1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
from opencamlib import ocl, camvtk
import time
import toolpath_examples.ngc_writer as ngc_writer
def filter_path(path,tol):
f = ocl.LineCLFilter()
f.setTolerance(tol)
for p in path:
p2 = ocl.CLPoint(p.x,p.y,p.z)
f.addCLPoint(p2)
f.run()
return f.getCLPoints()
def adaptive_path_drop_cutter(s, cutter, path):
apdc = ocl.AdaptivePathDropCutter()
apdc.setSTL(s)
apdc.setCutter(cutter)
# set the minimum Z-coordinate, or "floor" for drop-cutter
#apdc.minimumZ = -1
apdc.setSampling(0.04)
apdc.setMinSampling(0.0008)
apdc.setPath( path )
apdc.run()
return apdc.getCLPoints()
def drawPaths(paths):
ngc_writer.preamble()
for path in cl_filtered_paths:
ngc_writer.pen_up()
first_pt = path[0]
ngc_writer.xy_rapid_to( first_pt.x, first_pt.y )
ngc_writer.pen_down( first_pt.z )
for p in path[1:]:
ngc_writer.line_to(p.x,p.y,p.z)
ngc_writer.postamble()
if __name__ == "__main__":
print(ocl.version())
myscreen = camvtk.VTKScreen()
#stl = camvtk.STLSurf("../../stl/demo.stl")
stl = camvtk.STLSurf("../../stl/pycam-textbox.stl")
print("STL surface read")
myscreen.addActor(stl)
stl.SetWireframe()
polydata = stl.src.GetOutput()
s= ocl.STLSurf()
camvtk.vtkPolyData2OCLSTL(polydata, s)
print("STLSurf with ", s.size(), " triangles")
print(s.getBounds())
# define a cutter
cutter = ocl.CylCutter(10, 50) # diameter, length
#cutter = ocl.BullCutter(0.6, 0.01, 5)
print(cutter)
#pdc = ocl.PathDropCutter() # create a pdc
apdc = ocl.AdaptivePathDropCutter()
#pdc.setSTL(s)
apdc.setSTL(s)
#pdc.setCutter(cutter) # set the cutter
apdc.setCutter(cutter)
#print "set minimumZ"
#pdc.minimumZ = -1 # set the minimum Z-coordinate, or "floor" for drop-cutter
#apdc.minimumZ = -1
#print "set the sampling interval"
#pdc.setSampling(0.4)
apdc.setSampling(0.4)
apdc.setMinSampling(0.0008)
print(" apdc sampling = ", apdc.getSampling())
ymin=0
ymax=50
Ny=40 # number of lines in the y-direction
dy = float(ymax-ymin)/(Ny-1) # the y step-over
# create a simple "Zig" pattern where we cut only in one direction.
paths = []
# create a list of paths
for n in range(0,Ny):
path = ocl.Path()
y = ymin+n*dy # current y-coordinate
p1 = ocl.Point(0,y,0) # start-point of line
p2 = ocl.Point(130,y,0) # end-point of line
l = ocl.Line(p1,p2) # line-object
path.append( l ) # add the line to the path
paths.append(path)
cl_paths=[]
# we now have a list of paths to run through apdc
t_before = time.time()
n_aclp=0
for p in paths:
aclp = adaptive_path_drop_cutter(s,cutter,p) # the output is a list of Cutter-Locations
n_aclp = n_aclp + len(aclp)
cl_paths.append(aclp)
t_after = time.time()
print("( OpenCAMLib::AdaptivePathDropCutter run took %.2f s )" % ( t_after-t_before ))
print("( got %d raw CL-points )" % ( n_aclp ))
# to reduce the G-code size we filter here. (this is not strictly required and could be omitted)
# we could potentially detect G2/G3 arcs here, if there was a filter for that.
tol = 0.001
print("( filtering to tolerance %.4f )" % ( tol ) )
cl_filtered_paths = []
t_before = time.time()
n_filtered=0
for cl_path in cl_paths:
cl_filtered = filter_path(cl_path,tol)
n_filtered = n_filtered + len(cl_filtered)
cl_filtered_paths.append(cl_filtered)
t_after = time.time()
calctime = t_after-t_before
print("( got %d filtered CL-points. Filter done in %.3f s )" % ( n_filtered , calctime ))
drawPaths(cl_filtered_paths)
"""
# some parameters for this "zigzig" pattern
ymin=0
ymax=50
Ny=10 # number of lines in the y-direction
dy = float(ymax-ymin)/Ny # the y step-over
print("step-over ",dy)
#path = ocl.Path() # create an empty path object
path2 = ocl.Path()
# add Line objects to the path in this loop
for n in range(0,Ny):
y = ymin+n*dy
p1 = ocl.Point(0,y,-100) # start-point of line
p2 = ocl.Point(130,y,-100) # end-point of line
#sl = ocl.Line(p1,p2) # line-object
l2 = ocl.Line(p1,p2)
#path.append( l ) # add the line to the path
path2.append( l2 )
print(" set the path for pdf ")
#pdc.setPath( path )
apdc.setPath( path2 )
#print " run the calculation "
#t_before = time.time()
#pdc.run() # run drop-cutter on the path
#t_after = time.time()
#print " pdc run took ", t_after-t_before," s"
print(" run the calculation ")
t_before = time.time()
apdc.run() # run drop-cutter on the path
t_after = time.time()
print(" apdc run took ", t_after-t_before," s")
print("get the results ")
#clp = pdc.getCLPoints() # get the cl-points from pdf
aclp = apdc.getCLPoints()
print("got ", len(aclp) ," adaptive points")
#aclp_lifted=[]
#for p in aclp:
# p2 = ocl.Point(p.x,p.y,p.z) + ocl.Point(0,0,1)
# aclp_lifted.append(p2)
# filter the adaptively sampled toolpaths
print("filtering. before filter we have", len(aclp),"cl-points")
t_before = time.time()
f = ocl.LineCLFilter()
f.setTolerance(0.001)
for p in aclp:
p2 = ocl.CLPoint(p.x,p.y,p.z)
f.addCLPoint(p2)
f.run()
t_after = time.time()
calctime = t_after-t_before
print(" done in ", calctime," s")
cl_filtered = f.getCLPoints()
#aclp_lifted2=[]
#for p in cl_filtered:
# p2 = ocl.Point(p.x,p.y,p.z) + ocl.Point(0,0,1)
# aclp_lifted2.append(p2)
print(" render the CL-points")
#camvtk.drawCLPointCloud(myscreen, clp)
camvtk.drawCLPointCloud(myscreen, cl_filtered)
for p in cl_filtered:
myscreen.
"""
#camvtk.drawCLPointCloud(myscreen, aclp_lifted2)
#myscreen.addActor( camvtk.PointCloud(pointlist=clp, collist=ccp) )
myscreen.camera.SetPosition(3, 23, 15)
myscreen.camera.SetFocalPoint(5, 5, 0)
myscreen.render()
print(" All done.")
myscreen.iren.Start()
|