cl)(I)Br");
break;
case 3:
// Mixed
genericSmilesCanonicalTest("CCC[C@@H](O)CC\\C=C\\C=C\\C#CC#C\\C=C\\CO");
genericSmilesCanonicalTest("OC[C@@H](O1)[C@@H](O)[C@H](O)[C@@H](O)[C@@H](O)1");
genericSmilesCanonicalTest("OC[C@@H](O1)[C@@H](O)[C@H](O)[C@@H]2[C@@H]1c3c(O)c(OC)c(O)cc3C(=O)O2");
genericSmilesCanonicalTest("CC(=O)OCCC(/C)=C\\C[C@H](C(C)=C)CCC=C");
genericSmilesCanonicalTest("CC[C@H](O1)CC[C@@]12CCCO2");
genericSmilesCanonicalTest("CN1CCC[C@H]1c2cccnc2");
genericSmilesCanonicalTest("CC(C)[C@@]12C[C@@H]1[C@@H](C)C(=O)C2");
genericSmilesCanonicalTest("CC(C)[C@H]1CC[C@]([C@@H]2[C@@H]1C=C(COC2=O)C(=O)O)(CCl)O");
genericSmilesCanonicalTest("C(CS[14CH2][14C@@H]1[14C@H]([14C@H]([14CH](O1)O)O)O)[C@@H](C(=O)O)N");
genericSmilesCanonicalTest("CCC[C@@H]1C[C@H](N(C1)C)C(=O)NC([C@@H]2[C@@H]([C@@H]([C@H]([C@H](O2)SC)OP(=O)(O)O)O)O)C(C)Cl");
break;
// this structure fails but this is an error in genericSmilesCanonicalTest (It should sort the centers). However, this is
// extensivily tested in other tests.
//genericSmilesCanonicalTest("O1C=C[C@H]([C@H]1O2)c3c2cc(OC)c4c3OC(=O)C5=C4CCC(=O)5");
// FAILING: need to fix graphsymtest first!!
// ring gets converted to aromatic ring, adding H on n (i.e. N -> [nH])
//genericSmilesCanonicalTest("CC1=CN(C(=O)NC1=O)[C@H]2C[C@@H]([C@H](O2)CNCC3=CC=CC=C3)O");
default:
cout << "Test number " << choice << " does not exist!\n";
return -1;
}
return 0;
}
|