File: testsym.py

package info (click to toggle)
openbabel 2.4.1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 58,308 kB
  • sloc: cpp: 459,210; ansic: 90,514; php: 13,963; python: 7,899; perl: 6,518; pascal: 793; sh: 179; xml: 97; ruby: 64; makefile: 46; java: 23; cs: 14
file content (364 lines) | stat: -rw-r--r-- 15,200 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
"""Test OpenBabel executables from Python

Note: Python bindings not used

On Windows or Linux, you can run these tests at the commandline
in the build folder with:
"C:\Program Files\CMake 2.6\bin\ctest.exe" -C CTestTestfile.cmake
                                           -R pytest -VV

You could also "chdir" into build/test and run the test file directly:
python ../../../test/testsym.py

In both cases, the test file is run directly from the source folder,
and so you can quickly develop the tests and try them out.
"""

import os
import unittest

from testbabel import run_exec, executable, log, BaseTest

class TestSym(BaseTest):
    """Base class for a series of tests relating to symmetry"""

    def testInChItoSMI(self):
        """Verify that the InChI is read correctly"""
        output, error = run_exec(self.inchi, "babel -iinchi -ocan")
        self.assertEqual(output.rstrip(), self.cansmi)

    def testSMItoInChI(self):
        """Verify that all molecules give the same InChI"""
        output, error = run_exec("\n".join(self.smiles), "babel -ismi -oinchi")
        output = "\n".join([x.rstrip() for x in output.split("\n")])
        self.assertEqual(output.rstrip(), "\n".join([self.inchi] * len(self.smiles)))

    def testSMItoCAN(self):
        """Verify that all molecules give the same cansmi"""
        output, error = run_exec("\n".join(self.smiles), "babel -ismi -ocan")
        output = "\n".join([x.rstrip() for x in output.split("\n")])
        self.assertEqual(output.rstrip(), "\n".join([self.cansmi] * len(self.smiles)))

    def testSMIthruXML(self):
        """Verify that roundtripping through CML preserves stereo"""
        output, error = run_exec("\n".join(self.smiles), "babel -ismi -ocml tmp.cml")
        output, error = run_exec(output.rstrip(), "babel -icml tmp.cml -ocan")
        output = "\n".join([x.rstrip() for x in output.split("\n")])
        self.assertEqual(output.rstrip(), "\n".join([self.cansmi] * len(self.smiles)))
        os.remove("tmp.cml")

class TestTetSym(TestSym):
    """A series of tests relating to tetrahedral symmetry"""

    def setUp(self):
        self.canFindExecutable("babel")

        # The following all represent the same molecule
        self.cansmi = "C[C@](Br)(Cl)F"
        self.inchi = "InChI=1S/C2H3BrClF/c1-2(3,4)5/h1H3/t2-/m0/s1"
        self.smiles = [
             'C[C@@](Cl)(Br)F',
             'C[C@](Cl)(F)Br',
             'C[C@](Br)(Cl)F',
             'C[C@@](Br)(F)Cl',
             'C[C@@](F)(Cl)Br',
             'C[C@](F)(Br)Cl',
             'Cl[C@](C)(Br)F',
             'Cl[C@@](C)(F)Br',
             'Cl[C@@](Br)(C)F',
             'Cl[C@](Br)(F)C',
             'Cl[C@](F)(C)Br',
             'Cl[C@@](F)(Br)C',
             'Br[C@@](C)(Cl)F',
             'Br[C@](C)(F)Cl',
             'Br[C@](Cl)(C)F',
             'Br[C@@](Cl)(F)C',
             'Br[C@@](F)(C)Cl',
             'Br[C@](F)(Cl)C',
             'F[C@](C)(Cl)Br',
             'F[C@@](C)(Br)Cl',
             'F[C@@](Cl)(C)Br',
             'F[C@](Cl)(Br)C',
             'F[C@](Br)(C)Cl',
             'F[C@@](Br)(Cl)C'
             ]


class TestCisTransSym(TestSym):
    """A series of tests relating to cistrans symmetry"""

    def setUp(self):
        self.canFindExecutable("babel")

        # The following all represent the same molecule
        self.cansmi = "Cl/C=C/C=C\\Br"
        self.inchi = "InChI=1S/C4H4BrCl/c5-3-1-2-4-6/h1-4H/b3-1-,4-2+"
        self.smiles = [
                "C(=C\C=C/Br)/Cl",
                "Cl/C=C/C=C\Br", 
                "Br/C=C\C=C\Cl",
                "C(=C\Cl)/C=C\Br",
                "C(=C\C=C\Cl)\Br",
                "C(=C\Br)\C=C\Cl"
                ]

class TestLonePairTetSym(TestSym):
    """A series of tests relating to tet symmetry involving a lone pair"""

    def setUp(self):
        self.canFindExecutable("babel")

        # The following all represent the same molecule
        self.cansmi = "C[S@](=O)Cl"
        self.inchi = "InChI=1S/CH3ClOS/c1-4(2)3/h1H3/t4-/m0/s1"
        self.smiles = [
                self.cansmi,
                "O=[S@](Cl)C",
                "O=[S@@](C)Cl",
                "[S@](Cl)(=O)C",
                ]

class TestRingBondCisTransSym(TestSym):
    """A series of tests relating to tet symmetry involving a lone pair"""

    def setUp(self):
        self.canFindExecutable("babel")

        # The following all represent the same molecule
        self.cansmi = r"I/C=C/1\CN1"
        self.inchi = "InChI=1S/C3H4IN/c4-1-3-2-5-3/h1,5H,2H2/b3-1+"
        self.smiles = [
                self.cansmi,
                r"I/C=C\1/NC1",
                r"I/C=C1NC/1",
                 "I/C=C/1/NC/1",
                ]

class TestConversions(BaseTest):
    """A series of tests relating to file format conversions and symmetry"""
    
    def setUp(self):
        self.canFindExecutable("babel")
        self.data = [
('ClC=CF', 'FC=CCl',       'InChI=1S/C2H2ClF/c3-1-2-4/h1-2H'),
('ClC=CF', 'FC=CCl',       'InChI=1S/C2H2ClF/c3-1-2-4/h1-2H'),
('Cl/C=C/F', 'F/C=C/Cl',   'InChI=1S/C2H2ClF/c3-1-2-4/h1-2H/b2-1+'),
(r"Cl/C=C\F", r"F/C=C\Cl", 'InChI=1S/C2H2ClF/c3-1-2-4/h1-2H/b2-1-'),
('Cl[C@@](Br)(F)I', 'F[C@](I)(Br)Cl', 'InChI=1S/CBrClFI/c2-1(3,4)5/t1-/m0/s1'),
('Cl[C@](Br)(F)I', 'F[C@@](I)(Br)Cl',   'InChI=1S/CBrClFI/c2-1(3,4)5/t1-/m1/s1'),
('ClC(Br)(F)I', 'FC(I)(Br)Cl',         'InChI=1S/CBrClFI/c2-1(3,4)5'),
('O=[S@@](Cl)I', "Cl[S@](=O)I", "InChI=1S/ClIOS/c1-4(2)3/t4-/m0/s1"),
('O=[S@](Cl)I', "Cl[S@@](=O)I", "InChI=1S/ClIOS/c1-4(2)3/t4-/m1/s1"),
('O=S(Cl)I', "ClS(=O)I", "InChI=1S/ClIOS/c1-4(2)3"),
(r"IC=C1NC1", r"IC=C1CN1", "InChI=1S/C3H4IN/c4-1-3-2-5-3/h1,5H,2H2"),
(r"I/C=C\1/NC1", r"I/C=C/1\CN1", "InChI=1S/C3H4IN/c4-1-3-2-5-3/h1,5H,2H2/b3-1+"),
(r"I/C=C/1\NC1", r"I/C=C\1/CN1", "InChI=1S/C3H4IN/c4-1-3-2-5-3/h1,5H,2H2/b3-1-"),
]
        
    def testSMILEStoInChI(self):
        # Tests interconversions between the SMILES on the left versus
        # the InChI on the right.
        # The canonical smiles (in the middle) were derived from the SMILES.
        for smiles, can, inchi in self.data:
            output, error = run_exec(smiles, "babel -ismi -oinchi")
            self.assertEqual(output.rstrip(), inchi)
            output, error = run_exec(inchi, "babel -iinchi -ocan")
            self.assertEqual(output.rstrip(), can)
            
    def parseMDL(self, text):
        lines = text.split("\n")
        broken = lines[3].split()
        Natoms = int(broken[0])
        Nbonds = int(broken[1])
        atoms = []
        for i in range(Natoms):
            broken = lines[i+4].split()
            atoms.append({'parity':int(broken[6])})
        bonds = []
        for i in range(Nbonds):
            broken = lines[i+4+Natoms].split()
            bonds.append({'stereo':int(broken[3])})
        return atoms, bonds

    def testSMILESto2D(self):
        """Test gen2d for some basic cases"""
        for smi, can, inchi in self.data:
            output, error = run_exec(smi, "obabel -ismi --gen2d -omdl")
            output, error = run_exec(output.rstrip(), "obabel -imdl -ocan")
            self.assertEqual(can, output.rstrip())
        
    def testSMILESto3DMDL(self):
        """Test interconversion between SMILES and 3D MDL"""
        data = [
([0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 3]), # 'ClC=CF'
([0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 3]), # 'ClC=CF'
([0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0]), # 'Cl/C=C/F'
([0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0]), # 'Cl/C=C\\F'
# The bond parities are irrelevant/meaningless for the next two
([0, 0, 0, 0, 1], []), # 'Cl[C@@](Br)(F)I'
([0, 0, 0, 0, 2], []), # 'Cl[C@](Br)(F)I'
([0, 0, 0, 0, 3], [0, 0, 0, 0]), # 'ClC(Br)(F)I'
([0, 0, 0, 1], []), # 'O=[S@@](Cl)I),
([0, 0, 0, 2], []), # 'O=[S@](Cl)I),
([0, 0, 0, 3], []), # 'O=S(Cl)I),
([0]*9, [0]*8 + [3]), #  "IC=C1NC1"
([0]*9, [0]*9), # r"I/C=C\1/NC1"
([0]*9, [0]*9), # r"I/C=C/1\NC1"
]
        for i, (atompar, bondstereo) in enumerate(data):
            smiles, can = self.data[i][0:2]
            output, error = run_exec(smiles, "babel -ismi -osdf --gen3d")
            atoms, bonds = self.parseMDL(output)
            parities = [atom['parity'] for atom in atoms]
            parities.sort()
            stereos = [bond['stereo'] for bond in bonds]
            stereos.sort()
            self.assertEqual(atompar, parities)
            if bondstereo:
                self.assertEqual(bondstereo, stereos)
            output, error = run_exec(output, "obabel -isdf -as -ocan")
            # "-as" is necessary to identify the unknown stereo
            self.assertEqual(output.rstrip(), can)

    def testXYZtoSMILESand3DMDL(self):
        """Test conversion from XYZ to SMILES and 3D MDL"""
        # Since the XYZ format does not trigger stereo perception,
        # this test makes sure that the SMILES and 3D MDL formats
        # perceive stereo themselves.
        data = [
([0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 3]), # 'ClC=CF'
([0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 3]), # 'ClC=CF'
([0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0]), # 'Cl/C=C/F'
([0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0]), # 'Cl/C=C\\F'
# The bond parities are irrelevant/meaningless for the next two
([0, 0, 0, 0, 1], []), # 'Cl[C@@](Br)(F)I'
([0, 0, 0, 0, 2], []), # 'Cl[C@](Br)(F)I'
([0, 0, 0, 0, 3], [0, 0, 0, 4]), # 'ClC(Br)(F)I'
([0, 0, 0, 1], []), # 'O=[S@@](Cl)I),
([0, 0, 0, 2], []), # 'O=[S@](Cl)I),
([0, 0, 0, 3], []), # 'O=S(Cl)I),
([0]*9, [0]*8 + [3]), #  "IC=C1NC1"
([0]*9, [0]*9), # r"I/C=C\1/NC1"
([0]*9, [0]*9), # r"I/C=C/1\NC1"
]
        for i, (atompar, bondstereo) in enumerate(data):
            if i in [0, 1, 6, 10]: continue # ambiguous stereo is lost in XYZ
            if i in [7, 8, 9]: continue # perception of S=O from XYZ fails

            smiles, can = self.data[i][0:2]
            output, error = run_exec(smiles, "babel -ismi -oxyz --gen3d")
            
            canoutput, error = run_exec(output, "babel -ixyz -ocan")
            self.assertEqual(canoutput.rstrip(), can)
            
            sdfoutput, error = run_exec(output, "babel -ixyz -osdf")
            atoms, bonds = self.parseMDL(sdfoutput)
            parities = [atom['parity'] for atom in atoms]
            parities.sort()
            stereos = [bond['stereo'] for bond in bonds]
            stereos.sort()
            self.assertEqual(atompar, parities)
            if bondstereo:
                self.assertEqual(bondstereo, stereos)

    def test2DMDLto0D(self):
        """Test conversion for 2D MDL to CAN and InChI"""
        # The following file was created using RDKit starting from
        # the SMILES strings in data[x][0] below.
        filename = self.getTestFile("testsym_2Dtests.sdf")
        
        output, error = run_exec("babel -isdf %s -ocan" % filename)
        for i, smiles in enumerate(output.rstrip().split("\n")):
            self.assertEqual(smiles.rstrip(), self.data[i][1])

        output, error = run_exec("babel -isdf %s -oinchi" % filename)
        for i, inchi in enumerate(output.rstrip().split("\n")):
            self.assertEqual(inchi.rstrip(), self.data[i][2])

    def test2DMDLto0D_more(self):
        """Test various combinations of stereobonds in 2D perception"""
        filenames = [self.getTestFile(x) for x in
                     ["testsym_2Dtests_more.sdf",
                      "testsym_2Dtests_threeligands.sdf"]]
        # The test files have the correct canonical SMILES string
        # stored in the data field "smiles"

        output, error = run_exec("obabel -isdf %s %s -ocan --append smiles" %
                                 (filenames[0], filenames[1]))
        for line in output.rstrip().split("\n"):
            result, correct_answer = line.split()
            self.assertEqual(result, correct_answer)

    def test2DMDLto2DMDL(self):
        """Make sure that stereo is preserved when writing wedge bonds"""
        filenames = [self.getTestFile(x) for x in
                     ["testsym_2Dtests_more.sdf",
                      "testsym_2Dtests_threeligands.sdf"]]
        # The test files have the correct canonical SMILES string
        # stored in the data field "smiles"

        output, error = run_exec("obabel -isdf %s %s -osdf --append smiles" %
                                 (filenames[0], filenames[1]))
        finaloutput, error = run_exec(output, "obabel -isdf -ocan")
        for line in finaloutput.rstrip().split("\n"):
            result, correct_answer = line.split()
            self.assertEqual(result, correct_answer) 

    def testSMILESto0DMDL(self):
        """Test interconversion between SMILES and 0D MDL"""
        data = [
([0, 0, 0, 0, 1], [0, 0, 0, 0]), # 'Cl[C@@](Br)(F)I'
([0, 0, 0, 0, 2], [0, 0, 0, 0]), # 'Cl[C@](Br)(F)I'
([0, 0, 0, 0, 3], [0, 0, 0, 0])  # 'ClC(Br)(F)I'
]
        for i, (atompar, bondstereo) in enumerate(data):
            smiles, can = self.data[i + 4][0:2]
            output, error = run_exec(smiles, "babel -ismi -osdf")
            atoms, bonds = self.parseMDL(output)
            parities = [atom['parity'] for atom in atoms]
            parities.sort()
            stereos = [bond['stereo'] for bond in bonds]
            stereos.sort()
            self.assertEqual(atompar, parities)
            self.assertEqual(bondstereo, stereos)
            output, error = run_exec(output, "babel -isdf -as -ocan")
            self.assertEqual(output.rstrip(), can)


class TestStereoConversion(BaseTest):
    """Random tests relating to roundtripping stereochemistry"""
    def setUp(self):
        self.canFindExecutable("babel")
    def testInChIToSMILES_Bug(self):
        """PR#2101034- InChI <-> SMILES conv misrepresents stereo"""
        test_inchi = 'InChI=1S/C10H10/c1-2-3-7-10-8-5-4-6-9-10/h2-9H,1H2/b7-3+'
        output, error = run_exec(test_inchi, "babel -iinchi -osmi")
        self.assertEqual(output.rstrip(), "C=C/C=C/c1ccccc1")
        
        test_smiles = "C=C\C=C/c1ccccc1"
        output, error = run_exec(test_smiles, "babel -ismi -oinchi")
        self.assertEqual(output.rstrip(), "InChI=1S/C10H10/c1-2-3-7-10-8-5-4-6-9-10/h2-9H,1H2/b7-3-")
    def testChiralToLonePair(self):
        """PR#3058701 - Handle stereochemistry at lone pair on S"""
        # Note to self: Need to ensure that roundtripping through the various
        # 2D and 3D formats works. In the meanwhile, this test at least ensures
        # that SMILES reading and writing works fine.
        can = 'C[S@](=O)Cl'
        smiles = [can, '[S@](Cl)(=O)C', 'O=[S@](Cl)C']
        for smile in smiles:
            output, error = run_exec(smile, "babel -ismi -ocan")
            self.assertEqual(output.rstrip(), can)
        # Check that regular chiral S still work fine
        smi = "[S@](=O)(=N)(C)O"
        output, error = run_exec(smi, "babel -ismi -osmi")
        self.assertEqual(output.rstrip(), smi)
        
if __name__ == "__main__":
    testsuite = []
    allclasses = [TestConversions, TestCisTransSym, TestTetSym,
                  TestLonePairTetSym, TestStereoConversion,
                  TestRingBondCisTransSym]
    for myclass in allclasses:
        suite = unittest.TestLoader().loadTestsFromTestCase(myclass)
        testsuite.append(suite)
    unittest.TextTestRunner().run(unittest.TestSuite(testsuite))