1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
/*********************************************************************/
/* Copyright 2009, 2010 The University of Texas at Austin. */
/* All rights reserved. */
/* */
/* Redistribution and use in source and binary forms, with or */
/* without modification, are permitted provided that the following */
/* conditions are met: */
/* */
/* 1. Redistributions of source code must retain the above */
/* copyright notice, this list of conditions and the following */
/* disclaimer. */
/* */
/* 2. Redistributions in binary form must reproduce the above */
/* copyright notice, this list of conditions and the following */
/* disclaimer in the documentation and/or other materials */
/* provided with the distribution. */
/* */
/* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
/* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
/* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
/* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
/* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
/* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
/* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
/* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
/* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
/* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
/* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
/* POSSIBILITY OF SUCH DAMAGE. */
/* */
/* The views and conclusions contained in the software and */
/* documentation are those of the authors and should not be */
/* interpreted as representing official policies, either expressed */
/* or implied, of The University of Texas at Austin. */
/*********************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include "common.h"
#ifndef TRANSA
#if !defined(CONJ) && !defined(XCONJ)
#define GEMV GEMV_N
#elif defined(CONJ) && !defined(XCONJ)
#define GEMV GEMV_R
#elif !defined(CONJ) && defined(XCONJ)
#define GEMV GEMV_O
#else
#define GEMV GEMV_S
#endif
#else
#if !defined(CONJ) && !defined(XCONJ)
#define GEMV GEMV_T
#elif defined(CONJ) && !defined(XCONJ)
#define GEMV GEMV_C
#elif !defined(CONJ) && defined(XCONJ)
#define GEMV GEMV_U
#else
#define GEMV GEMV_D
#endif
#endif
#ifndef thread_local
# if __STDC_VERSION__ >= 201112 && !defined __STDC_NO_THREADS__
# define thread_local _Thread_local
# elif defined _WIN32 && ( \
defined _MSC_VER || \
defined __ICL || \
defined __DMC__ || \
defined __BORLANDC__ )
# define thread_local __declspec(thread)
/* note that ICC (linux) and Clang are covered by __GNUC__ */
# elif (defined __GNUC__ || \
defined __SUNPRO_C || \
defined __xlC__) && !defined(__APPLE__)
# define thread_local __thread
# else
# define UNSAFE
#endif
#endif
#if defined USE_OPENMP
#undef UNSAFE
#endif
#if !defined(TRANSA) && !defined(UNSAFE)
#define Y_DUMMY_NUM 1024
#if defined(USE_OPENMP)
static FLOAT y_dummy[Y_DUMMY_NUM];
#pragma omp threadprivate(y_dummy)
# else
static thread_local FLOAT y_dummy[Y_DUMMY_NUM];
# endif
#endif
static int gemv_kernel(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *dummy1, FLOAT *buffer, BLASLONG pos){
FLOAT *a, *x, *y;
BLASLONG lda, incx, incy;
BLASLONG m_from, m_to, n_from, n_to;
a = (FLOAT *)args -> a;
x = (FLOAT *)args -> b;
y = (FLOAT *)args -> c;
lda = args -> lda;
incx = args -> ldb;
incy = args -> ldc;
m_from = 0;
m_to = args -> m;
if (range_m) {
m_from = *(range_m + 0);
m_to = *(range_m + 1);
a += m_from * COMPSIZE;
#ifndef TRANSA
y += m_from * incy * COMPSIZE;
#endif
}
n_from = 0;
n_to = args -> n;
if (range_n) {
n_from = *(range_n + 0);
n_to = *(range_n + 1);
a += n_from * lda * COMPSIZE;
#ifdef TRANSA
y += n_from * incy * COMPSIZE;
#else
# ifndef UNSAFE
//for split matrix row (n) direction and vector x of gemv_n
x += n_from * incx * COMPSIZE;
//store partial result for every thread
y += (m_to - m_from) * 1 * COMPSIZE * pos;
# endif
#endif
}
//fprintf(stderr, "M_From = %d M_To = %d N_From = %d N_To = %d POS=%d\n", m_from, m_to, n_from, n_to, pos);
GEMV(m_to - m_from, n_to - n_from, 0,
*((FLOAT *)args -> alpha + 0),
#ifdef COMPLEX
*((FLOAT *)args -> alpha + 1),
#endif
a, lda, x, incx, y, incy, buffer);
return 0;
}
#ifndef COMPLEX
int CNAME(BLASLONG m, BLASLONG n, FLOAT alpha, FLOAT *a, BLASLONG lda, FLOAT *x, BLASLONG incx, FLOAT *y, BLASLONG incy, FLOAT *buffer, int nthreads){
#else
int CNAME(BLASLONG m, BLASLONG n, FLOAT *alpha, FLOAT *a, BLASLONG lda, FLOAT *x, BLASLONG incx, FLOAT *y, BLASLONG incy, FLOAT *buffer, int nthreads){
#endif
blas_arg_t args;
blas_queue_t queue[MAX_CPU_NUMBER];
BLASLONG range[MAX_CPU_NUMBER + 1];
BLASLONG width, i, num_cpu;
#if !defined(TRANSA) && !defined(UNSAFE)
int split_x=0;
#endif
#ifdef SMP
#ifndef COMPLEX
#ifdef XDOUBLE
int mode = BLAS_XDOUBLE | BLAS_REAL;
#elif defined(DOUBLE)
int mode = BLAS_DOUBLE | BLAS_REAL;
#else
int mode = BLAS_SINGLE | BLAS_REAL;
#endif
#else
#ifdef XDOUBLE
int mode = BLAS_XDOUBLE | BLAS_COMPLEX;
#elif defined(DOUBLE)
int mode = BLAS_DOUBLE | BLAS_COMPLEX;
#else
int mode = BLAS_SINGLE | BLAS_COMPLEX;
#endif
#endif
#endif
args.m = m;
args.n = n;
args.a = (void *)a;
args.b = (void *)x;
args.c = (void *)y;
args.lda = lda;
args.ldb = incx;
args.ldc = incy;
#ifndef COMPLEX
args.alpha = (void *)α
#else
args.alpha = (void *) alpha;
#endif
num_cpu = 0;
range[0] = 0;
#ifndef TRANSA
i = m;
#else
i = n;
#endif
while (i > 0){
width = blas_quickdivide(i + nthreads - num_cpu - 1, nthreads - num_cpu);
if (width < 4) width = 4;
if (i < width) width = i;
range[num_cpu + 1] = range[num_cpu] + width;
queue[num_cpu].mode = mode;
queue[num_cpu].routine = gemv_kernel;
queue[num_cpu].args = &args;
#ifndef TRANSA
queue[num_cpu].range_m = &range[num_cpu];
queue[num_cpu].range_n = NULL;
#else
queue[num_cpu].range_m = NULL;
queue[num_cpu].range_n = &range[num_cpu];
#endif
queue[num_cpu].sa = NULL;
queue[num_cpu].sb = NULL;
queue[num_cpu].next = &queue[num_cpu + 1];
num_cpu ++;
i -= width;
}
#if !defined(TRANSA) && !defined(UNSAFE)
//try to split matrix on row direction and x.
//Then, reduction.
if (num_cpu < nthreads) {
//too small to split or bigger than the y_dummy buffer.
double MN = (double) m * (double) n;
if ( MN <= (24.0 * 24.0 * (double) (GEMM_MULTITHREAD_THRESHOLD*GEMM_MULTITHREAD_THRESHOLD))
|| m*COMPSIZE*nthreads > Y_DUMMY_NUM)
goto Outer;
num_cpu = 0;
range[0] = 0;
memset(y_dummy, 0, sizeof(FLOAT) * m * COMPSIZE * nthreads);
args.ldc = 1;
args.c = (void *)y_dummy;
//split on row (n) and x
i=n;
split_x=1;
while (i > 0){
width = blas_quickdivide(i + nthreads - num_cpu - 1, nthreads - num_cpu);
if (width < 4) width = 4;
if (i < width) width = i;
range[num_cpu + 1] = range[num_cpu] + width;
queue[num_cpu].mode = mode;
queue[num_cpu].routine = gemv_kernel;
queue[num_cpu].args = &args;
queue[num_cpu].position = num_cpu;
queue[num_cpu].range_m = NULL;
queue[num_cpu].range_n = &range[num_cpu];
queue[num_cpu].sa = NULL;
queue[num_cpu].sb = NULL;
queue[num_cpu].next = &queue[num_cpu + 1];
num_cpu ++;
i -= width;
}
}
Outer:
#endif
if (num_cpu) {
queue[0].sa = NULL;
queue[0].sb = buffer;
queue[num_cpu - 1].next = NULL;
exec_blas(num_cpu, queue);
}
#if !defined(TRANSA) && !defined(UNSAFE)
if(split_x==1){
//reduction
for(i=0; i<num_cpu; i++){
int j;
for(j=0; j<m; j++){
y[j*incy*COMPSIZE] +=y_dummy[i*m*COMPSIZE + j*COMPSIZE];
#ifdef COMPLEX
y[j*incy*COMPSIZE+1] +=y_dummy[i*m*COMPSIZE + j*COMPSIZE+1];
#endif
}
}
}
#endif
return 0;
}
|