1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
|
"""Test OpenBabel executables from Python
Note: Python bindings not used
On Windows or Linux, you can run these tests at the commandline
in the build folder with:
"C:\Program Files\CMake 2.6\bin\ctest.exe" -C CTestTestfile.cmake
-R pytest -VV
You could also "chdir" into build/test and run the test file directly:
python ../../../test/testsym.py
In both cases, the test file is run directly from the source folder,
and so you can quickly develop the tests and try them out.
"""
import os
import unittest
from testbabel import run_exec, executable, log, BaseTest
class TestSym(BaseTest):
"""Base class for a series of tests relating to symmetry"""
def testInChItoSMI(self):
"""Verify that the InChI is read correctly"""
output, error = run_exec(self.inchi, "babel -iinchi -ocan")
self.assertEqual(output.rstrip(), self.cansmi)
def testSMItoInChI(self):
"""Verify that all molecules give the same InChI"""
output, error = run_exec("\n".join(self.smiles), "babel -ismi -oinchi")
output = "\n".join([x.rstrip() for x in output.split("\n")])
self.assertEqual(output.rstrip(), "\n".join([self.inchi] * len(self.smiles)))
def testSMItoCAN(self):
"""Verify that all molecules give the same cansmi"""
output, error = run_exec("\n".join(self.smiles), "babel -ismi -ocan")
output = "\n".join([x.rstrip() for x in output.split("\n")])
self.assertEqual(output.rstrip(), "\n".join([self.cansmi] * len(self.smiles)))
def testSMIthruXML(self):
"""Verify that roundtripping through CML preserves stereo"""
output, error = run_exec("\n".join(self.smiles), "babel -ismi -ocml tmp.cml")
output, error = run_exec(output.rstrip(), "babel -icml tmp.cml -ocan")
output = "\n".join([x.rstrip() for x in output.split("\n")])
self.assertEqual(output.rstrip(), "\n".join([self.cansmi] * len(self.smiles)))
os.remove("tmp.cml")
class TestTetSym(TestSym):
"""A series of tests relating to tetrahedral symmetry"""
def setUp(self):
self.canFindExecutable("babel")
# The following all represent the same molecule
self.cansmi = "C[C@](Br)(Cl)F"
self.inchi = "InChI=1S/C2H3BrClF/c1-2(3,4)5/h1H3/t2-/m0/s1"
self.smiles = [
'C[C@@](Cl)(Br)F',
'C[C@](Cl)(F)Br',
'C[C@](Br)(Cl)F',
'C[C@@](Br)(F)Cl',
'C[C@@](F)(Cl)Br',
'C[C@](F)(Br)Cl',
'Cl[C@](C)(Br)F',
'Cl[C@@](C)(F)Br',
'Cl[C@@](Br)(C)F',
'Cl[C@](Br)(F)C',
'Cl[C@](F)(C)Br',
'Cl[C@@](F)(Br)C',
'Br[C@@](C)(Cl)F',
'Br[C@](C)(F)Cl',
'Br[C@](Cl)(C)F',
'Br[C@@](Cl)(F)C',
'Br[C@@](F)(C)Cl',
'Br[C@](F)(Cl)C',
'F[C@](C)(Cl)Br',
'F[C@@](C)(Br)Cl',
'F[C@@](Cl)(C)Br',
'F[C@](Cl)(Br)C',
'F[C@](Br)(C)Cl',
'F[C@@](Br)(Cl)C'
]
class TestCisTransSym(TestSym):
"""A series of tests relating to cistrans symmetry"""
def setUp(self):
self.canFindExecutable("babel")
# The following all represent the same molecule
self.cansmi = "Cl/C=C/C=C\\Br"
self.inchi = "InChI=1S/C4H4BrCl/c5-3-1-2-4-6/h1-4H/b3-1-,4-2+"
self.smiles = [
"C(=C\C=C/Br)/Cl",
"Cl/C=C/C=C\Br",
"Br/C=C\C=C\Cl",
"C(=C\Cl)/C=C\Br",
"C(=C\C=C\Cl)\Br",
"C(=C\Br)\C=C\Cl"
]
class TestLonePairTetSym(TestSym):
"""A series of tests relating to tet symmetry involving a lone pair"""
def setUp(self):
self.canFindExecutable("babel")
# The following all represent the same molecule
self.cansmi = "C[S@](=O)Cl"
self.inchi = "InChI=1S/CH3ClOS/c1-4(2)3/h1H3/t4-/m0/s1"
self.smiles = [
self.cansmi,
"O=[S@](Cl)C",
"O=[S@@](C)Cl",
"[S@](Cl)(=O)C",
]
class TestRingBondCisTransSym(TestSym):
"""A series of tests relating to tet symmetry involving a lone pair"""
def setUp(self):
self.canFindExecutable("babel")
# The following all represent the same molecule
self.cansmi = r"I/C=C/1\CN1"
self.inchi = "InChI=1S/C3H4IN/c4-1-3-2-5-3/h1,5H,2H2/b3-1+"
self.smiles = [
self.cansmi,
r"I/C=C\1/NC1",
r"I/C=C1NC/1",
"I/C=C/1/NC/1",
]
class TestConversions(BaseTest):
"""A series of tests relating to file format conversions and symmetry"""
def setUp(self):
self.canFindExecutable("babel")
self.data = [
('ClC=CF', 'FC=CCl', 'InChI=1S/C2H2ClF/c3-1-2-4/h1-2H'),
('ClC=CF', 'FC=CCl', 'InChI=1S/C2H2ClF/c3-1-2-4/h1-2H'),
('Cl/C=C/F', 'F/C=C/Cl', 'InChI=1S/C2H2ClF/c3-1-2-4/h1-2H/b2-1+'),
(r"Cl/C=C\F", r"F/C=C\Cl", 'InChI=1S/C2H2ClF/c3-1-2-4/h1-2H/b2-1-'),
('Cl[C@@](Br)(F)I', 'F[C@](I)(Br)Cl', 'InChI=1S/CBrClFI/c2-1(3,4)5/t1-/m0/s1'),
('Cl[C@](Br)(F)I', 'F[C@@](I)(Br)Cl', 'InChI=1S/CBrClFI/c2-1(3,4)5/t1-/m1/s1'),
('ClC(Br)(F)I', 'FC(I)(Br)Cl', 'InChI=1S/CBrClFI/c2-1(3,4)5'),
('O=[S@@](Cl)I', "Cl[S@](=O)I", "InChI=1S/ClIOS/c1-4(2)3/t4-/m0/s1"),
('O=[S@](Cl)I', "Cl[S@@](=O)I", "InChI=1S/ClIOS/c1-4(2)3/t4-/m1/s1"),
('O=S(Cl)I', "ClS(=O)I", "InChI=1S/ClIOS/c1-4(2)3"),
(r"IC=C1NC1", r"IC=C1CN1", "InChI=1S/C3H4IN/c4-1-3-2-5-3/h1,5H,2H2"),
(r"I/C=C\1/NC1", r"I/C=C/1\CN1", "InChI=1S/C3H4IN/c4-1-3-2-5-3/h1,5H,2H2/b3-1+"),
(r"I/C=C/1\NC1", r"I/C=C\1/CN1", "InChI=1S/C3H4IN/c4-1-3-2-5-3/h1,5H,2H2/b3-1-"),
]
def testSMILEStoInChI(self):
# Tests interconversions between the SMILES on the left versus
# the InChI on the right.
# The canonical smiles (in the middle) were derived from the SMILES.
for smiles, can, inchi in self.data:
output, error = run_exec(smiles, "babel -ismi -oinchi")
self.assertEqual(output.rstrip(), inchi)
output, error = run_exec(inchi, "babel -iinchi -ocan")
self.assertEqual(output.rstrip(), can)
def parseMDL(self, text):
lines = text.split("\n")
broken = lines[3].split()
Natoms = int(broken[0])
Nbonds = int(broken[1])
atoms = []
for i in range(Natoms):
broken = lines[i+4].split()
atoms.append({'parity':int(broken[6])})
bonds = []
for i in range(Nbonds):
broken = lines[i+4+Natoms].split()
bonds.append({'stereo':int(broken[3])})
return atoms, bonds
def testSMILESto2D(self):
"""Test gen2d for some basic cases"""
for smi, can, inchi in self.data:
output, error = run_exec(smi, "obabel -ismi --gen2d -omdl")
output, error = run_exec(output.rstrip(), "obabel -imdl -ocan")
self.assertEqual(can, output.rstrip())
def testSMILESto3DMDL(self):
"""Test interconversion between SMILES and 3D MDL"""
data = [
([0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 3]), # 'ClC=CF'
([0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 3]), # 'ClC=CF'
([0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0]), # 'Cl/C=C/F'
([0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0]), # 'Cl/C=C\\F'
# The bond parities are irrelevant/meaningless for the next two
([0, 0, 0, 0, 1], []), # 'Cl[C@@](Br)(F)I'
([0, 0, 0, 0, 2], []), # 'Cl[C@](Br)(F)I'
([0, 0, 0, 0, 3], [0, 0, 0, 0]), # 'ClC(Br)(F)I'
([0, 0, 0, 1], []), # 'O=[S@@](Cl)I),
([0, 0, 0, 2], []), # 'O=[S@](Cl)I),
([0, 0, 0, 3], []), # 'O=S(Cl)I),
([0]*9, [0]*8 + [3]), # "IC=C1NC1"
([0]*9, [0]*9), # r"I/C=C\1/NC1"
([0]*9, [0]*9), # r"I/C=C/1\NC1"
]
for i, (atompar, bondstereo) in enumerate(data):
smiles, can = self.data[i][0:2]
output, error = run_exec(smiles, "babel -ismi -osdf --gen3d")
atoms, bonds = self.parseMDL(output)
parities = [atom['parity'] for atom in atoms]
parities.sort()
stereos = [bond['stereo'] for bond in bonds]
stereos.sort()
self.assertEqual(atompar, parities)
if bondstereo:
self.assertEqual(bondstereo, stereos)
output, error = run_exec(output, "obabel -isdf -as -ocan")
# "-as" is necessary to identify the unknown stereo
self.assertEqual(output.rstrip(), can)
def testXYZtoSMILESand3DMDL(self):
"""Test conversion from XYZ to SMILES and 3D MDL"""
# Since the XYZ format does not trigger stereo perception,
# this test makes sure that the SMILES and 3D MDL formats
# perceive stereo themselves.
data = [
([0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 3]), # 'ClC=CF'
([0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 3]), # 'ClC=CF'
([0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0]), # 'Cl/C=C/F'
([0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0]), # 'Cl/C=C\\F'
# The bond parities are irrelevant/meaningless for the next two
([0, 0, 0, 0, 1], []), # 'Cl[C@@](Br)(F)I'
([0, 0, 0, 0, 2], []), # 'Cl[C@](Br)(F)I'
([0, 0, 0, 0, 3], [0, 0, 0, 4]), # 'ClC(Br)(F)I'
([0, 0, 0, 1], []), # 'O=[S@@](Cl)I),
([0, 0, 0, 2], []), # 'O=[S@](Cl)I),
([0, 0, 0, 3], []), # 'O=S(Cl)I),
([0]*9, [0]*8 + [3]), # "IC=C1NC1"
([0]*9, [0]*9), # r"I/C=C\1/NC1"
([0]*9, [0]*9), # r"I/C=C/1\NC1"
]
for i, (atompar, bondstereo) in enumerate(data):
if i in [0, 1, 6, 10]: continue # ambiguous stereo is lost in XYZ
if i in [7, 8, 9]: continue # perception of S=O from XYZ fails
smiles, can = self.data[i][0:2]
output, error = run_exec(smiles, "babel -ismi -oxyz --gen3d")
canoutput, error = run_exec(output, "babel -ixyz -ocan")
self.assertEqual(canoutput.rstrip(), can)
sdfoutput, error = run_exec(output, "babel -ixyz -osdf")
atoms, bonds = self.parseMDL(sdfoutput)
parities = [atom['parity'] for atom in atoms]
parities.sort()
stereos = [bond['stereo'] for bond in bonds]
stereos.sort()
self.assertEqual(atompar, parities)
if bondstereo:
self.assertEqual(bondstereo, stereos)
def test2DMDLto0D(self):
"""Test conversion for 2D MDL to CAN and InChI"""
# The following file was created using RDKit starting from
# the SMILES strings in data[x][0] below.
filename = self.getTestFile("testsym_2Dtests.sdf")
output, error = run_exec("babel -isdf %s -ocan" % filename)
for i, smiles in enumerate(output.rstrip().split("\n")):
self.assertEqual(smiles.rstrip(), self.data[i][1])
output, error = run_exec("babel -isdf %s -oinchi" % filename)
for i, inchi in enumerate(output.rstrip().split("\n")):
self.assertEqual(inchi.rstrip(), self.data[i][2])
def test2DMDLto0D_more(self):
"""Test various combinations of stereobonds in 2D perception"""
filenames = [self.getTestFile(x) for x in
["testsym_2Dtests_more.sdf",
"testsym_2Dtests_threeligands.sdf"]]
# The test files have the correct canonical SMILES string
# stored in the data field "smiles"
output, error = run_exec("obabel -isdf %s %s -ocan --append smiles" %
(filenames[0], filenames[1]))
for line in output.rstrip().split("\n"):
result, correct_answer = line.split()
self.assertEqual(result, correct_answer)
def test2DMDLto2DMDL(self):
"""Make sure that stereo is preserved when writing wedge bonds"""
filenames = [self.getTestFile(x) for x in
["testsym_2Dtests_more.sdf",
"testsym_2Dtests_threeligands.sdf"]]
# The test files have the correct canonical SMILES string
# stored in the data field "smiles"
output, error = run_exec("obabel -isdf %s %s -osdf --append smiles" %
(filenames[0], filenames[1]))
finaloutput, error = run_exec(output, "obabel -isdf -ocan")
for line in finaloutput.rstrip().split("\n"):
result, correct_answer = line.split()
self.assertEqual(result, correct_answer)
def testSMILESto0DMDL(self):
"""Test interconversion between SMILES and 0D MDL"""
data = [
([0, 0, 0, 0, 1], [0, 0, 0, 0]), # 'Cl[C@@](Br)(F)I'
([0, 0, 0, 0, 2], [0, 0, 0, 0]), # 'Cl[C@](Br)(F)I'
([0, 0, 0, 0, 3], [0, 0, 0, 0]) # 'ClC(Br)(F)I'
]
for i, (atompar, bondstereo) in enumerate(data):
smiles, can = self.data[i + 4][0:2]
output, error = run_exec(smiles, "babel -ismi -osdf")
atoms, bonds = self.parseMDL(output)
parities = [atom['parity'] for atom in atoms]
parities.sort()
stereos = [bond['stereo'] for bond in bonds]
stereos.sort()
self.assertEqual(atompar, parities)
self.assertEqual(bondstereo, stereos)
output, error = run_exec(output, "babel -isdf -as -ocan")
self.assertEqual(output.rstrip(), can)
class TestStereoConversion(BaseTest):
"""Random tests relating to roundtripping stereochemistry"""
def setUp(self):
self.canFindExecutable("babel")
def testInChIToSMILES_Bug(self):
"""PR#2101034- InChI <-> SMILES conv misrepresents stereo"""
test_inchi = 'InChI=1S/C10H10/c1-2-3-7-10-8-5-4-6-9-10/h2-9H,1H2/b7-3+'
output, error = run_exec(test_inchi, "babel -iinchi -osmi")
self.assertEqual(output.rstrip(), "C=C/C=C/c1ccccc1")
test_smiles = "C=C\C=C/c1ccccc1"
output, error = run_exec(test_smiles, "babel -ismi -oinchi")
self.assertEqual(output.rstrip(), "InChI=1S/C10H10/c1-2-3-7-10-8-5-4-6-9-10/h2-9H,1H2/b7-3-")
def testChiralToLonePair(self):
"""PR#3058701 - Handle stereochemistry at lone pair on S"""
# Note to self: Need to ensure that roundtripping through the various
# 2D and 3D formats works. In the meanwhile, this test at least ensures
# that SMILES reading and writing works fine.
can = 'C[S@](=O)Cl'
smiles = [can, '[S@](Cl)(=O)C', 'O=[S@](Cl)C']
for smile in smiles:
output, error = run_exec(smile, "babel -ismi -ocan")
self.assertEqual(output.rstrip(), can)
# Check that regular chiral S still work fine
smi = "[S@](=O)(=N)(C)O"
output, error = run_exec(smi, "babel -ismi -osmi")
self.assertEqual(output.rstrip(), smi)
if __name__ == "__main__":
testsuite = []
allclasses = [TestConversions, TestCisTransSym, TestTetSym,
TestLonePairTetSym, TestStereoConversion,
TestRingBondCisTransSym]
for myclass in allclasses:
suite = unittest.TestLoader().loadTestsFromTestCase(myclass)
testsuite.append(suite)
unittest.TextTestRunner().run(unittest.TestSuite(testsuite))
|