1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732
|
Draw Test Harness {#occt_user_guides__test_harness}
===============================
@tableofcontents
@section occt_draw_1 Introduction
This manual explains how to use Draw, the test harness for Open CASCADE Technology (**OCCT**).
Draw is a command interpreter based on TCL and a graphical system used to test and demonstrate Open CASCADE Technology modeling libraries.
@subsection occt_draw_1_1 Overview
Draw is a test harness for Open CASCADE Technology. It provides a flexible and easy to use means of testing and demonstrating the OCCT modeling libraries.
Draw can be used interactively to create, display and modify objects such as curves, surfaces and topological shapes.
Scripts may be written to customize Draw and perform tests. New types of objects and new commands may be added using the C++ programing language.
Draw consists of:
* A command interpreter based on the TCL command language.
* A 3d graphic viewer based on the X system.
* A basic set of commands covering scripts, variables and graphics.
* A set of geometric commands allowing the user to create and modify curves and surfaces and to use OCCT geometry algorithms. This set of commands is optional.
* A set of topological commands allowing the user to create and modify BRep shapes and to use the OCCT topology algorithms.
There is also a set of commands for each delivery unit in the modeling libraries:
* GEOMETRY,
* TOPOLOGY,
* ADVALGOS,
* GRAPHIC,
* PRESENTATION.
@subsection occt_draw_1_2 Contents of this documentation
This documentation describes:
* The command language.
* The basic set of commands.
* The graphical commands.
* The Geometry set of commands.
* The Topology set of commands.
* OCAF commands.
* Data Exchange commands
* Shape Healing commands
This document is a reference manual. It contains a full description of each command. All descriptions have the format illustrated below for the exit command.
~~~~~
exit
~~~~~
Terminates the Draw, TCL session. If the commands are read from a file using the source command, this will terminate the file.
**Example:**
~~~~~
# this is a very short example
exit
~~~~~
@subsection occt_draw_1_3 Getting started
Install Draw and launch Emacs. Get a command line in Emacs using *Esc x* and key in *woksh*.
All DRAW Test Harness can be activated in the common executable called **DRAWEXE**. They are grouped in toolkits and can be loaded at run-time thereby implementing dynamically loaded plug-ins. Thus, it is possible to work only with the required commands adding them dynamically without leaving the Test Harness session.
Declaration of available plug-ins is done through the special resource file(s). The *pload* command loads the plug-in in accordance with the specified resource file and activates the commands implemented in the plug-in.
@subsubsection occt_draw_1_3_1 Launching DRAW Test Harness
Test Harness executable *DRAWEXE* is located in the <i>$CASROOT/\<platform\>/bin</i> directory (where \<platform\> is Win for Windows and Linux for Linux operating systems). Prior to launching it is important to make sure that the environment is correctly setup (usually this is done automatically after the installation process on Windows or after launching specific scripts on Linux).
@subsubsection occt_draw_1_3_2 Plug-in resource file
Open CASCADE Technology is shipped with the DrawPlugin resource file located in the <i>$CASROOT/src/DrawResources</i> directory.
The format of the file is compliant with standard Open CASCADE Technology resource files (see the *Resource_Manager.hxx* file for details).
Each key defines a sequence of either further (nested) keys or a name of the dynamic library. Keys can be nested down to an arbitrary level. However, cyclic dependencies between the keys are not checked.
**Example:** (excerpt from DrawPlugin):
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
OCAF : VISUALIZATION, OCAFKERNEL
VISUALIZATION : AISV
OCAFKERNEL : DCAF
DCAF : TKDCAF
AISV : TKViewerTest
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@subsubsection occt_draw_1_3_3 Activation of commands implemented in the plug-in
To load a plug-in declared in the resource file and to activate the commands the following command must be used in Test Harness:
~~~~~
pload [-PluginFileName] [[Key1] [Key2]...]
~~~~~
where:
* <i>-PluginFileName</i> -- defines the name of a plug-in resource file (prefix "-" is mandatory) described above. If this parameter is omitted then the default name *DrawPlugin* is used.
* *Key* -- defines the key(s) enumerating plug-ins to be loaded. If no keys are specified then the key named *DEFAULT* is used (if there is no such key in the file then no plug-ins are loaded).
According to the OCCT resource file management rules, to access the resource file the environment variable *CSF_PluginFileNameDefaults* (and optionally *CSF_PluginFileNameUserDefaults*) must be set and point to the directory storing the resource file. If it is omitted then the plug-in resource file will be searched in the <i>$CASROOT/src/DrawResources</i> directory.
~~~~~
Draw[] pload -DrawPlugin OCAF
~~~~~
This command will search the resource file *DrawPlugin* using variable *CSF_DrawPluginDefaults* (and *CSF_DrawPluginUserDefaults*) and will start with the OCAF key. Since the *DrawPlugin* is the file shipped with Open CASCADE Technology it will be found in the <i>$CASROOT/src/DrawResources</i> directory (unless this location is redefined by user's variables). The OCAF key will be recursively extracted into two toolkits/plug-ins: *TKDCAF* and *TKViewerTest* (e.g. on Windows they correspond to *TKDCAF.dll* and *TKViewerTest.dll*). Thus, commands implemented for Visualization and OCAF will be loaded and activated in Test Harness.
~~~~~
Draw[] pload (equivalent to pload -DrawPlugin DEFAULT).
~~~~~
This command will find the default DrawPlugin file and the DEFAULT key. The latter finally maps to the TKTopTest toolkit which implements basic modeling commands.
@section occt_draw_2 The Command Language
@subsection occt_draw_2_1 Overview
The command language used in Draw is Tcl. Tcl documentation such as "TCL and the TK Toolkit" by John K. Ousterhout (Addison-Wesley) will prove useful if you intend to use Draw extensively.
This chapter is designed to give you a short outline of both the TCL language and some extensions included in Draw. The following topics are covered:
* Syntax of the TCL language.
* Accessing variables in TCL and Draw.
* Control structures.
* Procedures.
@subsection occt_draw_2_2 Syntax of TCL
TCL is an interpreted command language, not a structured language like C, Pascal, LISP or Basic. It uses a shell similar to that of csh. TCL is, however, easier to use than csh because control structures and procedures are easier to define. As well, because TCL does not assign a process to each command, it is faster than csh.
The basic program for TCL is a script. A script consists of one or more commands. Commands are separated by new lines or semicolons.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
set a 24
set b 15
set a 25; set b 15
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Each command consists of one or more *words*; the first word is the name of a command and additional words are arguments to that command.
Words are separated by spaces or tabs. In the preceding example each of the four commands has three words. A command may contain any number of words and each word is a string of arbitrary length.
The evaluation of a command by TCL is done in two steps. In the first step, the command is parsed and broken into words. Some substitutions are also performed. In the second step, the command procedure corresponding to the first word is called and the other words are interpreted as arguments. In the first step, there is only string manipulation, The words only acquire *meaning* in the second step by the command procedure.
The following substitutions are performed by TCL:
Variable substitution is triggered by the $ character (as with csh), the content of the variable is substitued; { } may be used as in csh to enclose the name of the variable.
**Example:**
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
# set a variable value
set file documentation
puts $file #to display file contents on the screen
# a simple substitution, set psfile to documentation.ps
set psfile $file.ps
puts $psfile
# another substitution, set pfile to documentationPS
set pfile ${file}PS
# a last one,
# delete files NEWdocumentation and OLDdocumentation
foreach prefix {NEW OLD} {rm $prefix$file}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Command substitution is triggered by the [ ] characters. The brackets must enclose a valid script. The script is evaluated and the result is substituted.
Compare command construction in csh.
**Example:**
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
set degree 30
set pi 3.14159265
# expr is a command evaluating a numeric expression
set radian [expr $pi*$degree/180]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Backslash substitution is triggered by the backslash character. It is used to insert special characters like $, [ , ] , etc. It is also useful to insert a new line, a backslash terminated line is continued on the following line.
TCL uses two forms of *quoting* to prevent substitution and word breaking.
Double quote *quoting* enables the definition of a string with space and tabs as a single word. Substitutions are still performed inside the inverted commas " ".
**Example:**
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
# set msg to ;the price is 12.00;
set price 12.00
set msg ;the price is $price;
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Braces *quoting* prevents all substitutions. Braces are also nested. The main use of braces is to defer evaluation when defining procedures and control structures. Braces are used for a clearer presentation of TCL scripts on several lines.
**Example:**
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
set x 0
# this will loop for ever
# because while argument is ;0 < 3;
while ;$x < 3; {set x [expr $x+1]}
# this will terminate as expected because
# while argument is {$x < 3}
while {$x < 3} {set x [expr $x+1]}
# this can be written also
while {$x < 3} {
set x [expr $x+1]
}
# the following cannot be written
# because while requires two arguments
while {$x < 3}
{
set x [expr $x+1]
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Comments start with a \# character as the first non-blank character in a command. To add a comment at the end of the line, the comment must be preceded by a semi-colon to end the preceding command.
**Example:**
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
# This is a comment
set a 1 # this is not a comment
set b 1; # this is a comment
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The number of words is never changed by substitution when parsing in TCL. For example, the result of a substitution is always a single word. This is different from csh but convenient as the behavior of the parser is more predictable. It may sometimes be necessary to force a second round of parsing. **eval** accomplishes this: it accepts several arguments, concatenates them and executes the resulting script.
**Example:**
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# I want to delete two files
set files ;foo bar;
# this will fail because rm will receive only one argument
# and complain that ;foo bar; does not exit
exec rm $files
# a second evaluation will do it
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@subsection occt_draw_2_3 Accessing variables in TCL and Draw
TCL variables have only string values. Note that even numeric values are stored as string literals, and computations using the **expr** command start by parsing the strings. Draw, however, requires variables with other kinds of values such as curves, surfaces or topological shapes.
TCL provides a mechanism to link user data to variables. Using this functionality, Draw defines its variables as TCL variables with associated data.
The string value of a Draw variable is meaningless. It is usually set to the name of the variable itself. Consequently, preceding a Draw variable with a <i>$</i> does not change the result of a command. The content of a Draw variable is accessed using appropriate commands.
There are many kinds of Draw variables, and new ones may be added with C++. Geometric and topological variables are described below.
Draw numeric variables can be used within an expression anywhere a Draw command requires a numeric value. The *expr* command is useless in this case as the variables are stored not as strings but as floating point values.
**Example:**
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
# dset is used for numeric variables
# pi is a predefined Draw variable
dset angle pi/3 radius 10
point p radius*cos(angle) radius*sin(angle) 0
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It is recommended that you use TCL variables only for strings and Draw for numerals. That way, you will avoid the *expr* command. As a rule, Geometry and Topology require numbers but no strings.
@subsubsection occt_draw_2_3_1 set, unset
Syntax:
~~~~~
set varname [value]
unset varname [varname varname ...]
~~~~~
*set* assigns a string value to a variable. If the variable does not already exist, it is created.
Without a value, *set* returns the content of the variable.
*unset* deletes variables. It is is also used to delete Draw variables.
**Example:**
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
set a "Hello world"
set b "Goodbye"
set a
== "Hello world"
unset a b
set a
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
**Note**, that the *set* command can set only one variable, unlike the *dset* command.
@subsubsection occt_draw_2_3_2 dset, dval
Syntax
~~~~~
dset var1 value1 vr2 value2 ...
dval name
~~~~~
*dset* assigns values to Draw numeric variables. The argument can be any numeric expression including Draw numeric variables. Since all Draw commands expect a numeric expression, there is no need to use $ or *expr*. The *dset* command can assign several variables. If there is an odd number of arguments, the last variable will be assigned a value of 0. If the variable does not exist, it will be created.
*dval* evaluates an expression containing Draw numeric variables and returns the result as a string, even in the case of a single variable. This is not used in Draw commands as these usually interpret the expression. It is used for basic TCL commands expecting strings.
**Example:**
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
# z is set to 0
dset x 10 y 15 z
== 0
# no $ required for Draw commands
point p x y z
# "puts" prints a string
puts ;x = [dval x], cos(x/pi) = [dval cos(x/pi)];
== x = 10, cos(x/pi) = -0.99913874099467914
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
**Note,** that in TCL, parentheses are not considered to be special characters. Do not forget to quote an expression if it contains spaces in order to avoid parsing different words. <i>(a + b)</i> is parsed as three words: <i>"(a + b)"</i> or <i>(a+b)</i> are correct.
@subsubsection occt_draw_2_3_3 del, dall
Syntax:
~~~~~
del varname_pattern [varname_pattern ...]
dall
~~~~~
*del* command does the same thing as *unset*, but it deletes the variables matched by the pattern.
*dall* command deletes all variables in the session.
@subsection occt_draw_2_4 lists
TCL uses lists. A list is a string containing elements separated by spaces or tabs. If the string contains braces, the braced part accounts as one element.
This allows you to insert lists within lists.
**Example:**
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
# a list of 3 strings
;a b c;
# a list of two strings the first is a list of 2
;{a b} c;
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Many TCL commands return lists and **foreach** is a useful way to create loops on list elements.
@subsubsection occt_draw_2_5 Control Structures
TCL allows looping using control structures. The control structures are implemented by commands and their syntax is very similar to that of their C counterparts (**if**, **while**, **switch**, etc.). In this case, there are two main differences between TCL and C:
* You use braces instead of parentheses to enclose conditions.
* You do not start the script on the next line of your command.
@subsubsection occt_draw_2_5_1 if
Syntax
~~~~~
if condition script [elseif script .... else script]
~~~~~
**If** evaluates the condition and the script to see whether the condition is true.
**Example:**
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
if {$x > 0} {
puts ;positive;
} elseif {$x == 0} {
puts ;null;
} else {
puts ;negative;
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@subsubsection occt_draw_2_5_2 while, for, foreach
Syntax:
~~~~~
while condition script
for init condition reinit script
foreach varname list script
~~~~~
The three loop structures are similar to their C or csh equivalent. It is important to use braces to delay evaluation. **foreach** will assign the elements of the list to the variable before evaluating the script. \
**Example:**
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
# while example
dset x 1.1
while {[dval x] < 100} {
circle c 0 0 x
dset x x*x
}
# for example
# incr var d, increments a variable of d (default 1)
for {set i 0} {$i < 10} {incr i} {
dset angle $i*pi/10
point p$i cos(angle0 sin(angle) 0
}
# foreach example
foreach object {crapo tomson lucas} {display $object}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@subsubsection occt_draw_2_5_3 break, continue
Syntax:
~~~~~
break
continue
~~~~~
Within loops, the **break** and **continue** commands have the same effect as in C.
**break** interrupts the innermost loop and **continue** jumps to the next iteration.
**Example:**
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
# search the index for which t$i has value ;secret;
for {set i 1} {$i <= 100} {incr i} {
if {[set t$i] == ;secret;} break;
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@subsection occt_draw_2_6 Procedures
TCL can be extended by defining procedures using the **proc** command, which sets up a context of local variables, binds arguments and executes a TCL script.
The only problematic aspect of procedures is that variables are strictly local, and as they are implicitly created when used, it may be difficult to detect errors.
There are two means of accessing a variable outside the scope of the current procedures: **global** declares a global variable (a variable outside all procedures); **upvar** accesses a variable in the scope of the caller. Since arguments in TCL are always string values, the only way to pass Draw variables is by reference, i.e. passing the name of the variable and using the **upvar** command as in the following examples.
As TCL is not a strongly typed language it is very difficult to detect programming errors and debugging can be tedious. TCL procedures are, of course, not designed for large scale software development but for testing and simple command or interactive writing.
@subsubsection occt_draw_2_6_1 proc
Syntax:
~~~~~
proc argumentlist script
~~~~~
**proc** defines a procedure. An argument may have a default value. It is then a list of the form {argument value}. The script is the body of the procedure.
**return** gives a return value to the procedure.
**Example:**
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
# simple procedure
proc hello {} {
puts ;hello world;
}
# procedure with arguments and default values
proc distance {x1 y1 {x2 0} {y2 0}} {
set d [expr (x2-x1)*(x2-x1) + (y2-y1)*(y2-y1)]
return [expr sqrt(d)]
}
proc fact n {
if {$n == 0} {return 1} else {
return [expr n*[fact [expr n -1]]]
}
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@subsubsection occt_draw_2_6_2 global, upvar
Syntax:
~~~~~
global varname [varname ...]
upvar varname localname [varname localname ...]
~~~~~
**global** accesses high level variables. Unlike C, global variables are not visible in procedures.
**upvar** gives a local name to a variable in the caller scope. This is useful when an argument is the name of a variable instead of a value. This is a call by reference and is the only way to use Draw variables as arguments.
**Note** that in the following examples the \$ character is always necessarily used to access the arguments.
**Example:**
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
# convert degree to radian
# pi is a global variable
proc deg2rad (degree} {
return [dval pi*$degree/2.]
}
# create line with a point and an angle
proc linang {linename x y angle} {
upvar linename l
line l $x $y cos($angle) sin($angle)
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@section occt_draw_3 Basic Commands
This chapter describes all the commands defined in the basic Draw package. Some are TCL commands, but most of them have been formulated in Draw. These commands are found in all Draw applications. The commands are grouped into four sections:
* General commands, which are used for Draw and TCL management.
* Variable commands, which are used to manage Draw variables such as storing and dumping.
* Graphic commands, which are used to manage the graphic system, and so pertain to views.
* Variable display commands, which are used to manage the display of objects within given views.
Note that Draw also features a GUI task bar providing an alternative way to give certain general, graphic and display commands
@subsection occt_draw_3_1 General commands
This section describes several useful commands:
* **help** to get information,
* **source** to eval a script from a file,
* **spy** to capture the commands in a file,
* **cpulimit** to limit the process cpu time,
* **wait** to waste some time,
* **chrono** to time commands.
@subsubsection occt_draw_3_1_1 help
Syntax:
~~~~~
help [command [helpstring group]]
~~~~~
Provides help or modifies the help information.
**help** without arguments lists all groups and the commands in each group.
Specifying the command returns its syntax and in some cases, information on the command, The joker \* is automatically added at the end so that all completing commands are returned as well.
**Example:**
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
# Gives help on all commands starting with *a*
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@subsubsection occt_draw_3_1_2 source
Syntax:
~~~~~
source filename
~~~~~
Executes a file.
The **exit** command will terminate the file.
@subsubsection occt_draw_3_1_3 spy
Syntax:
~~~~~
spy [filename]
~~~~~
Saves interactive commands in the file. If spying has already been performed, the current file is closed. **spy** without an argument closes the current file and stops spying. If a file already exists, the file is overwritten. Commands are not appended.
If a command returns an error it is saved with a comment mark.
The file created by **spy** can be executed with the **source** command.
**Example:**
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
# all commands will be saved in the file ;session;
spy session
# the file ;session; is closed and commands are not saved
spy
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@subsubsection occt_draw_3_1_4 cpulimit
Syntax:
~~~~~
cpulimit [nbseconds]
~~~~~
**cpulimit**limits a process after the number of seconds specified in nbseconds. It is used in tests to avoid infinite loops. **cpulimit** without arguments removes all existing limits.
**Example:**
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
#limit cpu to one hour
cpulimit 3600
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@subsubsection occt_draw_3_1_5 wait
Syntax:
~~~~~
wait [nbseconds]
~~~~~
Suspends execution for the number of seconds specified in *nbseconds*. The default value is ten (10) seconds. This is a useful command for a slide show.
~~~~~
# You have ten seconds ...
wait
~~~~~
@subsubsection occt_draw_3_1_6 chrono
Syntax:
~~~~~
chrono [ name start/stop/reset/show/restart/[counter text]]
~~~~~
Without arguments, **chrono** activates Draw chronometers. The elapsed time ,cpu system and cpu user times for each command will be printed.
With arguments, **chrono** is used to manage activated chronometers. You can perform the following actions with a chronometer.
* run the chronometer (start).
* stop the chronometer (stop).
* reset the chronometer to 0 (reset).
* restart the chronometer (restart).
* display the current time (show).
* display the current time with specified text (output example - *COUNTER text: N*), command <i>testdiff</i> will compare such outputs between two test runs (counter).
**Example:**
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
chrono
==Chronometers activated.
ptorus t 20 5
==Elapsed time: 0 Hours 0 Minutes 0.0318 Seconds
==CPU user time: 0.01 seconds
==CPU system time: 0 seconds
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@subsection occt_draw_3_2 Variable management commands
@subsubsection occt_draw_3_2_1 isdraw, directory
Syntax:
~~~~~
isdraw varname
directory [pattern]
~~~~~
**isdraw** tests to see if a variable is a Draw variable. **isdraw** will return 1 if there is a Draw value attached to the variable.
Use **directory** to return a list of all Draw global variables matching a pattern.
**Example:**
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
set a 1
isdraw a
=== 0
dset a 1
isdraw a
=== 1
circle c 0 0 1 0 5
isdraw c
=== 1
# to destroy all Draw objects with name containing curve
foreach var [directory *curve*] {unset $var}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@subsubsection occt_draw_3_2_2 whatis, dump
Syntax:
~~~~~
whatis varname [varname ...]
dump varname [varname ...]
~~~~~
**whatis** returns short information about a Draw variable. This is usually the type name.
**dump** returns a brief type description, the coordinates, and if need be, the parameters of a Draw variable.
**Example:**
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
circle c 0 0 1 0 5
whatis c
c is a 2d curve
dump c
***** Dump of c *****
Circle
Center :0, 0
XAxis :1, 0
YAxis :-0, 1
Radius :5
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
**Note** The behavior of *whatis* on other variables (not Draw) is not excellent.
@subsubsection occt_draw_3_2_3 renamevar, copy
Syntax:
~~~~~
renamevar varname tovarname [varname tovarname ...]
copy varname tovarname [varname tovarname ...]
~~~~~
* **renamevar** changes the name of a Draw variable. The original variable will no longer exist. Note that the content is not modified. Only the name is changed.
* **copy** creates a new variable with a copy of the content of an existing variable. The exact behavior of **copy** is type dependent; in the case of certain topological variables, the content may still be shared.
**Example:**
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
circle c1 0 0 1 0 5
renamevar c1 c2
# curves are copied, c2 will not be modified
copy c2 c3
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@subsubsection occt_draw_3_2_4 datadir, save, restore
Syntax:
~~~~~
datadir [directory]
save variable [filename]
restore filename [variablename]
~~~~~
* **datadir** without arguments prints the path of the current data directory.
* **datadir** with an argument sets the data directory path. \
If the path starts with a dot (.) only the last directory name will be changed in the path.
* **save** writes a file in the data directory with the content of a variable. By default the name of the file is the name of the variable. To give a different name use a second argument.
* **restore** reads the content of a file in the data directory in a local variable. By default, the name of the variable is the name of the file. To give a different name, use a second argument.
The exact content of the file is type-dependent. They are usually ASCII files and so, architecture independent.
**Example:**
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
# note how TCL accesses shell environment variables
# using $env()
datadir
==.
datadir $env(WBCONTAINER)/data/default
==/adv_20/BAG/data/default
box b 10 20 30
save b theBox
==/adv_20/BAG/data/default/theBox
# when TCL does not find a command it tries a shell command
ls [datadir]
== theBox
restore theBox
== theBox
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@subsection occt_draw_3_3 User defined commands
*DrawTrSurf* provides commands to create and display a Draw **geometric** variable from a *Geom_Geometry* object and also get a *Geom_Geometry* object from a Draw geometric variable name.
*DBRep* provides commands to create and display a Draw **topological** variable from a *TopoDS_Shape* object and also get a *TopoDS_Shape* object from a Draw topological variable name.
@subsubsection occt_draw_3_3_1 set
#### In *DrawTrSurf* package:
~~~~~
void Set(Standard_CString& Name,const gp_Pnt& G) ;
void Set(Standard_CString& Name,const gp_Pnt2d& G) ;
void Set(Standard_CString& Name,
const Handle(Geom_Geometry)& G) ;
void Set(Standard_CString& Name,
const Handle(Geom2d_Curve)& C) ;
void Set(Standard_CString& Name,
const Handle(Poly_Triangulation)& T) ;
void Set(Standard_CString& Name,
const Handle(Poly_Polygon3D)& P) ;
void Set(Standard_CString& Name,
const Handle(Poly_Polygon2D)& P) ;
~~~~~
#### In *DBRep* package:
~~~~~
void Set(const Standard_CString Name,
const TopoDS_Shape& S) ;
~~~~~
Example of *DrawTrSurf*
~~~~~
Handle(Geom2d_Circle) C1 = new Geom2d_Circle
(gce_MakeCirc2d (gp_Pnt2d(50,0,) 25));
DrawTrSurf::Set(char*, C1);
~~~~~
Example of *DBRep*
~~~~~
TopoDS_Solid B;
B = BRepPrimAPI_MakeBox (10,10,10);
DBRep::Set(char*,B);
~~~~~
@subsubsection occt_draw_3_3_2 get
#### In *DrawTrSurf* package:
~~~~~
Handle_Geom_Geometry Get(Standard_CString& Name) ;
~~~~~
#### In *DBRep* package:
~~~~~
TopoDS_Shape Get(Standard_CString& Name,
const TopAbs_ShapeEnum Typ = TopAbs_SHAPE,
const Standard_Boolean Complain
= Standard_True) ;
~~~~~
Example of *DrawTrSurf*
~~~~~
Standard_Integer MyCommand
(Draw_Interpretor& theCommands,
Standard_Integer argc, char** argv)
{......
// Creation of a Geom_Geometry from a Draw geometric
// name
Handle (Geom_Geometry) aGeom= DrawTrSurf::Get(argv[1]);
}
~~~~~
Example of *DBRep*
~~~~~
Standard_Integer MyCommand
(Draw_Interpretor& theCommands,
Standard_Integer argc, char** argv)
{......
// Creation of a TopoDS_Shape from a Draw topological
// name
TopoDS_Solid B = DBRep::Get(argv[1]);
}
~~~~~
@section occt_draw_4 Graphic Commands
Graphic commands are used to manage the Draw graphic system. Draw provides a 2d and a 3d viewer with up to 30 views. Views are numbered and the index of the view is displayed in the window’s title. Objects are displayed in all 2d views or in all 3d views, depending on their type. 2d objects can only be viewed in 2d views while 3d objects -- only in 3d views correspondingly.
@subsection occt_draw_4_1 Axonometric viewer
@subsubsection occt_draw_4_1_1 view, delete
Syntax:
~~~~~
view index type [X Y W H]
delete [index]
~~~~~
**view** is the basic view creation command: it creates a new view with the given index. If a view with this index already exits, it is deleted. The view is created with default parameters and X Y W H are the position and dimensions of the window on the screen. Default values are 0, 0, 500, 500.
As a rule it is far simpler either to use the procedures **axo**, **top**, **left** or to click on the desired view type in the menu under *Views* in the task bar..
**delete** deletes a view. If no index is given, all the views are deleted.
Type selects from the following range:
* *AXON* : Axonometric view
* *PERS* : Perspective view
* <i>+X+Y</i> : View on both axes (i.e. a top view), other codes are <i>-X+Y</i>, <i>+Y-Z</i>, etc.
* <i>-2D-</i> : 2d view
The index, the type, the current zoom are displayed in the window title .
**Example:**
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
# this is the content of the mu4 procedure
proc mu4 {} {
delete
view 1 +X+Z 320 20 400 400
view 2 +X+Y 320 450 400 400
view 3 +Y+Z 728 20 400 400
view 4 AXON 728 450 400 400
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
See also: **axo, pers, top, bottom, left, right, front, back, mu4, v2d, av2d, smallview**
@subsubsection occt_draw_4_1_2 axo, pers, top, ...
Syntax:
~~~~~
axo
pers
...
smallview type
~~~~~
All these commands are procedures used to define standard screen layout. They delete all existing views and create new ones. The layout usually complies with the European convention, i.e. a top view is under a front view.
* **axo** creates a large window axonometric view;
* **pers** creates a large window perspective view;
* **top**, **bottom**, **left**, **right**, **front**, **back** create a large window axis view;
* **mu4** creates four small window views: front, left, top and axo.
* **v2d** creates a large window 2d view.
* **av2d** creates two small window views, one 2d and one axo
* **smallview** creates a view at the bottom right of the screen of the given type.
See also: **view**, **delete**
@subsubsection occt_draw_4_1_3 mu, md, 2dmu, 2dmd, zoom, 2dzoom
Syntax:
~~~~~
mu [index] value
2dmu [index] value
zoom [index] value
wzoom
~~~~~
* **mu** (magnify up) increases the zoom in one or several views by a factor of 10%.
* **md** (magnify down) decreases the zoom by the inverse factor. **2dmu** and **2dmd**
perform the same on one or all 2d views.
* **zoom** and **2dzoom** set the zoom factor to a value specified by you. The current zoom factor is always displayed in the window’s title bar. Zoom 20 represents a full screen view in a large window; zoom 10, a full screen view in a small one.
* **wzoom** (window zoom) allows you to select the area you want to zoom in on with the mouse. You will be prompted to give two of the corners of the area that you want to magnify and the rectangle so defined will occupy the window of the view.
**Example:**
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
# set a zoom of 2.5
zoom 2.5
# magnify by 10%
mu 1
# magnify by 20%
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
See also: **fit**, **2dfit**
@subsubsection occt_draw_4_14 pu, pd, pl, pr, 2dpu, 2dpd, 2dpl, 2dpr
Syntax:
~~~~~
pu [index]
pd [index]
~~~~~
The <i>p_</i> commands are used to pan. **pu** and **pd** pan up and down respectively; **pl** and **pr** pan to the left and to the right respectively. Each time the view is displaced by 40 pixels. When no index is given, all views will pan in the direction specified.
~~~~~
# you have selected one anonometric view
pu
# or
pu 1
# you have selected an mu4 view; the object in the third view will pan up
pu 3
~~~~~
See also: **fit**, **2dfit**
@subsubsection occt_draw_4_1_5 fit, 2dfit
Syntax:
~~~~~
fit [index]
2dfit [index]
~~~~~
**fit** computes the best zoom and pans on the content of the view. The content of the view will be centered and fit the whole window.
When fitting all views a unique zoom is computed for all the views. All views are on the same scale.
**Example:**
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
# fit only view 1
fit 1
# fit all 2d views
2dfit
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
See also: **zoom**, **mu**, **pu**
@subsubsection occt_draw_4_1_6 u, d, l, r
Syntax:
~~~~~
u [index]
d [index]
l [index]
r [index]
~~~~~
**u**, **d**, **l**, **r** Rotate the object in view around its axis by five degrees up, down, left or right respectively. This command is restricted to axonometric and perspective views.
**Example:**
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
# rotate the view up
u
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@subsubsection occt_draw_4_1_7 focal, fu, fd
Syntax:
~~~~~
focal [f]
fu [index]
fd [index]
~~~~~
* **focal** changes the vantage point in perspective views. A low f value increases the perspective effect; a high one give a perspective similar to that of an axonometric view. The default value is 500.
* **fu** and **fd** increase or decrease the focal value by 10%. **fd** makes the eye closer to the object.
**Example:**
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
pers
repeat 10 fd
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
**Note**: Do not use a negative or null focal value.
See also: **pers**
@subsubsection occt_draw_4_1_8 color
Syntax:
~~~~~
color index name
~~~~~
**color** sets the color to a value. The index of the *color* is a value between 0 and 15. The name is an X window color name. The list of these can be found in the file *rgb.txt* in the X library directory.
The default values are: 0 White, 1 Red, 2 Green, 3 Blue, 4 Cyan, 5 Gold, 6 Magenta, 7 Marron, 8 Orange, 9 Pink, 10 Salmon, 11 Violet, 12 Yellow, 13 Khaki, 14 Coral.
**Example:**
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
# change the value of blue
color 3 "navy blue"
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
**Note** that the color change will be visible on the next redraw of the views, for example, after *fit* or *mu*, etc.
@subsubsection occt_draw_4_1_9 dtext
Syntax:
~~~~~
dtext [x y [z]] string
~~~~~
**dtext** displays a string in all 3d or 2d views. If no coordinates are given, a graphic selection is required. If two coordinates are given, the text is created in a 2d view at the position specified. With 3 coordinates, the text is created in a 3d view.
The coordinates are real space coordinates.
**Example:**
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
# mark the origins
dtext 0 0 bebop
dtext 0 0 0 bebop
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@subsubsection occt_draw_4_1_10 hardcopy, hcolor, xwd
Syntax:
~~~~~
hardcopy [index]
hcolor index width gray
xwd [index] filename
~~~~~
* **hardcopy** creates a postcript file called a4.ps in the current directory. This file contains the postscript description of the view index, and will allow you to print the view.
* **hcolor** lets you change the aspect of lines in the postscript file. It allows to specify a width and a gray level for one of the 16 colors. **width** is measured in points with default value as 1, **gray** is the gray level from 0 = black to 1 = white with default value as 0. All colors are bound to the default values at the beginning.
* **xwd** creates an X window xwd file from an active view. By default, the index is set to1. To visualize an xwd file, use the unix command **xwud**.
**Example:**
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
# all blue lines (color 3)
# will be half-width and gray
hcolor 3 0.5
# make a postscript file and print it
hardcopy
lpr a4.ps
# make an xwd file and display it
xwd theview
xwud -in theview
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
**Note:** When more than one view is present, specify the index of the view.
Only use a postscript printer to print postscript files.
See also: **color**
@subsubsection occt_draw_4_1_11 wclick, pick
Syntax:
~~~~~
wclick
pick index X Y Z b [nowait]
~~~~~
**wclick** defers an event until the mouse button is clicked. The message <code>just click</code> is displayed.
Use the **pick** command to get graphic input. The arguments must be names for variables where the results are stored.
* index: index of the view where the input was made.
* X,Y,Z: 3d coordinates in real world.
* b: b is the mouse button 1,2 or 3.
When there is an extra argument, its value is not used and the command does not wait for a click; the value of b may then be 0 if there has not been a click.
This option is useful for tracking the pointer.
**Note** that the results are stored in Draw numeric variables.
**Example:**
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
# make a circle at mouse location
pick index x y z b
circle c x y z 0 0 1 1 0 0 0 30
# make a dynamic circle at mouse location
# stop when a button is clicked
# (see the repaint command)
dset b 0
while {[dval b] == 0} {
pick index x y z b nowait
circle c x y z 0 0 1 1 0 0 0 30
repaint
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
See also: **repaint**
Draw provides commands to manage the display of objects.
* **display**, **donly** are used to display,
* **erase**, **clear**, **2dclear** to erase.
* **autodisplay** command is used to check whether variables are displayed when created.
The variable name "." (dot) has a special status in Draw. Any Draw command expecting a Draw object as argument can be passed a dot. The meaning of the dot is the following.
* If the dot is an input argument, a graphic selection will be made. Instead of getting the object from a variable, Draw will ask you to select an object in a view.
* If the dot is an output argument, an unnamed object will be created. Of course this makes sense only for graphic objects: if you create an unnamed number you will not be able to access it. This feature is used when you want to create objects for display only.
* If you do not see what you expected while executing loops or sourcing files, use the **repaint** and **dflush** commands.
**Example:**
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
# OK use dot to dump an object on the screen
dump .
point . x y z
#Not OK. display points on a curve c
# with dot no variables are created
for {set i 0} {$i <= 10} {incr i} {
cvalue c $i/10 x y z
point . x y z
}
# point p x y z
# would have displayed only one point
# because the precedent variable content is erased
# point p$i x y z
# is an other solution, creating variables
# p0, p1, p2, ....
# give a name to a graphic object
renamevar . x
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@subsubsection occt_draw_4_1_12 autodisplay
Syntax:
~~~~~
autodisplay [0/1]
~~~~~
By default, Draw automatically displays any graphic object as soon as it is created. This behavior known as autodisplay can be removed with the command **autodisplay**. Without arguments, **autodisplay** toggles the autodisplay mode. The command always returns the current mode.
When **autodisplay** is off, using the dot return argument is ineffective.
**Example:**
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
# c is displayed
circle c 0 0 1 0 5
# toggle the mode
autodisplay
== 0
circle c 0 0 1 0 5
# c is erased, but not displayed
display c
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@subsubsection occt_draw_4_1_13 display, donly
Syntax:
~~~~~
display varname [varname ...]
donly varname [varname ...]
~~~~~
* **display** makes objects visible.
* **donly** *display only* makes objects visible and erases all other objects. It is very useful to extract one object from a messy screen.
**Example:**
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
\# to see all objects
foreach var [directory] {display $var}
\# to select two objects and erase the other ones
donly . .
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@subsubsection occt_draw_4_1_14 erase, clear, 2dclear
Syntax:
~~~~~
erase [varname varname ...]
clear
2dclear
~~~~~
**erase** removes objects from all views. **erase** without arguments erases everything in 2d and 3d.
**clear** erases only 3d objects and **2dclear** only 2d objects. **erase** without arguments is similar to **clear; 2dclear**.
**Example:**
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
# erase eveerything with a name starting with c_
foreach var [directory c_*] {erase $var}
# clear 2d views
2dclear
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@subsubsection occt_draw_4_1_14_1 disp, don, era
These commands have the same meaning as correspondingly display, donly and erase, but with the difference that they evaluate the arguments using glob pattern rules. For example, to display all objects with names d_1, d_2, d_3, etc. it is enouth to run the command:
~~~~~{.cpp}
disp d_*
~~~~~
@subsubsection occt_draw_4_1_15 repaint, dflush
Syntax:
~~~~~
repaint
dflush
~~~~~
* **repaint** forces repainting of views.
* **dflush** flushes the graphic buffers.
These commands are useful within loops or in scripts.
When an object is modified or erased, the whole view must be repainted. To avoid doing this too many times, Draw sets up a flag and delays the repaint to the end of the command in which the new prompt is issued. In a script, you may want to display the result of a change immediately. If the flag is raised, **repaint** will repaint the views and clear the flag.
Graphic operations are buffered by Draw (and also by the X system). Usually the buffer is flushed at the end of a command and before graphic selection. If you want to flush the buffer from inside a script, use the **dflush** command.
See also: @ref occt_draw_4_1_11 "pick" command.
@subsection occt_draw_4_2 AIS viewer -- view commands
@subsubsection occt_draw_4_2_1 vinit
Syntax:
~~~~~
vinit
~~~~~
Creates a new View window with the specified *view_name*.
By default the view is created in the viewer and in the graphic driver shared with the active view.
~~~~
name = {driverName/viewerName/viewName | viewerName/viewName | viewName}
~~~~
If *driverName* is not specified the driver will be shared with the active view.
If *viewerName* is not specified the viewer will be shared with the active view.
@subsubsection occt_draw_4_2_2 vhelp
Syntax:
~~~~~
vhelp
~~~~~
Displays help in the 3D viewer window. The help consists in a list of hotkeys and their functionalities.
@subsubsection occt_draw_4_2_3 vtop
Syntax:
~~~~~
vtop
~~~~~
Displays top view in the 3D viewer window. Orientation +X+Y.
**Example:**
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
vinit
box b 10 10 10
vdisplay b
vfit
vtop
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@subsubsection occt_draw_4_2_4 vaxo
Syntax:
~~~~~
vaxo
~~~~~
Displays axonometric view in the 3D viewer window. Orientation +X-Y+Z.
**Example:**
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.cpp}
vinit
box b 10 10 10
vdisplay b
vfit
vaxo
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@subsubsection occt_draw_4_2_5 vsetbg
Syntax:
~~~~~
vsetbg imagefile [filltype]
~~~~~
Loads image file as background. *filltype* must be NONE, CENTERED, TILED or STRETCH.
**Example:**
~~~~~
vinit
vsetbg myimage.brep CENTERED
~~~~~
@subsubsection occt_draw_4_2_6 vclear
Syntax:
~~~~~
vclear
~~~~~
Removes all objects from the viewer.
@subsubsection occt_draw_4_2_7 vrepaint
Syntax:
~~~~~
vrepaint
~~~~~
Forcibly redisplays the shape in the 3D viewer window.
@subsubsection occt_draw_4_2_8 vfit
Syntax:
~~~~~
vfit
~~~~~
Automatic zoom/panning. Objects in the view are visualized to occupy the maximum surface.
@subsubsection occt_draw_4_2_9 vzfit
Syntax:
~~~~~
vzfit
~~~~~
Automatic depth panning. Objects in the view are visualized to occupy the maximum 3d space.
@subsubsection occt_draw_4_2_10 vreadpixel
Syntax:
~~~~~
vreadpixel xPixel yPixel [{rgb|rgba|depth|hls|rgbf|rgbaf}=rgba] [name]
~~~~~
Read pixel value for active view.
@subsubsection occt_draw_4_2_11 vselect
Syntax:
~~~~~
vselect x1 y1 [x2 y2 [x3 y3 ... xn yn]] [-allowoverlap 0|1] [shift_selection = 0|1]
~~~~~
Emulates different types of selection:
* single mouse click selection
* selection with a rectangle having the upper left and bottom right corners in <i>(x1,y1)</i> and <i>(x2,y2)</i> respectively
* selection with a polygon having the corners in pixel positions <i>(x1,y1), (x2,y2),…, (xn,yn)</i>
* <i> -allowoverlap </i> manages overlap and inclusion detection in rectangular selection. If the flag is set to 1, both sensitives that were included completely and overlapped partially by defined rectangle will be detected, otherwise algorithm will chose only fully included sensitives. Default behavior is to detect only full inclusion.
* any of these selections if shift_selection is set to 1.
@subsubsection occt_draw_4_2_12 vmoveto
Syntax:
~~~~~
vmoveto x y
~~~~~
Emulates cursor movement to pixel position (x,y).
@subsubsection occt_draw_4_2_13 vviewparams
Syntax:
~~~~~
vviewparams [-scale [s]] [-eye [x y z]] [-at [x y z]] [-up [x y z]] [-proj [x y z]] [-center x y] [-size sx]
~~~~~
Gets or sets the current view parameters.
* If called without arguments, all view parameters are printed.
* The options are:
* -scale [s] : prints or sets the relative scale of viewport.
* -eye [x y z] : prints or sets the eye location.
* -at [x y z] : prints or sets the view center.
* -up [x y z] : prints or sets the up vector direction.
* -proj [x y z] : prints or sets the view direction.
* -center x y : sets the screen center location in pixels.
* -size [sx] : prints viewport projection width and height sizes or changes the size of its maximum dimension.
@subsubsection occt_draw_4_2_14 vchangeselected
Syntax:
~~~~~
vchangeselected shape
~~~~~
Adds a shape to selection or removes one from it.
@subsubsection occt_draw_4_2_15 vzclipping
Syntax:
~~~~~
vzclipping [mode] [depth width]
~~~~~
Gets or sets ZClipping mode, width and depth, where
- *mode = OFF|BACK|FRONT|SLICE*
- *depth* is a real value from segment [0,1]
- *width* is a real value from segment [0,1]
@subsubsection occt_draw_4_2_16 vnbselected
Syntax:
~~~~~
vnbselected
~~~~~
Returns the number of selected objects in the interactive context.
@subsubsection occt_draw_4_2_18 vpurgedisplay
Syntax:
~~~~~
vpurgedisplay [CollectorToo = 0|1]
~~~~~
Removes structures which do not belong to objects displayed in neutral point.
@subsubsection occt_draw_4_2_19 vhlr
Syntax:
~~~~~
vhlr is_enabled={on|off} [show_hidden={1|0}]
~~~~~
Hidden line removal algorithm:
* <i>is_enabled</i> applies HLR algorithm.
* <i>show_hidden</i> if equals to 1, hidden lines are drawn as dotted ones.
@subsubsection occt_draw_4_2_20 vhlrtype
Syntax:
~~~~~
vhlrtype algo_type={algo|polyalgo} [shape_1 ... shape_n]
~~~~~
Changes the type of HLR algorithm used for shapes.
If the algo_type is algo, the exact HLR algorithm is used, otherwise the polygonal algorithm is used for defined shapes.
If no shape is specified through the command arguments, the given HLR algorithm_type is applied to all *AIS_Shape* isntances in the current context, and the command also changes the default HLR algorithm type.
**Note** that this command works with instances of *AIS_Shape* or derived classes only, other interactive object types are ignored.
@subsubsection occt_draw_4_2_21 vcamera
Syntax:
~~~~~
vcamera [-ortho] [-projtype]
[-persp]
[-fovy [Angle]] [-distance [Distance]]
[-stereo] [-leftEye] [-rightEye]
[-iod [Distance]] [-iodType [absolute|relative]]
[-zfocus [Value]] [-zfocusType [absolute|relative]]
~~~~~
Manages camera parameters.
Prints the current value when the option is called without argument.
Orthographic camera:
* -ortho -- activates orthographic projection.
Perspective camera:
* -persp -- activated perspective projection (mono);
* -fovy -- field of view in y axis, in degrees;
* -distance -- distance of eye from the camera center.
Stereoscopic camera:
* -stereo -- perspective projection (stereo);
* -leftEye -- perspective projection (left eye);
* -rightEye -- perspective projection (right eye);
* -iod -- intraocular distance value;
* -iodType -- distance type, absolute or relative;
* -zfocus -- stereographic focus value;
* -zfocusType -- focus type, absolute or relative.
**Example:**
~~~~~
vinit
box b 10 10 10
vdisplay b
vfit
vcamera -persp
~~~~~
@subsubsection occt_draw_4_2_22 vstereo
Syntax:
~~~~~
vstereo [0|1] [-mode Mode] [-reverse {0|1}] [-anaglyph Filter]
~~~~~
Defines the stereo output mode. The following modes are available:
* quadBuffer -- OpenGL QuadBuffer stereo, requires driver support. Should be called BEFORE *vinit*!
* anaglyph -- Anaglyph glasses;
* rowInterlaced -- row-interlaced display;
* columnInterlaced -- column-interlaced display;
* chessBoard -- chess-board output;
* sideBySide -- horizontal pair;
* overUnder -- vertical pair;
Available Anaglyph filters for -anaglyph:
* redCyan, redCyanSimple, yellowBlue, yellowBlueSimple, greenMagentaSimple.
**Example:**
~~~~~
vinit
box b 10 10 10
vdisplay b
vstereo 1
vfit
vcamera -stereo -iod 1
vcamera -lefteye
vcamera -righteye
~~~~~
@subsubsection occt_draw_4_2_23 vfrustumculling
Syntax:
~~~~~
vfrustumculling [toEnable]
~~~~~
Enables/disables objects clipping.
@subsection occt_draw_4_3 AIS viewer -- display commands
@subsubsection occt_draw_4_3_1 vdisplay
Syntax:
~~~~~
vdisplay [-noupdate|-update] [-local] [-mutable] [-neutral]
[-trsfPers {pan|zoom|rotate|trihedron|full|none}=none] [-trsfPersPos X Y [Z]] [-3d|-2d|-2dTopDown]
[-dispMode mode] [-highMode mode]
[-layer index] [-top|-topmost|-overlay|-underlay]
[-redisplay]
name1 [name2] ... [name n]
~~~~~
Displays named objects.
Option <i>-local</i> enables display of objects in the local selection context.
Local selection context will be opened if there is not any.
* *noupdate* suppresses viewer redraw call.
* *mutable* enables optimization for mutable objects.
* *neutral* draws objects in the main viewer.
* *layer* sets z-layer for objects. It can use <i>-overlay|-underlay|-top|-topmost</i> instead of <i>-layer index</i> for the default z-layers.
* *top* draws objects on top of main presentations but below the topmost level.
* *topmost* draws in overlay for 3D presentations with independent Depth.
* *overlay* draws objects in overlay for 2D presentations (On-Screen-Display).
* *underlay* draws objects in underlay for 2D presentations (On-Screen-Display).
* *selectable|-noselect* controls selection of objects.
* *trsfPers* sets transform persistence flags. Flag *full* allows to pan, zoom and rotate.
* *trsfPersPos* sets an anchor point for transform persistence.
* *2d|-2dTopDown* displays object in screen coordinates.
* *dispmode* sets display mode for objects.
* *highmode* sets highlight mode for objects.
* *redisplay* recomputes presentation of objects.
**Example:**
~~~~~
vinit
box b 40 40 40 10 10 10
psphere s 20
vdisplay s b
vfit
~~~~~
@subsubsection occt_draw_4_3_2 vdonly
Syntax:
~~~~~
vdonly [-noupdate|-update] [name1] ... [name n]
~~~~~
Displays only selected or named objects. If there are no selected or named objects, nothing is done.
**Example:**
~~~~~
vinit
box b 40 40 40 10 10 10
psphere s 20
vdonly b
vfit
~~~~~
@subsubsection occt_draw_4_3_3 vdisplayall
Syntax:
~~~~~
vdisplayall [-local]
~~~~~
Displays all erased interactive objects (see vdir and vstate).
Option <i>-local</i> enables displaying objects in the local selection context.
**Example:**
~~~~~
vinit
box b 40 40 40 10 10 10
psphere s 20
vdisplayall
vfit
~~~~~
@subsubsection occt_draw_4_3_4 verase
Syntax:
~~~~~
verase [name1] [name2] … [name n]
~~~~~
Erases some selected or named objects. If there are no selected or named objects, the whole viewer is erased.
**Example:**
~~~~~
vinit
box b1 40 40 40 10 10 10
box b2 -40 -40 -40 10 10 10
psphere s 20
vdisplayall
vfit
# erase only first box
verase b1
# erase second box and sphere
verase
~~~~~
@subsubsection occt_draw_4_3_5 veraseall
Syntax:
~~~~~
veraseall
~~~~~
Erases all objects displayed in the viewer.
**Example:**
~~~~~
vinit
box b1 40 40 40 10 10 10
box b2 -40 -40 -40 10 10 10
psphere s 20
vdisplayall
vfit
# erase only first box
verase b1
# erase second box and sphere
verseall
~~~~~
@subsubsection occt_draw_4_3_6 vsetdispmode
Syntax:
~~~~~
vsetdispmode [name] mode(0,1,2,3)
~~~~~
Sets display mode for all, selected or named objects.
* *0* (*WireFrame*),
* *1* (*Shading*),
* *2* (*Quick HideLineremoval*),
* *3* (*Exact HideLineremoval*).
**Example:**
~~~~~
vinit
box b 10 10 10
vdisplay b
vsetdispmode 1
vfit
~~~~~
@subsubsection occt_draw_4_3_7 vdisplaytype
Syntax:
~~~~~
vdisplaytype type
~~~~~
Displays all objects of a given type.
The following types are possible: *Point*, *Axis*, *Trihedron*, *PlaneTrihedron*, *Line*, *Circle*, *Plane*, *Shape*, *ConnectedShape*, *MultiConn.Shape*, *ConnectedInter.*, *MultiConn.*, *Constraint* and *Dimension*.
@subsubsection occt_draw_4_3_8 verasetype
Syntax:
~~~~~
verasetype type
~~~~~
Erases all objects of a given type.
Possible type is *Point*, *Axis*, *Trihedron*, *PlaneTrihedron*, *Line*, *Circle*, *Plane*, *Shape*, *ConnectedShape*, *MultiConn.Shape*, *ConnectedInter.*, *MultiConn.*, *Constraint* and *Dimension*.
@subsubsection occt_draw_4_3_9 vtypes
Syntax:
~~~~~
vtypes
~~~~~
Makes a list of known types and signatures in AIS.
@subsubsection occt_draw_4_3_10 vaspects
Syntax:
~~~~~
vaspects [-noupdate|-update] [name1 [name2 [...]] | -defaults]
[-setVisibility 0|1]
[-setColor ColorName] [-setcolor R G B] [-unsetColor]
[-setMaterial MatName] [-unsetMaterial]
[-setTransparency Transp] [-unsetTransparency]
[-setWidth LineWidth] [-unsetWidth]
[-setLineType {solid|dash|dot|dotDash}] [-unsetLineType]
[-freeBoundary {off/on | 0/1}]
[-setFreeBoundaryWidth Width] [-unsetFreeBoundaryWidth]
[-setFreeBoundaryColor {ColorName | R G B}] [-unsetFreeBoundaryColor]
[-subshapes subname1 [subname2 [...]]]
[-isoontriangulation 0|1]
[-setMaxParamValue {value}]
~~~~~
Manages presentation properties of all, selected or named objects.
* *-subshapes* -- assigns presentation properties to the specified sub-shapes.
* *-defaults* -- assigns presentation properties to all objects that do not have their own specified properties and to all objects to be displayed in the future.
If *-defaults* option is used there should not be any names of objects and *-subshapes* specifier.
Aliases:
~~~~~
vsetcolor [-noupdate|-update] [name] ColorName
~~~~~
Manages presentation properties (color, material, transparency) of all objects, selected or named.
**Color**. The *ColorName* can be: *BLACK*, *MATRAGRAY*, *MATRABLUE*, *ALICEBLUE*, *ANTIQUEWHITE*, *ANTIQUEWHITE1*, *ANTIQUEWHITE2*, *ANTIQUEWHITE3*, *ANTIQUEWHITE4*, *AQUAMARINE1*, *AQUAMARINE2*, *AQUAMARINE4*, *AZURE*, *AZURE2*, *AZURE3*, *AZURE4*, *BEIGE*, *BISQUE*, *BISQUE2*, *BISQUE3*, *BISQUE4*, *BLANCHEDALMOND*, *BLUE1*, *BLUE2*, *BLUE3*, *BLUE4*, *BLUEVIOLET*, *BROWN*, *BROWN1*, *BROWN2*, *BROWN3*, *BROWN4*, *BURLYWOOD*, *BURLYWOOD1*, *BURLYWOOD2*, *BURLYWOOD3*, *BURLYWOOD4*, *CADETBLUE*, *CADETBLUE1*, *CADETBLUE2*, *CADETBLUE3*, *CADETBLUE4*, *CHARTREUSE*, *CHARTREUSE1*, *CHARTREUSE2*, *CHARTREUSE3*, *CHARTREUSE4*, *CHOCOLATE*, *CHOCOLATE1*, *CHOCOLATE2*, *CHOCOLATE3*, *CHOCOLATE4*, *CORAL*, *CORAL1*, *CORAL2*, *CORAL3*, *CORAL4*, *CORNFLOWERBLUE*, *CORNSILK1*, *CORNSILK2*, *CORNSILK3*, *CORNSILK4*, *CYAN1*, *CYAN2*, *CYAN3*, *CYAN4*, *DARKGOLDENROD*, *DARKGOLDENROD1*, *DARKGOLDENROD2*, *DARKGOLDENROD3*, *DARKGOLDENROD4*, *DARKGREEN*, *DARKKHAKI*, *DARKOLIVEGREEN*, *DARKOLIVEGREEN1*, *DARKOLIVEGREEN2*, *DARKOLIVEGREEN3*, *DARKOLIVEGREEN4*, *DARKORANGE*, *DARKORANGE1*, *DARKORANGE2*, *DARKORANGE3*, *DARKORANGE4*, *DARKORCHID*, *DARKORCHID1*, *DARKORCHID2*, *DARKORCHID3*, *DARKORCHID4*, *DARKSALMON*, *DARKSEAGREEN*, *DARKSEAGREEN1*, *DARKSEAGREEN2*, *DARKSEAGREEN3*, *DARKSEAGREEN4*, *DARKSLATEBLUE*, *DARKSLATEGRAY1*, *DARKSLATEGRAY2*, *DARKSLATEGRAY3*, *DARKSLATEGRAY4*, *DARKSLATEGRAY*, *DARKTURQUOISE*, *DARKVIOLET*, *DEEPPINK*, *DEEPPINK2*, *DEEPPINK3*, *DEEPPINK4*, *DEEPSKYBLUE1*, *DEEPSKYBLUE2*, *DEEPSKYBLUE3*, *DEEPSKYBLUE4*, *DODGERBLUE1*, *DODGERBLUE2*, *DODGERBLUE3*, *DODGERBLUE4*, *FIREBRICK*, *FIREBRICK1*, *FIREBRICK2*, *FIREBRICK3*, *FIREBRICK4*, *FLORALWHITE*, *FORESTGREEN*, *GAINSBORO*, *GHOSTWHITE*, *GOLD*, *GOLD1*, *GOLD2*, *GOLD3*, *GOLD4*, *GOLDENROD*, *GOLDENROD1*, *GOLDENROD2*, *GOLDENROD3*, *GOLDENROD4*, *GRAY*, *GRAY0*, *GRAY1*, *GRAY10*, *GRAY11*, *GRAY12*, *GRAY13*, *GRAY14*, *GRAY15*, *GRAY16*, *GRAY17*, *GRAY18*, *GRAY19*, *GRAY2*, *GRAY20*, *GRAY21*, *GRAY22*, *GRAY23*, *GRAY24*, *GRAY25*, *GRAY26*, *GRAY27*, *GRAY28*, *GRAY29*, *GRAY3*, *GRAY30*, *GRAY31*, *GRAY32*, *GRAY33*, *GRAY34*, *GRAY35*, *GRAY36*, *GRAY37*, *GRAY38*, *GRAY39*, *GRAY4*, *GRAY40*, *GRAY41*, *GRAY42*, *GRAY43*, *GRAY44*, *GRAY45*, *GRAY46*, *GRAY47*, *GRAY48*, *GRAY49*, *GRAY5*, *GRAY50*, *GRAY51*, *GRAY52*, *GRAY53*, *GRAY54*, *GRAY55*, *GRAY56*, *GRAY57*, *GRAY58*, *GRAY59*, *GRAY6*, *GRAY60*, *GRAY61*, *GRAY62*, *GRAY63*, *GRAY64*, *GRAY65*, *GRAY66*, *GRAY67*, *GRAY68*, *GRAY69*, *GRAY7*, *GRAY70*, *GRAY71*, *GRAY72*, *GRAY73*, *GRAY74*, *GRAY75*, *GRAY76*, *GRAY77*, *GRAY78*, *GRAY79*, *GRAY8*, *GRAY80*, *GRAY81*, *GRAY82*, *GRAY83*, *GRAY85*, *GRAY86*, *GRAY87*, *GRAY88*, *GRAY89*, *GRAY9*, *GRAY90*, *GRAY91*, *GRAY92*, *GRAY93*, *GRAY94*, *GRAY95*, *GREEN*, *GREEN1*, *GREEN2*, *GREEN3*, *GREEN4*, *GREENYELLOW*, *GRAY97*, *GRAY98*, *GRAY99*, *HONEYDEW*, *HONEYDEW2*, *HONEYDEW3*, *HONEYDEW4*, *HOTPINK*, *HOTPINK1*, *HOTPINK2*, *HOTPINK3*, *HOTPINK4*, *INDIANRED*, *INDIANRED1*, *INDIANRED2*, *INDIANRED3*, *INDIANRED4*, *IVORY*, *IVORY2*, *IVORY3*, *IVORY4*, *KHAKI*, *KHAKI1*, *KHAKI2*, *KHAKI3*, *KHAKI4*, *LAVENDER*, *LAVENDERBLUSH1*, *LAVENDERBLUSH2*, *LAVENDERBLUSH3*, *LAVENDERBLUSH4*, *LAWNGREEN*, *LEMONCHIFFON1*, *LEMONCHIFFON2*, *LEMONCHIFFON3*, *LEMONCHIFFON4*, *LIGHTBLUE*, *LIGHTBLUE1*, *LIGHTBLUE2*, *LIGHTBLUE3*, *LIGHTBLUE4*, *LIGHTCORAL*, *LIGHTCYAN1*, *LIGHTCYAN2*, *LIGHTCYAN3*, *LIGHTCYAN4*, *LIGHTGOLDENROD*, *LIGHTGOLDENROD1*, *LIGHTGOLDENROD2*, *LIGHTGOLDENROD3*, *LIGHTGOLDENROD4*, *LIGHTGOLDENRODYELLOW*, *LIGHTGRAY*, *LIGHTPINK*, *LIGHTPINK1*, *LIGHTPINK2*, *LIGHTPINK3*, *LIGHTPINK4*, *LIGHTSALMON1*, *LIGHTSALMON2*, *LIGHTSALMON3*, *LIGHTSALMON4*, *LIGHTSEAGREEN*, *LIGHTSKYBLUE*, *LIGHTSKYBLUE1*, *LIGHTSKYBLUE2*, *LIGHTSKYBLUE3*, *LIGHTSKYBLUE4*, *LIGHTSLATEBLUE*, *LIGHTSLATEGRAY*, *LIGHTSTEELBLUE*, *LIGHTSTEELBLUE1*, *LIGHTSTEELBLUE2*, *LIGHTSTEELBLUE3*, *LIGHTSTEELBLUE4*, *LIGHTYELLOW*, *LIGHTYELLOW2*, *LIGHTYELLOW3*, *LIGHTYELLOW4*, *LIMEGREEN*, *LINEN*, *MAGENTA1*, *MAGENTA2*, *MAGENTA3*, *MAGENTA4*, *MAROON*, *MAROON1*, *MAROON2*, *MAROON3*, *MAROON4*, *MEDIUMAQUAMARINE*, *MEDIUMORCHID*, *MEDIUMORCHID1*, *MEDIUMORCHID2*, *MEDIUMORCHID3*, *MEDIUMORCHID4*, *MEDIUMPURPLE*, *MEDIUMPURPLE1*, *MEDIUMPURPLE2*, *MEDIUMPURPLE3*, *MEDIUMPURPLE4*, *MEDIUMSEAGREEN*, *MEDIUMSLATEBLUE*, *MEDIUMSPRINGGREEN*, *MEDIUMTURQUOISE*, *MEDIUMVIOLETRED*, *MIDNIGHTBLUE*, *MINTCREAM*, *MISTYROSE*, *MISTYROSE2*, *MISTYROSE3*, *MISTYROSE4*, *MOCCASIN*, *NAVAJOWHITE1*, *NAVAJOWHITE2*, *NAVAJOWHITE3*, *NAVAJOWHITE4*, *NAVYBLUE*, *OLDLACE*, *OLIVEDRAB*, *OLIVEDRAB1*, *OLIVEDRAB2*, *OLIVEDRAB3*, *OLIVEDRAB4*, *ORANGE*, *ORANGE1*, *ORANGE2*, *ORANGE3*, *ORANGE4*, *ORANGERED*, *ORANGERED1*, *ORANGERED2*, *ORANGERED3*, *ORANGERED4*, *ORCHID*, *ORCHID1*, *ORCHID2*, *ORCHID3*, *ORCHID4*, *PALEGOLDENROD*, *PALEGREEN*, *PALEGREEN1*, *PALEGREEN2*, *PALEGREEN3*, *PALEGREEN4*, *PALETURQUOISE*, *PALETURQUOISE1*, *PALETURQUOISE2*, *PALETURQUOISE3*, *PALETURQUOISE4*, *PALEVIOLETRED*, *PALEVIOLETRED1*, *PALEVIOLETRED2*, *PALEVIOLETRED3*, *PALEVIOLETRED4*, *PAPAYAWHIP*, *PEACHPUFF*, *PEACHPUFF2*, *PEACHPUFF3*, *PEACHPUFF4*, *PERU*, *PINK*, *PINK1*, *PINK2*, *PINK3*, *PINK4*, *PLUM*, *PLUM1*, *PLUM2*, *PLUM3*, *PLUM4*, *POWDERBLUE*, *PURPLE*, *PURPLE1*, *PURPLE2*, *PURPLE3*, *PURPLE4*, *RED*, *RED1*, *RED2*, *RED3*, *RED4*, *ROSYBROWN*, *ROSYBROWN1*, *ROSYBROWN2*, *ROSYBROWN3*, *ROSYBROWN4*, *ROYALBLUE*, *ROYALBLUE1*, *ROYALBLUE2*, *ROYALBLUE3*, *ROYALBLUE4*, *SADDLEBROWN*, *SALMON*, *SALMON1*, *SALMON2*, *SALMON3*, *SALMON4*, *SANDYBROWN*, *SEAGREEN*, *SEAGREEN1*, *SEAGREEN2*, *SEAGREEN3*, *SEAGREEN4*, *SEASHELL*, *SEASHELL2*, *SEASHELL3*, *SEASHELL4*, *BEET*, *TEAL*, *SIENNA*, *SIENNA1*, *SIENNA2*, *SIENNA3*, *SIENNA4*, *SKYBLUE*, *SKYBLUE1*, *SKYBLUE2*, *SKYBLUE3*, *SKYBLUE4*, *SLATEBLUE*, *SLATEBLUE1*, *SLATEBLUE2*, *SLATEBLUE3*, *SLATEBLUE4*, *SLATEGRAY1*, *SLATEGRAY2*, *SLATEGRAY3*, *SLATEGRAY4*, *SLATEGRAY*, *SNOW*, *SNOW2*, *SNOW3*, *SNOW4*, *SPRINGGREEN*, *SPRINGGREEN2*, *SPRINGGREEN3*, *SPRINGGREEN4*, *STEELBLUE*, *STEELBLUE1*, *STEELBLUE2*, *STEELBLUE3*, *STEELBLUE4*, *TAN*, *TAN1*, *TAN2*, *TAN3*, *TAN4*, *THISTLE*, *THISTLE1*, *THISTLE2*, *THISTLE3*, *THISTLE4*, *TOMATO*, *TOMATO1*, *TOMATO2*, *TOMATO3*, *TOMATO4*, *TURQUOISE*, *TURQUOISE1*, *TURQUOISE2*, *TURQUOISE3*, *TURQUOISE4*, *VIOLET*, *VIOLETRED*, *VIOLETRED1*, *VIOLETRED2*, *VIOLETRED3*, *VIOLETRED4*, *WHEAT*, *WHEAT1*, *WHEAT2*, *WHEAT3*, *WHEAT4*, *WHITE*, *WHITESMOKE*, *YELLOW*, *YELLOW1*, *YELLOW2*, *YELLOW3*, *YELLOW4* and *YELLOWGREEN*.
~~~~~
vaspects [name] [-setcolor ColorName] [-setcolor R G B] [-unsetcolor]
vsetcolor [name] ColorName
vunsetcolor [name]
~~~~~
**Transparency. The *Transp* may be between 0.0 (opaque) and 1.0 (fully transparent).
**Warning**: at 1.0 the shape becomes invisible.
~~~~~
vaspects [name] [-settransparency Transp] [-unsettransparency]
vsettransparency [name] Transp
vunsettransparency [name]
~~~~~
**Material**. The *MatName* can be *BRASS*, *BRONZE*, *COPPER*, *GOLD*, *PEWTER*, *PLASTER*, *PLASTIC*, *SILVER*, *STEEL*, *STONE*, *SHINY_PLASTIC*, *SATIN*, *METALIZED*, *NEON_GNC*, *CHROME*, *ALUMINIUM*, *OBSIDIAN*, *NEON_PHC*, *JADE*, *WATER*, *GLASS*, *DIAMOND* or *CHARCOAL*.
~~~~~
vaspects [name] [-setmaterial MatName] [-unsetmaterial]
vsetmaterial [name] MatName
vunsetmaterial [name]
~~~~~
**Line width**. Specifies width of the edges. The *LineWidth* may be between 0.0 and 10.0.
~~~~~
vaspects [name] [-setwidth LineWidth] [-unsetwidth]
vsetwidth [name] LineWidth
vunsetwidth [name]
~~~~~
**Example:**
~~~~~
vinit
box b 10 10 10
vdisplay b
vfit
vsetdispmode b 1
vaspects -setcolor red -settransparency 0.2
vrotate 10 10 10
~~~~~
@subsubsection occt_draw_4_3_11 vsetshading
Syntax:
~~~~~
vsetshading shapename [coefficient]
~~~~~
Sets deflection coefficient that defines the quality of the shape’s representation in the shading mode. Default coefficient is 0.0008.
**Example:**
~~~~~
vinit
psphere s 20
vdisplay s
vfit
vsetdispmode 1
vsetshading s 0.005
~~~~~
@subsubsection occt_draw_4_3_12 vunsetshading
Syntax:
~~~~~
vunsetshading [shapename]
~~~~~
Sets default deflection coefficient (0.0008) that defines the quality of the shape’s representation in the shading mode.
@subsubsection occt_draw_4_3_13 vsetam
Syntax:
~~~~~
vsetam [shapename] mode
~~~~~
Activates selection mode for all selected or named shapes:
* *0* for *shape* itself,
* *1* (*vertices*),
* *2* (*edges*),
* *3* (*wires*),
* *4* (*faces*),
* *5* (*shells*),
* *6* (*solids*),
* *7* (*compounds*).
**Example:**
~~~~~
vinit
box b 10 10 10
vdisplay b
vfit
vsetam b 2
~~~~~
@subsubsection occt_draw_4_3_14 vunsetam
Syntax:
~~~~~
vunsetam
~~~~~
Deactivates all selection modes for all shapes.
@subsubsection occt_draw_4_3_15 vdump
Syntax:
~~~~~
vdump <filename>.{png|bmp|jpg|gif} [-width Width -height Height]
[-buffer rgb|rgba|depth=rgb]
[-stereo mono|left|right|blend|sideBySide|overUnder=mono]
~~~~~
Extracts the contents of the viewer window to a image file.
@subsubsection occt_draw_4_3_16 vdir
Syntax:
~~~~~
vdir
~~~~~
Displays the list of displayed objects.
@subsubsection occt_draw_4_3_17 vsub
Syntax:
~~~~~
vsub 0/1(on/off)[shapename]
~~~~~
Hilights/unhilights named or selected objects which are displayed at neutral state with subintensity color.
**Example:**
~~~~~
vinit
box b 10 10 10
psphere s 20
vdisplay b s
vfit
vsetdispmode 1
vsub b 1
~~~~~
@subsubsection occt_draw_4_3_20 vsensdis
Syntax:
~~~~~
vsensdis
~~~~~
Displays active entities (sensitive entities of one of the standard types corresponding to active selection modes).
Standard entity types are those defined in Select3D package:
* sensitive box
* sensitive face
* sensitive curve
* sensitive segment
* sensitive circle
* sensitive point
* sensitive triangulation
* sensitive triangle
Custom (application-defined) sensitive entity types are not processed by this command.
@subsubsection occt_draw_4_3_21 vsensera
Syntax:
~~~~~
vsensera
~~~~~
Erases active entities.
@subsubsection occt_draw_4_3_23 vr
Syntax:
~~~~~
vr filename
~~~~~
Reads shape from BREP-format file and displays it in the viewer.
**Example:**
~~~~~
vinit
vr myshape.brep
~~~~~
@subsubsection occt_draw_4_3_24 vstate
Syntax:
~~~~~
vstate [-entities] [-hasSelected] [name1] ... [nameN]
~~~~~
Reports show/hidden state for selected or named objects:
* *entities* -- prints low-level information about detected entities;
* *hasSelected* -- prints 1 if the context has a selected shape and 0 otherwise.
@subsubsection occt_draw_4_3_25 vraytrace
Syntax:
~~~~~
vraytrace [0/1]
~~~~~
Turns on/off ray tracing renderer.
@subsubsection occt_draw_4_3_26 vrenderparams
Syntax:
~~~~~
vrenderparams [-rayTrace|-raster] [-rayDepth 0..10] [-shadows {on|off}]
[-reflections {on|off}] [-fsaa {on|off}] [-gleam {on|off}]
[-gi {on|off}] [-brng {on|off}] [-env {on|off}]
[-shadin {color|flat|gouraud|phong}]
~~~~~
Manages rendering parameters:
* rayTrace -- Enables GPU ray-tracing
* raster -- Disables GPU ray-tracing
* rayDepth -- Defines maximum ray-tracing depth
* shadows -- Enables/disables shadows rendering
* reflections -- Enables/disables specular reflections
* fsaa -- Enables/disables adaptive anti-aliasing
* gleam -- Enables/disables transparency shadow effects
* gi -- Enables/disables global illumination effects
* brng -- Enables/disables blocked RNG (fast coherent PT)
* env -- Enables/disables environment map background
* shadingModel -- Controls shading model from enumeration color, flat, gouraud, phong
Unlike *vcaps*, these parameters dramatically change visual properties.
The command is intended to control presentation quality depending on hardware capabilities and performance.
**Example:**
~~~~~
vinit
box b 10 10 10
vdisplay b
vfit
vraytrace 1
vrenderparams -shadows 1 -reflections 1 -fsaa 1
~~~~~
@subsubsection occt_draw_4_3_27 vshaderprog
Syntax:
~~~~~
'vshaderprog [name] pathToVertexShader pathToFragmentShader'
or 'vshaderprog [name] off' to disable GLSL program
or 'vshaderprog [name] phong' to enable per-pixel lighting calculations
~~~~~
Enables rendering using a shader program.
@subsubsection occt_draw_4_3_28 vsetcolorbg
Syntax:
~~~~~
vsetcolorbg r g b
~~~~~
Sets background color.
**Example:**
~~~~~
vinit
vsetcolorbg 200 0 200
~~~~~
@subsection occt_draw_4_4 AIS viewer -- object commands
@subsubsection occt_draw_4_4_1 vtrihedron
Syntax:
~~~~~
vtrihedron name [-dispMode {wf|sh|wireframe|shading}]
[-origin x y z ]
[-zaxis u v w -xaxis u v w ]
[-drawaxes {X|Y|Z|XY|YZ|XZ|XYZ}]
[-hidelabels {on|off}]"
[-label {XAxis|YAxis|ZAxis} value]"
[-attribute {XAxisLength|YAxisLength|ZAxisLength
|TubeRadiusPercent|ConeRadiusPercent"
|ConeLengthPercent|OriginRadiusPercent"
|ShadingNumberOfFacettes} value]"
[-color {Origin|XAxis|YAxis|ZAxis|XOYAxis|YOZAxis"
|XOZAxis|Whole} {r g b | colorName}]"
[-textcolor {r g b | colorName}]"
[-arrowscolor {r g b | colorName}]"
[-priority {Origin|XAxis|YAxis|ZAxis|XArrow"
|YArrow|ZArrow|XOYAxis|YOZAxis"
|XOZAxis|Whole} value]
~~~~~
Creates a new *AIS_Trihedron* object or changes existing trihedron. If no argument is set, the default trihedron (0XYZ) is created.
**Example:**
~~~~~
vinit
vtrihedron tr1
vtrihedron t2 -dispmode shading -origin -200 -200 -300
vtrihedron t2 -color XAxis Quantity_NOC_RED
vtrihedron t2 -color YAxis Quantity_NOC_GREEN
vtrihedron t2 -color ZAxis|Origin Quantity_NOC_BLUE1
~~~~~
@subsubsection occt_draw_4_4_2 vplanetri
Syntax:
~~~~~
vplanetri name
~~~~~
Creates a plane from a trihedron selection. If no arguments are set, the default plane is created.
@subsubsection occt_draw_4_4_3 vsize
Syntax:
~~~~~
vsize [name] [size]
~~~~~
Changes the size of a named or selected trihedron. If the name is not defined: it affects the selected trihedrons otherwise nothing is done. If the value is not defined, it is set to 100 by default.
**Example:**
~~~~~
vinit
vtrihedron tr1
vtrihedron tr2 0 0 0 1 0 0 1 0 0
vsize tr2 400
~~~~~
@subsubsection occt_draw_4_4_4 vaxis
Syntax:
~~~~~
vaxis name [Xa Ya Za Xb Yb Zb]
~~~~~
Creates an axis. If the values are not defined, an axis is created by interactive selection of two vertices or one edge
**Example:**
~~~~~
vinit
vtrihedron tr
vaxis axe1 0 0 0 1 0 0
~~~~~
@subsubsection occt_draw_4_4_5 vaxispara
Syntax:
~~~~~
vaxispara name
~~~~~
Creates an axis by interactive selection of an edge and a vertex.
@subsubsection occt_draw_4_4_6 vaxisortho
Syntax:
~~~~~
vaxisotrho name
~~~~~
Creates an axis by interactive selection of an edge and a vertex. The axis will be orthogonal to the selected edge.
@subsubsection occt_draw_4_4_7 vpoint
Syntax:
~~~~~
vpoint name [Xa Ya Za]
~~~~~
Creates a point from coordinates. If the values are not defined, a point is created by interactive selection of a vertice or an edge (in the center of the edge).
**Example:**
~~~~~
vinit
vpoint p 0 0 0
~~~~~
@subsubsection occt_draw_4_4_8 vplane
Syntax:
~~~~~
vplane name [AxisName] [PointName]
vplane name [PointName] [PointName] [PointName]
vplane name [PlaneName] [PointName]
~~~~~
Creates a plane from named or interactively selected entities.
TypeOfSensitivity:
* 0 -- Interior
* 1 -- Boundary
**Example:**
~~~~~
vinit
vpoint p1 0 50 0
vaxis axe1 0 0 0 0 0 1
vtrihedron tr
vplane plane1 axe1 p1
~~~~~
@subsubsection occt_draw_4_4_9 vplanepara
Syntax:
~~~~~
vplanepara name
~~~~~
Creates a plane from interactively selected vertex and face.
@subsubsection occt_draw_4_4_10 vplaneortho
Syntax:
~~~~~
vplaneortho name
~~~~~
Creates a plane from interactive selected face and coplanar edge.
@subsubsection occt_draw_4_4_11 vline
Syntax:
~~~~~
vline name [PointName] [PointName]
vline name [Xa Ya Za Xb Yb Zb]
~~~~~
Creates a line from coordinates, named or interactively selected vertices.
**Example:**
~~~~~
vinit
vtrihedron tr
vpoint p1 0 50 0
vpoint p2 50 0 0
vline line1 p1 p2
vline line2 0 0 0 50 0 1
~~~~~
@subsubsection occt_draw_4_4_12 vcircle
Syntax:
~~~~~
vcircle name [PointName PointName PointName IsFilled]
vcircle name [PlaneName PointName Radius IsFilled]
~~~~~
Creates a circle from named or interactively selected entities. Parameter IsFilled is defined as 0 or 1.
**Example:**
~~~~~
vinit
vtrihedron tr
vpoint p1 0 50 0
vpoint p2 50 0 0
vpoint p3 0 0 0
vcircle circle1 p1 p2 p3 1
~~~~~
@subsubsection occt_draw_4_4_13 vtri2d
Syntax:
~~~~~
vtri2d name
~~~~~
Creates a plane with a 2D trihedron from an interactively selected face.
@subsubsection occt_draw_4_4_14 vselmode
Syntax:
~~~~~
vselmode [object] mode_number is_turned_on=(1|0)
~~~~~
Sets the selection mode for an object. If the object value is not defined, the selection mode is set for all displayed objects.
*Mode_number* is a non-negative integer encoding different interactive object classes.
For shapes the following *mode_number* values are allowed:
* 0 -- shape
* 1 -- vertex
* 2 -- edge
* 3 -- wire
* 4 -- face
* 5 -- shell
* 6 -- solid
* 7 -- compsolid
* 8 -- compound
*is_turned_on* is:
* 1 if mode is to be switched on
* 0 if mode is to be switched off
**Example:**
~~~~~
vinit
vpoint p1 0 0 0
vpoint p2 50 0 0
vpoint p3 25 40 0
vtriangle triangle1 p1 p2 p3
~~~~~
@subsubsection occt_draw_4_4_15 vconnect
Syntax:
~~~~~
vconnect vconnect name Xo Yo Zo object1 object2 ... [color=NAME]
~~~~~
Creates *AIS_ConnectedInteractive* object from the input object and location and displays it.
**Example:**
~~~~~
vinit
vpoint p1 0 0 0
vpoint p2 50 0 0
vsegment segment p1 p2
restore CrankArm.brep obj
vdisplay obj
vconnect new obj 100100100 1 0 0 0 0 1
~~~~~
@subsubsection occt_draw_4_4_16 vtriangle
Syntax:
~~~~~
vtriangle name PointName PointName PointName
~~~~~
Creates and displays a filled triangle from named points.
**Example:**
~~~~~
vinit
vpoint p1 0 0 0
vpoint p2 50 0 0
vpoint p3 25 40 0
vtriangle triangle1 p1 p2 p3
~~~~~
@subsubsection occt_draw_4_4_17 vsegment
Syntax:
~~~~~
vsegment name PointName PointName
~~~~~
Creates and displays a segment from named points.
**Example:**
~~~~~
Vinit
vpoint p1 0 0 0
vpoint p2 50 0 0
vsegment segment p1 p2
~~~~~
@subsubsection occt_draw_4_4_18 vpointcloud
Syntax:
~~~~~
vpointcloud name shape [-randColor] [-normals] [-noNormals]
~~~~~
Creates an interactive object for an arbitrary set of points from the triangulated shape.
Additional options:
* *randColor* -- generates a random color per point;
* *normals* -- generates a normal per point (default);
* *noNormals* -- does not generate a normal per point.
~~~~~
vpointcloud name x y z r npts {surface|volume} [-randColor] [-normals] [-noNormals]
~~~~~
Creates an arbitrary set of points (npts) randomly distributed on a spheric surface or within a spheric volume (x y z r).
Additional options:
* *randColor* -- generates a random color per point;
* *normals* -- generates a normal per point (default);
* *noNormals* -- does not generate a normal per point.
**Example:**
~~~~~
vinit
vpointcloud pc 0 0 0 100 100000 surface -randColor
vfit
~~~~~
@subsubsection occt_draw_4_4_19 vclipplane
Syntax:
~~~~~
vclipplane maxplanes <view_name> -- gets plane limit for the view.
vclipplane create <plane_name> -- creates a new plane.
vclipplane delete <plane_name> -- deletes a plane.
vclipplane clone <source_plane> <plane_name> -- clones the plane definition.
vclipplane set/unset <plane_name> object <object list> -- sets/unsets the plane for an IO.
vclipplane set/unset <plane_name> view <view list> -- sets/unsets plane for a view.
vclipplane change <plane_name> on/off -- turns clipping on/off.
vclipplane change <plane_name> equation <a> <b> <c> <d> -- changes plane equation.
vclipplane change <plane_name> capping on/off -- turns capping on/off.
vclipplane change <plane_name> capping color <r> <g> <b> -- sets color.
vclipplane change <plane name> capping texname <texture> -- sets texture.
vclipplane change <plane_name> capping texscale <sx> <sy> -- sets texture scale.
vclipplane change <plane_name> capping texorigin <tx> <ty> -- sets texture origin.
vclipplane change <plane_name> capping texrotate <angle> -- sets texture rotation.
vclipplane change <plane_name> capping hatch on/off/<id> -- sets hatching mask.
~~~~~
Manages clipping planes
**Example:**
~~~~~
vinit
vclipplane create pln1
vclipplane change pln1 equation 1 0 0 -0.1
vclipplane set pln1 view Driver1/Viewer1/View1
box b 100 100 100
vdisplay b
vsetdispmode 1
vfit
vrotate 10 10 10
vselect 100 100
~~~~~
@subsubsection occt_draw_4_4_20 vdimension
Syntax:
~~~~~
vdimension name {-angle|-length|-radius|-diameter} -shapes shape1 [shape2 [shape3]]
[-text 3d|2d wf|sh|wireframe|shading IntegerSize]
[-label left|right|hcenter|hfit top|bottom|vcenter|vfit]
[-arrow external|internal|fit] [{-arrowlength|-arlen} RealArrowLength]
[{-arrowangle|-arangle} ArrowAngle(degrees)] [-plane xoy|yoz|zox]
[-flyout FloatValue -extension FloatValue]
[-autovalue] [-value CustomRealValue] [-textvalue CustomTextValue]
[-dispunits DisplayUnitsString]
[-modelunits ModelUnitsString] [-showunits | -hideunits]
~~~~~
Builds angle, length, radius or diameter dimension interactive object **name**.
**Attension:** length dimension can't be built without working plane.
**Example:**
~~~~~
vinit
vpoint p1 0 0 0
vpoint p2 50 50 0
vdimension dim1 -length -plane xoy -shapes p1 p2
vpoint p3 100 0 0
vdimension dim2 -angle -shapes p1 p2 p3
vcircle circle p1 p2 p3 0
vdimension dim3 -radius -shapes circle
vfit
~~~~~
@subsubsection occt_draw_4_4_21 vdimparam
Syntax:
~~~~~
vdimparam name [-text 3d|2d wf|sh|wireframe|shading IntegerSize]
[-label left|right|hcenter|hfit top|bottom|vcenter|vfit]
[-arrow external|internal|fit]
[{-arrowlength|-arlen} RealArrowLength]
[{-arrowangle|-arangle} ArrowAngle(degrees)]
[-plane xoy|yoz|zox]
[-flyout FloatValue -extension FloatValue]
[-autovalue]
[-value CustomRealValue]
[-textvalue CustomTextValue]
[-dispunits DisplayUnitsString]
[-modelunits ModelUnitsString]
[-showunits | -hideunits]
~~~~~
Sets parameters for angle, length, radius and diameter dimension **name**.
**Example:**
~~~~~
vinit
vpoint p1 0 0 0
vpoint p2 50 50 0
vdimension dim1 -length -plane xoy -shapes p1 p2
vdimparam dim1 -flyout -15 -arrowlength 4 -showunits -value 10
vfit
vdimparam dim1 -textvalue "w_1"
vdimparam dim1 -autovalue
~~~~~
@subsubsection occt_draw_4_4_22 vangleparam
Syntax:
~~~~~
vangleparam name [-type interior|exterior]
[-showarrow first|second|both|none]
~~~~~
Sets parameters for angle dimension **name**.
**Example:**
~~~~~
vinit
vpoint p1 0 0 0
vpoint p2 10 0 0
vpoint p3 10 5 0
vdimension dim1 -angle -plane xoy -shapes p1 p2 p3
vfit
vangleparam dim1 -type exterior -showarrow first
~~~~~
@subsubsection occt_draw_4_4_23 vlengthparam
Syntax:
~~~~~
vlengthparam name [-type interior|exterior]
[-showarrow first|second|both|none]
~~~~~
Sets parameters for length dimension **name**.
**Example:**
~~~~~
vinit
vpoint p1 20 20 0
vpoint p2 80 80 0
vdimension dim1 -length -plane xoy -shapes p1 p2
vtop
vfit
vzoom 0.5
vlengthparam dim1 -direction ox
~~~~~
@subsubsection occt_draw_4_4_24 vmovedim
Syntax:
~~~~~
vmovedim [name] [x y z]
~~~~~
Moves picked or named (if **name** parameter is defined) dimension
to picked mouse position or input point with coordinates **x**,**y**,**z**.
Text label of dimension **name** is moved to position, another parts of dimension
are adjusted.
**Example:**
~~~~~
vinit
vpoint p1 0 0 0
vpoint p2 50 50 0
vdimension dim1 -length -plane xoy -shapes p1 p2
vmovedim dim1 -10 30 0
~~~~~
@subsection occt_draw_4_5 AIS viewer -- Mesh Visualization Service
**MeshVS** (Mesh Visualization Service) component provides flexible means of displaying meshes with associated pre- and post- processor data.
@subsubsection occt_draw_4_5_1 meshfromstl
Syntax:
~~~~~
meshfromstl meshname file
~~~~~
Creates a *MeshVS_Mesh* object based on STL file data. The object will be displayed immediately.
**Example:**
~~~~~
meshfromstl mesh myfile.stl
~~~~~
@subsubsection occt_draw_4_5_2 meshdispmode
Syntax:
~~~~~
meshdispmode meshname displaymode
~~~~~
Changes the display mode of object **meshname**. The **displaymode** is integer, which can be:
* *1* for *wireframe*,
* *2* for *shading* mode, or
* *3* for *shrink* mode.
**Example:**
~~~~~
vinit
meshfromstl mesh myfile.stl
meshdispmode mesh 2
~~~~~
@subsubsection occt_draw_4_5_3 meshselmode
Syntax:
~~~~~
meshselmode meshname selectionmode
~~~~~
Changes the selection mode of object **meshname**. The *selectionmode* is integer OR-combination of mode flags. The basic flags are the following:
* *1* -- node selection;
* *2* -- 0D elements (not supported in STL);
* *4* -- links (not supported in STL);
* *8* -- faces.
**Example:**
~~~~~
vinit
meshfromstl mesh myfile.stl
meshselmode mesh 1
~~~~~
@subsubsection occt_draw_4_5_4 meshshadcolor
Syntax:
~~~~~
meshshadcolor meshname red green blue
~~~~~
Changes the face interior color of object **meshname**. The *red*, *green* and *blue* are real values between *0* and *1*.
**Example:**
~~~~~
vinit
meshfromstl mesh myfile.stl
meshshadcolormode mesh 0.5 0.5 0.5
~~~~~
@subsubsection occt_draw_4_5_5 meshlinkcolor
Syntax:
~~~~~
meshlinkcolor meshname red green blue
~~~~~
Changes the color of face borders for object **meshname**. The *red*, *green* and *blue* are real values between *0* and *1*.
**Example:**
~~~~~
vinit
meshfromstl mesh myfile.stl
meshlinkcolormode mesh 0.5 0.5 0.5
~~~~~
@subsubsection occt_draw_4_5_6 meshmat
Syntax:
~~~~~
meshmat meshname material
~~~~~
Changes the material of object **meshname**.
*material* is represented with an integer value as follows (equivalent to enumeration *Graphic3d_NameOfMaterial*):
* *0 -- BRASS,*
* *1 -- BRONZE,*
* *2 -- COPPER,*
* *3 -- GOLD,*
* *4 -- PEWTER,*
* *5 -- PLASTER,*
* *6 -- PLASTIC,*
* *7 -- SILVER,*
* *8 -- STEEL,*
* *9 -- STONE,*
* *10 -- SHINY_PLASTIC,*
* *11 -- SATIN,*
* *12 -- METALIZED,*
* *13 -- NEON_GNC,*
* *14 -- CHROME,*
* *15 -- ALUMINIUM,*
* *16 -- OBSIDIAN,*
* *17 -- NEON_PHC,*
* *18 -- JADE,*
* *19 -- DEFAULT,*
* *20 -- UserDefined*
**Example:**
~~~~~
vinit
meshfromstl mesh myfile.stl
meshmat mesh JADE
~~~~~
@subsubsection occt_draw_4_5_7 meshshrcoef
Syntax:
~~~~~
meshshrcoef meshname shrinkcoefficient
~~~~~
Changes the value of shrink coefficient used in the shrink mode. In the shrink mode the face is shown as a congruent part of a usual face, so that *shrinkcoefficient* controls the value of this part. The *shrinkcoefficient* is a positive real number.
**Example:**
~~~~~
vinit
meshfromstl mesh myfile.stl
meshshrcoef mesh 0.05
~~~~~
@subsubsection occt_draw_4_5_8 meshshow
Syntax:
~~~~~
meshshow meshname
~~~~~
Displays **meshname** in the viewer (if it is erased).
**Example:**
~~~~~
vinit
meshfromstl mesh myfile.stl
meshshow mesh
~~~~~
@subsubsection occt_draw_4_5_9 meshhide
Syntax:
~~~~~
meshhide meshname
~~~~~
Hides **meshname** in the viewer.
**Example:**
~~~~~
vinit
meshfromstl mesh myfile.stl
meshhide mesh
~~~~~
@subsubsection occt_draw_4_5_10 meshhidesel
Syntax:
~~~~~
meshhidesel meshname
~~~~~
Hides only selected entities. The other part of **meshname** remains visible.
@subsubsection occt_draw_4_5_11 meshshowsel
Syntax:
~~~~~
meshshowsel meshname
~~~~~
Shows only selected entities. The other part of **meshname** becomes invisible.
@subsubsection occt_draw_4_5_12 meshshowall
Syntax:
~~~~~
meshshowall meshname
~~~~~
Changes the state of all entities to visible for **meshname**.
@subsubsection occt_draw_4_5_13 meshdelete
Syntax:
~~~~~
meshdelete meshname
~~~~~
Deletes MeshVS_Mesh object **meshname**.
**Example:**
~~~~~
vinit
meshfromstl mesh myfile.stl
meshdelete mesh
~~~~~
@subsection occt_draw_4_6 VIS Viewer commands
A specific plugin with alias *VIS* should be loaded to have access to VIS functionality in DRAW Test Harness:
~~~~
\> pload VIS
~~~~
@subsubsection occt_draw_4_6_1 ivtkinit
Syntax:
~~~~~
ivtkinit
~~~~~
Creates a window for VTK viewer.
@figure{/user_guides/draw_test_harness/images/draw_image001.png,"",225}
@subsubsection occt_draw_4_6_2 ivtkdisplay
Syntax:
~~~~~
ivtkdisplay name1 [name2] …[name n]
~~~~~
Displays named objects.
**Example:**
~~~~~
ivtkinit
# create cone
pcone c 5 0 10
ivtkdisplay c
~~~~~
@figure{/user_guides/draw_test_harness/images/draw_image002.png,"",261}
@subsubsection occt_draw_4_6_3 ivtkerase
Syntax:
~~~~~
ivtkerase [name1] [name2] … [name n]
~~~~~
Erases named objects. If no arguments are passed, erases all displayed objects.
**Example:**
~~~~~
ivtkinit
# create a sphere
psphere s 10
# create a cone
pcone c 5 0 10
# create a cylinder
pcylinder cy 5 10
# display objects
ivtkdisplay s c cy
# erase only the cylinder
ivtkerase cy
# erase the sphere and the cone
ivtkerase s c
~~~~~
@subsubsection occt_draw_4_6_4 ivtkfit
Syntax:
~~~~~
ivtkfit
~~~~~
Automatic zoom/panning.
@subsubsection occt_draw_4_6_5 ivtkdispmode
Syntax:
~~~~~
ivtksetdispmode [name] {0|1}
~~~~~
Sets display mode for a named object. If no arguments are passed, sets the given display mode for all displayed objects
The possible modes are: 0 (WireFrame) and 1 (Shading).
**Example:**
~~~~~
ivtkinit
# create a cone
pcone c 5 0 10
# display the cone
ivtkdisplay c
# set shading mode for the cone
ivtksetdispmode c 1
~~~~~
@figure{/user_guides/draw_test_harness/images/draw_image003.png,"",262}
@subsubsection occt_draw_4_6_6 ivtksetselmode
Syntax:
~~~~~
ivtksetselmode [name] mode {0|1}
~~~~~
Sets selection mode for a named object. If no arguments are passed, sets the given selection mode for all the displayed objects.
**Example:**
~~~~~
ivtkinit
# load a shape from file
restore CrankArm.brep a
# display the loaded shape
ivtkdisplay a
# set the face selection mode
ivtksetselmode a 4 1
~~~~~
@figure{/user_guides/draw_test_harness/images/draw_image004.png,"",291}
@subsubsection occt_draw_4_6_7 ivtkmoveto
Syntax:
~~~~~
ivtkmoveto x y
~~~~~
Imitates mouse cursor moving to point with the given display coordinates **x**,**y**.
**Example:**
~~~~~
ivtkinit
pcone c 5 0 10
ivtkdisplay c
ivtkmoveto 40 50
~~~~~
@subsubsection occt_draw_4_6_8 ivtkselect
Syntax:
~~~~~
ivtkselect x y
~~~~~
Imitates mouse cursor moving to point with the given display coordinates and performs selection at this point.
**Example:**
~~~~~
ivtkinit
pcone c 5 0 10
ivtkdisplay c
ivtkselect 40 50
~~~~~
@subsubsection occt_draw_4_6_9 ivtkdump
Syntax:
~~~~~
ivtkdump *filename* [buffer={rgb|rgba|depth}] [width height] [stereoproj={L|R}]
~~~~~
Dumps the contents of VTK viewer to image. It supports:
* dumping in different raster graphics formats: PNG, BMP, JPEG, TIFF or PNM.
* dumping of different buffers: RGB, RGBA or depth buffer.
* defining of image sizes (width and height in pixels).
* dumping of stereo projections (left or right).
**Example:**
~~~~~
ivtkinit
pcone c 5 0 10
ivtkdisplay c
ivtkdump D:/ConeSnapshot.png rgb 768 768
~~~~~
@subsubsection occt_draw_4_6_10 ivtkbgcolor
Syntax:
~~~~~
ivtkbgcolor r g b [r2 g2 b2]
~~~~~
Sets uniform background color or gradient background if second triple of parameters is set. Color parameters r,g,b have to be chosen in the interval [0..255].
**Example:**
~~~~~
ivtkinit
ivtkbgcolor 200 220 250
~~~~~
@figure{/user_guides/draw_test_harness/images/draw_image005.png,"",196}
~~~~~
ivtkbgcolor 10 30 80 255 255 255
~~~~~
@figure{/user_guides/draw_test_harness/images/draw_image006.png,"",190}
@section occt_draw_5 OCAF commands
This chapter contains a set of commands for Open CASCADE Technology Application Framework (OCAF).
@subsection occt_draw_5_1 Application commands
@subsubsection occt_draw_5_1_1 NewDocument
Syntax:
~~~~~
NewDocument docname [format]
~~~~~
Creates a new **docname** document with MDTV-Standard or described format.
**Example:**
~~~~~
# Create new document with default (MDTV-Standard) format
NewDocument D
# Create new document with BinOcaf format
NewDocument D2 BinOcaf
~~~~~
@subsubsection occt_draw_5_1_2 IsInSession
Syntax:
~~~~~
IsInSession path
~~~~~
Returns *0*, if **path** document is managed by the application session, *1* -- otherwise.
**Example:**
~~~~~
IsInSession /myPath/myFile.std
~~~~~
@subsubsection occt_draw_5_1_3 ListDocuments
Syntax:
~~~~~
ListDocuments
~~~~~
Makes a list of documents handled during the session of the application.
@subsubsection occt_draw_5_1_4 Open
Syntax:
~~~~~
Open path docname [-stream]
~~~~~
Retrieves the document of file **docname** in the path **path**. Overwrites the document, if it is already in session.
option <i>-stream</i> activates usage of alternative interface of OCAF persistence working with C++ streams instead of file names.
**Example:**
~~~~~
Open /myPath/myFile.std D
~~~~~
@subsubsection occt_draw_5_1_5 Close
Syntax:
~~~~~
Close docname
~~~~~
Closes **docname** document. The document is no longer handled by the applicative session.
**Example:**
~~~~~
Close D
~~~~~
@subsubsection occt_draw_5_1_6 Save
Syntax:
~~~~~
Save docname
~~~~~
Saves **docname** active document.
**Example:**
~~~~~
Save D
~~~~~
@subsubsection occt_draw_5_1_7 SaveAs
Syntax:
~~~~~
SaveAs docname path [-stream]
~~~~~
Saves the active document in the file **docname** in the path **path**. Overwrites the file if it already exists.
option <i>-stream</i> activates usage of alternative interface of OCAF persistence working with C++ streams instead of file names.
**Example:**
~~~~~
SaveAs D /myPath/myFile.std
~~~~~
@subsection occt_draw_5_2 Basic commands
@subsubsection occt_draw_5_2_1 Label
Syntax:
~~~~~
Label docname entry
~~~~~
Creates the label expressed by <i>\<entry\></i> if it does not exist.
Example
~~~~~
Label D 0:2
~~~~~
@subsubsection occt_draw_5_2_2 NewChild
Syntax:
~~~~~
NewChild docname [taggerlabel = Root label]
~~~~~
Finds (or creates) a *TagSource* attribute located at father label of <i>\<taggerlabel\></i> and makes a new child label.
Example
~~~~~
# Create new child of root label
NewChild D
# Create new child of existing label
Label D 0:2
NewChild D 0:2
~~~~~
@subsubsection occt_draw_5_2_3 Children
Syntax:
~~~~~
Children docname label
~~~~~
Returns the list of attributes of label.
Example
~~~~~
Children D 0:2
~~~~~
@subsubsection occt_draw_5_2_4 ForgetAll
Syntax:
~~~~~
ForgetAll docname label
~~~~~
Forgets all attributes of the label.
Example
~~~~~
ForgetAll D 0:2
~~~~~
@subsubsection occt_draw_5_3 Application commands
@subsubsection occt_draw_5_3_1 Main
Syntax:
~~~~~
Main docname
~~~~~
Returns the main label of the framework.
**Example:**
~~~~~
Main D
~~~~~
@subsubsection occt_draw_5_3_2 UndoLimit
Syntax:
~~~~~
UndoLimit docname [value=0]
~~~~~
Sets the limit on the number of Undo Delta stored. **0** will disable Undo on the document. A negative *value* means that there is no limit. Note that by default Undo is disabled. Enabling it will take effect with the next call to *NewCommand*. Of course, this limit is the same for Redo
**Example:**
~~~~~
UndoLimit D 100
~~~~~
@subsubsection occt_draw_5_3_3 Undo
Syntax:
~~~~~
Undo docname [value=1]
~~~~~
Undoes **value** steps.
**Example:**
~~~~~
Undo D
~~~~~
@subsubsection occt_draw_5_3_4 Redo
Syntax:
~~~~~
Redo docname [value=1]
~~~~~
Redoes **value** steps.
**Example:**
~~~~~
Redo D
~~~~~
@subsubsection occt_draw_5_3_5 OpenCommand
Syntax:
~~~~~
OpenCommand docname
~~~~~
Opens a new command transaction.
**Example:**
~~~~~
OpenCommand D
~~~~~
@subsubsection occt_draw_5_3_6 CommitCommand
Syntax:
~~~~~
CommitCommand docname
~~~~~
Commits the Command transaction.
**Example:**
~~~~~
CommitCommand D
~~~~~
@subsubsection occt_draw_5_3_7 NewCommand
Syntax:
~~~~~
NewCommand docname
~~~~~
This is a shortcut for Commit and Open transaction.
**Example:**
~~~~~
NewCommand D
~~~~~
@subsubsection occt_draw_5_3_8 AbortCommand
Syntax:
~~~~~
AbortCommand docname
~~~~~
Aborts the Command transaction.
**Example:**
~~~~~
AbortCommand D
~~~~~
@subsubsection occt_draw_5_3_9 Copy
Syntax:
~~~~~
Copy docname entry Xdocname Xentry
~~~~~
Copies the contents of *entry* to *Xentry*. No links are registered.
**Example:**
~~~~~
Copy D1 0:2 D2 0:4
~~~~~
@subsubsection occt_draw_5_3_10 UpdateLink
Syntax:
~~~~~
UpdateLink docname [entry]
~~~~~
Updates external reference set at *entry*.
**Example:**
~~~~~
UpdateLink D
~~~~~
@subsubsection occt_draw_5_3_11 CopyWithLink
Syntax:
~~~~~
CopyWithLink docname entry Xdocname Xentry
~~~~~
Aborts the Command transaction.
Copies the content of *entry* to *Xentry*. The link is registered with an *Xlink* attribute at *Xentry* label.
**Example:**
~~~~~
CopyWithLink D1 0:2 D2 0:4
~~~~~
@subsubsection occt_draw_5_3_12 UpdateXLinks
Syntax:
~~~~~
UpdateXLinks docname entry
~~~~~
Sets modifications on labels impacted by external references to the *entry*. The *document* becomes invalid and must be recomputed
**Example:**
~~~~~
UpdateXLinks D 0:2
~~~~~
@subsubsection occt_draw_5_3_13 DumpDocument
Syntax:
~~~~~
DumpDocument docname
~~~~~
Displays parameters of *docname* document.
**Example:**
~~~~~
DumpDocument D
~~~~~
@subsection occt_draw_5_4 Data Framework commands
@subsubsection occt_draw_5_4_1 MakeDF
Syntax:
~~~~~
MakeDF dfname
~~~~~
Creates a new data framework.
**Example:**
~~~~~
MakeDF D
~~~~~
@subsubsection occt_draw_5_4_2 ClearDF
Syntax:
~~~~~
ClearDF dfname
~~~~~
Clears a data framework.
**Example:**
~~~~~
ClearDF D
~~~~~
@subsubsection occt_draw_5_4_3 CopyDF
Syntax:
~~~~~
CopyDF dfname1 entry1 [dfname2] entry2
~~~~~
Copies a data framework.
**Example:**
~~~~~
CopyDF D 0:2 0:4
~~~~~
@subsubsection occt_draw_5_4_4 CopyLabel
Syntax:
~~~~~
CopyLabel dfname fromlabel tolablel
~~~~~
Copies a label.
**Example:**
~~~~~
CopyLabel D1 0:2 0:4
~~~~~
@subsubsection occt_draw_5_4_5 MiniDumpDF
Syntax:
~~~~~
MiniDumpDF dfname
~~~~~
Makes a mini-dump of a data framework.
**Example:**
~~~~~
MiniDumpDF D
~~~~~
@subsubsection occt_draw_5_4_6 XDumpDF
Syntax:
~~~~~
XDumpDF dfname
~~~~~
Makes an extended dump of a data framework.
**Example:**
~~~~~
XDumpDF D
~~~~~
@subsection occt_draw_5_5 General attributes commands
@subsubsection occt_draw_5_5_1 SetInteger
Syntax:
~~~~~
SetInteger dfname entry value
~~~~~
Finds or creates an Integer attribute at *entry* label and sets *value*.
**Example:**
~~~~~
SetInteger D 0:2 100
~~~~~
@subsubsection occt_draw_5_5_2 GetInteger
Syntax:
~~~~~
GetInteger dfname entry [drawname]
~~~~~
Gets a value of an Integer attribute at *entry* label and sets it to *drawname* variable, if it is defined.
**Example:**
~~~~~
GetInteger D 0:2 Int1
~~~~~
@subsubsection occt_draw_5_5_3 SetReal
Syntax:
~~~~~
SetReal dfname entry value
~~~~~
Finds or creates a Real attribute at *entry* label and sets *value*.
**Example:**
~~~~~
SetReal D 0:2 100.
~~~~~
@subsubsection occt_draw_5_5_4 GetReal
Syntax:
~~~~~
GetReal dfname entry [drawname]
~~~~~
Gets a value of a Real attribute at *entry* label and sets it to *drawname* variable, if it is defined.
**Example:**
~~~~~
GetReal D 0:2 Real1
~~~~~
@subsubsection occt_draw_5_5_5 SetIntArray
Syntax:
~~~~~
SetIntArray dfname entry lower upper value1 value2 …
~~~~~
Finds or creates an IntegerArray attribute at *entry* label with lower and upper bounds and sets **value1*, *value2*...
**Example:**
~~~~~
SetIntArray D 0:2 1 4 100 200 300 400
~~~~~
@subsubsection occt_draw_5_5_6 GetIntArray
Syntax:
~~~~~
GetIntArray dfname entry
~~~~~
Gets a value of an *IntegerArray* attribute at *entry* label.
**Example:**
~~~~~
GetIntArray D 0:2
~~~~~
@subsubsection occt_draw_5_5_7 SetRealArray
Syntax:
~~~~~
SetRealArray dfname entry lower upper value1 value2 …
~~~~~
Finds or creates a RealArray attribute at *entry* label with lower and upper bounds and sets *value1*, *value2*…
**Example:**
~~~~~
GetRealArray D 0:2 1 4 100. 200. 300. 400.
~~~~~
@subsubsection occt_draw_5_5_8 GetRealArray
Syntax:
~~~~~
GetRealArray dfname entry
~~~~~
Gets a value of a RealArray attribute at *entry* label.
**Example:**
~~~~~
GetRealArray D 0:2
~~~~~
@subsubsection occt_draw_5_5_9 SetComment
Syntax:
~~~~~
SetComment dfname entry value
~~~~~
Finds or creates a Comment attribute at *entry* label and sets *value*.
**Example:**
~~~~~
SetComment D 0:2 "My comment"
~~~~~
@subsubsection occt_draw_5_5_10 GetComment
Syntax:
~~~~~
GetComment dfname entry
~~~~~
Gets a value of a Comment attribute at *entry* label.
**Example:**
~~~~~
GetComment D 0:2
~~~~~
@subsubsection occt_draw_5_5_11 SetExtStringArray
Syntax:
~~~~~
SetExtStringArray dfname entry lower upper value1 value2 …
~~~~~
Finds or creates an *ExtStringArray* attribute at *entry* label with lower and upper bounds and sets *value1*, *value2*…
**Example:**
~~~~~
SetExtStringArray D 0:2 1 3 *string1* *string2* *string3*
~~~~~
@subsubsection occt_draw_5_5_12 GetExtStringArray
Syntax:
~~~~~
GetExtStringArray dfname entry
~~~~~
Gets a value of an ExtStringArray attribute at *entry* label.
**Example:**
~~~~~
GetExtStringArray D 0:2
~~~~~
@subsubsection occt_draw_5_5_13 SetName
Syntax:
~~~~~
SetName dfname entry value
~~~~~
Finds or creates a Name attribute at *entry* label and sets *value*.
**Example:**
~~~~~
SetName D 0:2 *My name*
~~~~~
@subsubsection occt_draw_5_5_14 GetName
Syntax:
~~~~~
GetName dfname entry
~~~~~
Gets a value of a Name attribute at *entry* label.
**Example:**
~~~~~
GetName D 0:2
~~~~~
@subsubsection occt_draw_5_5_15 SetReference
Syntax:
~~~~~
SetReference dfname entry reference
~~~~~
Creates a Reference attribute at *entry* label and sets *reference*.
**Example:**
~~~~~
SetReference D 0:2 0:4
~~~~~
@subsubsection occt_draw_5_5_16 GetReference
Syntax:
~~~~~
GetReference dfname entry
~~~~~
Gets a value of a Reference attribute at *entry* label.
**Example:**
~~~~~
GetReference D 0:2
~~~~~
@subsubsection occt_draw_5_5_17 SetUAttribute
Syntax:
~~~~~
SetUAttribute dfname entry localGUID
~~~~~
Creates a UAttribute attribute at *entry* label with *localGUID*.
**Example:**
~~~~~
set localGUID "c73bd076-22ee-11d2-acde-080009dc4422"
SetUAttribute D 0:2 ${localGUID}
~~~~~
@subsubsection occt_draw_5_5_18 GetUAttribute
Syntax:
~~~~~
GetUAttribute dfname entry loacalGUID
~~~~~
Finds a *UAttribute* at *entry* label with *localGUID*.
**Example:**
~~~~~
set localGUID "c73bd076-22ee-11d2-acde-080009dc4422"
GetUAttribute D 0:2 ${localGUID}
~~~~~
@subsubsection occt_draw_5_5_19 SetFunction
Syntax:
~~~~~
SetFunction dfname entry ID failure
~~~~~
Finds or creates a *Function* attribute at *entry* label with driver ID and *failure* index.
**Example:**
~~~~~
set ID "c73bd076-22ee-11d2-acde-080009dc4422"
SetFunction D 0:2 ${ID} 1
~~~~~
@subsubsection occt_draw_5_5_20 GetFunction
Syntax:
~~~~~
GetFunction dfname entry ID failure
~~~~~
Finds a Function attribute at *entry* label and sets driver ID to *ID* variable and failure index to *failure* variable.
**Example:**
~~~~~
GetFunction D 0:2 ID failure
~~~~~
@subsubsection occt_draw_5_5_21 NewShape
Syntax:
~~~~~
NewShape dfname entry [shape]
~~~~~
Finds or creates a Shape attribute at *entry* label. Creates or updates the associated *NamedShape* attribute by *shape* if *shape* is defined.
**Example:**
~~~~~
box b 10 10 10
NewShape D 0:2 b
~~~~~
@subsubsection occt_draw_5_5_22 SetShape
Syntax:
~~~~~
SetShape dfname entry shape
~~~~~
Creates or updates a *NamedShape* attribute at *entry* label by *shape*.
**Example:**
~~~~~
box b 10 10 10
SetShape D 0:2 b
~~~~~
@subsubsection occt_draw_5_5_23 GetShape
Syntax:
~~~~~
GetShape2 dfname entry shape
~~~~~
Sets a shape from NamedShape attribute associated with *entry* label to *shape* draw variable.
**Example:**
~~~~~
GetShape2 D 0:2 b
~~~~~
@subsection occt_draw_5_6 Geometric attributes commands
@subsubsection occt_draw_5_6_1 SetPoint
Syntax:
~~~~~
SetPoint dfname entry point
~~~~~
Finds or creates a Point attribute at *entry* label and sets *point* as generated in the associated *NamedShape* attribute.
**Example:**
~~~~~
point p 10 10 10
SetPoint D 0:2 p
~~~~~
@subsubsection occt_draw_5_6_2 GetPoint
Syntax:
~~~~~
GetPoint dfname entry [drawname]
~~~~~
Gets a vertex from *NamedShape* attribute at *entry* label and sets it to *drawname* variable, if it is defined.
**Example:**
~~~~~
GetPoint D 0:2 p
~~~~~
@subsubsection occt_draw_5_6_3 SetAxis
Syntax:
~~~~~
SetAxis dfname entry axis
~~~~~
Finds or creates an Axis attribute at *entry* label and sets *axis* as generated in the associated *NamedShape* attribute.
**Example:**
~~~~~
line l 10 20 30 100 200 300
SetAxis D 0:2 l
~~~~~
@subsubsection occt_draw_5_6_4 GetAxis
Syntax:
~~~~~
GetAxis dfname entry [drawname]
~~~~~
Gets a line from *NamedShape* attribute at *entry* label and sets it to *drawname* variable, if it is defined.
**Example:**
~~~~~
GetAxis D 0:2 l
~~~~~
@subsubsection occt_draw_5_6_5 SetPlane
Syntax:
~~~~~
SetPlane dfname entry plane
~~~~~
Finds or creates a Plane attribute at *entry* label and sets *plane* as generated in the associated *NamedShape* attribute.
**Example:**
~~~~~
plane pl 10 20 30 -1 0 0
SetPlane D 0:2 pl
~~~~~
@subsubsection occt_draw_5_6_6 GetPlane
Syntax:
~~~~~
GetPlane dfname entry [drawname]
~~~~~
Gets a plane from *NamedShape* attribute at *entry* label and sets it to *drawname* variable, if it is defined.
**Example:**
~~~~~
GetPlane D 0:2 pl
~~~~~
@subsubsection occt_draw_5_6_7 SetGeometry
Syntax:
~~~~~
SetGeometry dfname entry [type] [shape]
~~~~~
Creates a Geometry attribute at *entry* label and sets *type* and *shape* as generated in the associated *NamedShape* attribute if they are defined. *type* must be one of the following: *any, pnt, lin, cir, ell, spl, pln, cyl*.
**Example:**
~~~~~
point p 10 10 10
SetGeometry D 0:2 pnt p
~~~~~
@subsubsection occt_draw_5_6_8 GetGeometryType
Syntax:
~~~~~
GetGeometryType dfname entry
~~~~~
Gets a geometry type from Geometry attribute at *entry* label.
**Example:**
~~~~~
GetGeometryType D 0:2
~~~~~
@subsubsection occt_draw_5_6_9 SetConstraint
Syntax:
~~~~~
SetConstraint dfname entry keyword geometrie [geometrie …]
SetConstraint dfname entry "plane" geometrie
SetConstraint dfname entry "value" value
~~~~~
1. Creates a Constraint attribute at *entry* label and sets *keyword* constraint between geometry(ies).
*keyword* must be one of the following:
*rad, dia, minr, majr, tan, par, perp, concentric, equal, dist, angle, eqrad, symm, midp, eqdist, fix, rigid,* or *from, axis, mate, alignf, aligna, axesa, facesa, round, offset*
2. Sets plane for the existing constraint.
3. Sets value for the existing constraint.
**Example:**
~~~~~
SetConstraint D 0:2 "value" 5
~~~~~
@subsubsection occt_draw_5_6_10 GetConstraint
Syntax:
~~~~~
GetConstraint dfname entry
~~~~~
Dumps a Constraint attribute at *entry* label
**Example:**
~~~~~
GetConstraint D 0:2
~~~~~
@subsubsection occt_draw_5_6_11 SetVariable
Syntax:
~~~~~
SetVariable dfname entry isconstant(0/1) units
~~~~~
Creates a Variable attribute at *entry* label and sets *isconstant* flag and *units* as a string.
**Example:**
~~~~~
SetVariable D 0:2 1 "mm"
~~~~~
@subsubsection occt_draw_5_6_12 GetVariable
Syntax:
~~~~~
GetVariable dfname entry isconstant units
~~~~~
Gets an *isconstant* flag and units of a Variable attribute at *entry* label.
**Example:**
~~~~~
GetVariable D 0:2 isconstant units
puts "IsConstant=${isconstant}"
puts "Units=${units}"
~~~~~
@subsection occt_draw_5_7 Tree attributes commands
@subsubsection occt_draw_5_7_1 RootNode
Syntax:
~~~~~
RootNode dfname treenodeentry [ID]
~~~~~
Returns the ultimate father of *TreeNode* attribute identified by its *treenodeentry* and its *ID* (or default ID, if *ID* is not defined).
@subsubsection occt_draw_5_7_2 SetNode
Syntax:
~~~~~
SetNode dfname treenodeentry [ID]
~~~~~
Creates a *TreeNode* attribute on the *treenodeentry* label with its tree *ID* (or assigns a default ID, if the *ID* is not defined).
@subsubsection occt_draw_5_7_3 AppendNode
Syntax:
~~~~~
AppendNode dfname fatherentry childentry [fatherID]
~~~~~
Inserts a *TreeNode* attribute with its tree *fatherID* (or default ID, if *fatherID* is not defined) on *childentry* as last child of *fatherentry*.
@subsubsection occt_draw_5_7_4 PrependNode
Syntax:
~~~~~
PrependNode dfname fatherentry childentry [fatherID]
~~~~~
Inserts a *TreeNode* attribute with its tree *fatherID* (or default ID, if *fatherID* is not defined) on *childentry* as first child of *fatherentry*.
@subsubsection occt_draw_5_7_5 InsertNodeBefore
Syntax:
~~~~~
InsertNodeBefore dfname treenodeentry beforetreenode [ID]
~~~~~
Inserts a *TreeNode* attribute with tree *ID* (or default ID, if *ID* is not defined) *beforetreenode* before *treenodeentry*.
@subsubsection occt_draw_5_7_6 InsertNodeAfter
Syntax:
~~~~~
InsertNodeAfter dfname treenodeentry aftertreenode [ID]
~~~~~
Inserts a *TreeNode* attribute with tree *ID* (or default ID, if *ID* is not defined) *aftertreenode* after *treenodeentry*.
@subsubsection occt_draw_5_7_7 DetachNode
Syntax:
~~~~~
DetachNode dfname treenodeentry [ID]
~~~~~
Removes a *TreeNode* attribute with tree *ID* (or default ID, if *ID* is not defined) from *treenodeentry*.
@subsubsection occt_draw_5_7_8 ChildNodeIterate
Syntax:
~~~~~
ChildNodeIterate dfname treenodeentry alllevels(0/1) [ID]
~~~~~
Iterates on the tree of *TreeNode* attributes with tree *ID* (or default ID, if *ID* is not defined). If *alllevels* is set to *1* it explores not only the first, but all the sub Step levels.
**Example:**
~~~~~
Label D 0:2
Label D 0:3
Label D 0:4
Label D 0:5
Label D 0:6
Label D 0:7
Label D 0:8
Label D 0:9
# Set root node
SetNode D 0:2
AppendNode D 0:2 0:4
AppendNode D 0:2 0:5
PrependNode D 0:4 0:3
PrependNode D 0:4 0:8
PrependNode D 0:4 0:9
InsertNodeBefore D 0:5 0:6
InsertNodeAfter D 0:4 0:7
DetachNode D 0:8
# List all levels
ChildNodeIterate D 0:2 1
==0:4
==0:9
==0:3
==0:7
==0:6
==0:5
# List only first levels
ChildNodeIterate D 0:2 1
==0:4
==0:7
==0:6
==0:5
~~~~~
@subsubsection occt_draw_5_7_9 InitChildNodeIterator
Syntax:
~~~~~
InitChildNodeIterator dfname treenodeentry alllevels(0/1) [ID]
~~~~~
Initializes the iteration on the tree of *TreeNode* attributes with tree *ID* (or default ID, if *ID* is not defined). If *alllevels* is set to *1* it explores not only the first, but also all sub Step levels.
**Example:**
~~~~~
InitChildNodeIterate D 0:5 1
set aChildNumber 0
for {set i 1} {$i < 100} {incr i} {
if {[ChildNodeMore] == *TRUE*} {
puts *Tree node = [ChildNodeValue]*
incr aChildNumber
ChildNodeNext
}
}
puts "aChildNumber=$aChildNumber"
~~~~~
@subsubsection occt_draw_5_7_10 ChildNodeMore
Syntax:
~~~~~
ChildNodeMore
~~~~~
Returns TRUE if there is a current item in the iteration.
@subsubsection occt_draw_5_7_11 ChildNodeNext
Syntax:
~~~~~
ChildNodeNext
~~~~~
Moves to the next Item.
@subsubsection occt_draw_5_7_12 ChildNodeValue
Syntax:
~~~~~
ChildNodeValue
~~~~~
Returns the current treenode of *ChildNodeIterator*.
@subsubsection occt_draw_5_7_13 ChildNodeNextBrother
Syntax:
~~~~~
ChildNodeNextBrother
~~~~~
Moves to the next *Brother*. If there is none, goes up. This method is interesting only with *allLevels* behavior.
@subsection occt_draw_5_8 Standard presentation commands
@subsubsection occt_draw_5_8_1 AISInitViewer
Syntax:
~~~~~
AISInitViewer docname
~~~~~
Creates and sets *AISViewer* attribute at root label, creates AIS viewer window.
**Example:**
~~~~~
AISInitViewer D
~~~~~
@subsubsection occt_draw_5_8_2 AISRepaint
Syntax:
~~~~~
AISRepaint docname
~~~~~
Updates the AIS viewer window.
**Example:**
~~~~~
AISRepaint D
~~~~~
@subsubsection occt_draw_5_8_3 AISDisplay
Syntax:
~~~~~
AISDisplay docname entry [not_update]
~~~~~
Displays a presantation of *AISobject* from *entry* label in AIS viewer. If *not_update* is not defined then *AISobject* is recomputed and all visualization settings are applied.
**Example:**
~~~~~
AISDisplay D 0:5
~~~~~
@subsubsection occt_draw_5_8_4 AISUpdate
Syntax:
~~~~~
AISUpdate docname entry
~~~~~
Recomputes a presentation of *AISobject* from *entry* label and applies the visualization setting in AIS viewer.
**Example:**
~~~~~
AISUpdate D 0:5
~~~~~
@subsubsection occt_draw_5_8_5 AISErase
Syntax:
~~~~~
AISErase docname entry
~~~~~
Erases *AISobject* of *entry* label in AIS viewer.
**Example:**
~~~~~
AISErase D 0:5
~~~~~
@subsubsection occt_draw_5_8_6 AISRemove
Syntax:
~~~~~
AISRemove docname entry
~~~~~
Erases *AISobject* of *entry* label in AIS viewer, then *AISobject* is removed from *AIS_InteractiveContext*.
**Example:**
~~~~~
AISRemove D 0:5
~~~~~
@subsubsection occt_draw_5_8_7 AISSet
Syntax:
~~~~~
AISSet docname entry ID
~~~~~
Creates *AISPresentation* attribute at *entry* label and sets as driver ID. ID must be one of the following: *A* (*axis*), *C* (*constraint*), *NS* (*namedshape*), *G* (*geometry*), *PL* (*plane*), *PT* (*point*).
**Example:**
~~~~~
AISSet D 0:5 NS
~~~~~
@subsubsection occt_draw_5_8_8 AISDriver
Syntax:
~~~~~
AISDriver docname entry [ID]
~~~~~
Returns DriverGUID stored in *AISPresentation* attribute of an *entry* label or sets a new one. ID must be one of the following: *A* (*axis*), *C* (*constraint*), *NS* (*namedshape*), *G* (*geometry*), *PL* (*plane*), *PT* (*point*).
**Example:**
~~~~~
# Get Driver GUID
AISDriver D 0:5
~~~~~
@subsubsection occt_draw_5_8_9 AISUnset
Syntax:
~~~~~
AISUnset docname entry
~~~~~
Deletes *AISPresentation* attribute (if it exists) of an *entry* label.
**Example:**
~~~~~
AISUnset D 0:5
~~~~~
@subsubsection occt_draw_5_8_10 AISTransparency
Syntax:
~~~~~
AISTransparency docname entry [transparency]
~~~~~
Sets (if *transparency* is defined) or gets the value of transparency for *AISPresentation* attribute of an *entry* label.
**Example:**
~~~~~
AISTransparency D 0:5 0.5
~~~~~
@subsubsection occt_draw_5_8_11 AISHasOwnTransparency
Syntax:
~~~~~
AISHasOwnTransparency docname entry
~~~~~
Tests *AISPresentation* attribute of an *entry* label by own transparency.
**Example:**
~~~~~
AISHasOwnTransparency D 0:5
~~~~~
@subsubsection occt_draw_5_8_12 AISMaterial
Syntax:
~~~~~
AISMaterial docname entry [material]
~~~~~
Sets (if *material* is defined) or gets the value of transparency for *AISPresentation* attribute of an *entry* label. *material* is integer from 0 to 20 (see @ref occt_draw_4_5_6 "meshmat" command).
**Example:**
~~~~~
AISMaterial D 0:5 5
~~~~~
@subsubsection occt_draw_5_8_13 AISHasOwnMaterial
Syntax:
~~~~~
AISHasOwnMaterial docname entry
~~~~~
Tests *AISPresentation* attribute of an *entry* label by own material.
**Example:**
~~~~~
AISHasOwnMaterial D 0:5
~~~~~
@subsubsection occt_draw_5_8_14 AISColor
Syntax:
~~~~~
AISColor docname entry [color]
~~~~~
Sets (if *color* is defined) or gets value of color for *AISPresentation* attribute of an *entry* label. *color* is integer from 0 to 516 (see color names in *vsetcolor*).
**Example:**
~~~~~
AISColor D 0:5 25
~~~~~
@subsubsection occt_draw_5_8_15 AISHasOwnColor
Syntax:
~~~~~
AISHasOwnColor docname entry
~~~~~
Tests *AISPresentation* attribute of an *entry* label by own color.
**Example:**
~~~~~
AISHasOwnColor D 0:5
~~~~~
@section occt_draw_6 Geometry commands
@subsection occt_draw_6_1 Overview
Draw provides a set of commands to test geometry libraries. These commands are found in the TGEOMETRY executable, or in any Draw executable which includes *GeometryTest* commands.
In the context of Geometry, Draw includes the following types of variable:
* 2d and 3d points
* The 2d curve, which corresponds to *Curve* in *Geom2d*.
* The 3d curve and surface, which correspond to *Curve* and *Surface* in <a href="user_guides__modeling_data.html#occt_modat_1">Geom package</a>.
Draw geometric variables never share data; the *copy* command will always make a complete copy of the content of the variable.
The following topics are covered in the nine sections of this chapter:
* **Curve creation** deals with the various types of curves and how to create them.
* **Surface creation** deals with the different types of surfaces and how to create them.
* **Curve and surface modification** deals with the commands used to modify the definition of curves and surfaces, most of which concern modifications to bezier and bspline curves.
* **Geometric transformations** covers translation, rotation, mirror image and point scaling transformations.
* **Curve and Surface Analysis** deals with the commands used to compute points, derivatives and curvatures.
* **Intersections** presents intersections of surfaces and curves.
* **Approximations** deals with creating curves and surfaces from a set of points.
* **Constraints** concerns construction of 2d circles and lines by constraints such as tangency.
* **Display** describes commands to control the display of curves and surfaces.
Where possible, the commands have been made broad in application, i.e. they apply to 2d curves, 3d curves and surfaces. For instance, the *circle* command may create a 2d or a 3d circle depending on the number of arguments given.
Likewise, the *translate* command will process points, curves or surfaces, depending on argument type. You may not always find the specific command you are looking for in the section where you expect it to be. In that case, look in another section. The *trim* command, for example, is described in the surface section. It can, nonetheless, be used with curves as well.
@subsection occt_draw_6_2 Curve creation
This section deals with both points and curves. Types of curves are:
* Analytical curves such as lines, circles, ellipses, parabolas, and hyperbolas.
* Polar curves such as bezier curves and bspline curves.
* Trimmed curves and offset curves made from other curves with the *trim* and *offset* commands. Because they are used on both curves and surfaces, the *trim* and *offset* commands are described in the *surface creation* section.
* NURBS can be created from other curves using *convert* in the *Surface Creation* section.
* Curves can be created from the isoparametric lines of surfaces by the *uiso* and *viso* commands.
* 3d curves can be created from 2d curves and vice versa using the *to3d* and *to2d* commands. The *project* command computes a 2d curve on a 3d surface.
Curves are displayed with an arrow showing the last parameter.
@subsubsection occt_draw_6_2_1 point
Syntax:
~~~~~
point name x y [z]
~~~~~
Creates a 2d or 3d point, depending on the number of arguments.
**Example:**
~~~~~
# 2d point
point p1 1 2
# 3d point
point p2 10 20 -5
~~~~~
@subsubsection occt_draw_6_2_2 line
Syntax:
~~~~~
line name x y [z] dx dy [dz]
~~~~~
Creates a 2d or 3d line. *x y z* are the coordinates of the line’s point of origin; *dx, dy, dz* give the direction vector.
A 2d line will be represented as *x y dx dy*, and a 3d line as *x y z dx dy dz* . A line is parameterized along its length starting from the point of origin along the direction vector. The direction vector is normalized and must not be null. Lines are infinite, even though their representation is not.
**Example:**
~~~~~
# a 2d line at 45 degrees of the X axis
line l 2 0 1 1
# a 3d line through the point 10 0 0 and parallel to Z
line l 10 0 0 0 0 1
~~~~~
@subsubsection occt_draw_6_2_3 circle
Syntax:
~~~~~
circle name x y [z [dx dy dz]] [ux uy [uz]] radius
~~~~~
Creates a 2d or a 3d circle.
In 2d, *x, y* are the coordinates of the center and *ux, uy* define the vector towards the point of origin of the parameters. By default, this direction is (1,0). The X Axis of the local coordinate system defines the origin of the parameters of the circle. Use another vector than the x axis to change the origin of parameters.
In 3d, *x, y, z* are the coordinates of the center; *dx, dy, dz* give the vector normal to the plane of the circle. By default, this vector is (0,0,1) i.e. the Z axis (it must not be null). *ux, uy, uz* is the direction of the origin; if not given, a default direction will be computed. This vector must neither be null nor parallel to *dx, dy, dz*.
The circle is parameterized by the angle in [0,2*pi] starting from the origin and. Note that the specification of origin direction and plane is the same for all analytical curves and surfaces.
**Example:**
~~~~~
# A 2d circle of radius 5 centered at 10,-2
circle c1 10 -2 5
# another 2d circle with a user defined origin
# the point of parameter 0 on this circle will be
# 1+sqrt(2),1+sqrt(2)
circle c2 1 1 1 1 2
# a 3d circle, center 10 20 -5, axis Z, radius 17
circle c3 10 20 -5 17
# same 3d circle with axis Y
circle c4 10 20 -5 0 1 0 17
# full 3d circle, axis X, origin on Z
circle c5 10 20 -5 1 0 0 0 0 1 17
~~~~~
@subsubsection occt_draw_6_2_4 ellipse
Syntax:
~~~~~
ellipse name x y [z [dx dy dz]] [ux uy [uz]] firstradius secondradius
~~~~~
Creates a 2d or 3d ellipse. In a 2d ellipse, the first two arguments define the center; in a 3d ellipse, the first three. The axis system is given by *firstradius*, the major radius, and *secondradius*, the minor radius. The parameter range of the ellipse is [0,2.*pi] starting from the X axis and going towards the Y axis. The Draw ellipse is parameterized by an angle:
~~~~~
P(u) = O + firstradius*cos(u)*Xdir + secondradius*sin(u)*Ydir
~~~~~
where:
* P is the point of parameter *u*,
* *O, Xdir* and *Ydir* are respectively the origin, *X Direction* and *Y Direction* of its local coordinate system.
**Example:**
~~~~~
# default 2d ellipse
ellipse e1 10 5 20 10
# 2d ellipse at angle 60 degree
ellipse e2 0 0 1 2 30 5
# 3d ellipse, in the XY plane
ellipse e3 0 0 0 25 5
# 3d ellipse in the X,Z plane with axis 1, 0 ,1
ellipse e4 0 0 0 0 1 0 1 0 1 25 5
~~~~~
@subsubsection occt_draw_6_2_5 hyperbola
Syntax:
~~~~~
hyperbola name x y [z [dx dy dz]] [ux uy [uz]] firstradius secondradius
~~~~~
Creates a 2d or 3d conic. The first arguments define the center. The axis system is given by *firstradius*, the major radius, and *secondradius*, the minor radius. Note that the hyperbola has only one branch, that in the X direction.
The Draw hyperbola is parameterized as follows:
~~~~~
P(U) = O + firstradius*Cosh(U)*XDir + secondradius*Sinh(U)*YDir
~~~~~
where:
* *P* is the point of parameter *U*,
* *O, XDir* and *YDir* are respectively the origin, *X Direction* and *YDirection* of its local coordinate system.
**Example:**
~~~~~
# default 2d hyperbola, with asymptotes 1,1 -1,1
hyperbola h1 0 0 30 30
# 2d hyperbola at angle 60 degrees
hyperbola h2 0 0 1 2 20 20
# 3d hyperbola, in the XY plane
hyperbola h3 0 0 0 50 50
~~~~~
@subsubsection occt_draw_6_2_6 parabola
Syntax:
~~~~~
parabola name x y [z [dx dy dz]] [ux uy [uz]] FocalLength
~~~~~
Creates a 2d or 3d parabola. in the axis system defined by the first arguments. The origin is the apex of the parabola.
The *Geom_Parabola* is parameterized as follows:
~~~~~
P(u) = O + u*u/(4.*F)*XDir + u*YDir
~~~~~
where:
* *P* is the point of parameter *u*,
* *O, XDir* and *YDir* are respectively the origin, *X Direction* and *Y Direction* of its local coordinate system,
* *F* is the focal length of the parabola.
**Example:**
~~~~~
# 2d parabola
parabola p1 0 0 50
# 2d parabola with convexity +Y
parabola p2 0 0 0 1 50
# 3d parabola in the Y-Z plane, convexity +Z
parabola p3 0 0 0 1 0 0 0 0 1 50
~~~~~
@subsubsection occt_draw_6_2_7 beziercurve, 2dbeziercurve
Syntax:
~~~~~
beziercurve name nbpole pole, [weight]
2dbeziercurve name nbpole pole, [weight]
~~~~~
Creates a 3d rational or non-rational Bezier curve. Give the number of poles (control points,) and the coordinates of the poles *(x1 y1 z1 [w1] x2 y2 z2 [w2])*. The degree will be *nbpoles-1*. To create a rational curve, give weights with the poles. You must give weights for all poles or for none. If the weights of all the poles are equal, the curve is polynomial, and therefore non-rational.
**Example:**
~~~~~
# a rational 2d bezier curve (arc of circle)
2dbeziercurve ci 3 0 0 1 10 0 sqrt(2.)/2. 10 10 1
# a 3d bezier curve, not rational
beziercurve cc 4 0 0 0 10 0 0 10 0 10 10 10 10
~~~~~
@subsubsection occt_draw_6_2_8 bsplinecurve, 2dbsplinecurve, pbsplinecurve, 2dpbsplinecurve
Syntax:
~~~~~
bsplinecurve name degree nbknots knot, umult pole, weight
2dbsplinecurve name degree nbknots knot, umult pole, weight
pbsplinecurve name degree nbknots knot, umult pole, weight (periodic)
2dpbsplinecurve name degree nbknots knot, umult pole, weight (periodic)
~~~~~
Creates 2d or 3d bspline curves; the **pbsplinecurve** and **2dpbsplinecurve** commands create periodic bspline curves.
A bspline curve is defined by its degree, its periodic or non-periodic nature, a table of knots and a table of poles (i.e. control points). Consequently, specify the degree, the number of knots, and for each knot, the multiplicity, for each pole, the weight. In the syntax above, the commas link the adjacent arguments which they fall between: knot and multiplicities, pole and weight.
The table of knots is an increasing sequence of reals without repetition.
Multiplicities must be lower or equal to the degree of the curve. For non-periodic curves, the first and last multiplicities can be equal to degree+1. For a periodic curve, the first and last multiplicities must be equal.
The poles must be given with their weights, use weights of 1 for a non rational curve, the number of poles must be:
* For a non periodic curve: Sum of multiplicities - degree + 1
* For a periodic curve: Sum of multiplicities - last multiplicity
**Example:**
~~~~~
# a bspline curve with 4 poles and 3 knots
bsplinecurve bc 2 3 0 3 1 1 2 3 \
10 0 7 1 7 0 7 1 3 0 8 1 0 0 7 1
# a 2d periodic circle (parameter from 0 to 2*pi !!)
dset h sqrt(3)/2
2dpbsplinecurve c 2 \
4 0 2 pi/1.5 2 pi/0.75 2 2*pi 2 \
0 -h/3 1 \
0.5 -h/3 0.5 \
0.25 h/6 1 \
0 2*h/3 0.5 \
-0.25 h/6 1 \
-0.5 -h/3 0.5 \
0 -h/3 1
~~~~~
**Note** that you can create the **NURBS** subset of bspline curves and surfaces by trimming analytical curves and surfaces and executing the command *convert*.
@subsubsection occt_draw_6_2_9 uiso, viso
Syntax:
~~~~~
uiso name surface u
viso name surface u
~~~~~
Creates a U or V isoparametric curve from a surface.
**Example:**
~~~~~
# create a cylinder and extract iso curves
cylinder c 10
uiso c1 c pi/6
viso c2 c
~~~~~
**Note** that this cannot be done from offset surfaces.
@subsubsection occt_draw_6_2_10 to3d, to2d
Syntax:
~~~~~
to3d name curve2d [plane]
to2d name curve3d [plane]
~~~~~
Create respectively a 3d curve from a 2d curve and a 2d curve from a 3d curve. The transformation uses a planar surface to define the XY plane in 3d (by default this plane is the default OXYplane). **to3d** always gives a correct result, but as **to2d** is not a projection, it may surprise you. It is always correct if the curve is planar and parallel to the plane of projection. The points defining the curve are projected on the plane. A circle, however, will remain a circle and will not be changed to an ellipse.
**Example:**
~~~~~
# the following commands
circle c 0 0 5
plane p -2 1 0 1 2 3
to3d c c p
# will create the same circle as
circle c -2 1 0 1 2 3 5
~~~~~
See also: **project**
@subsubsection occt_draw_6_2_11 project
Syntax:
~~~~~
project name curve3d surface
~~~~~
Computes a 2d curve in the parametric space of a surface corresponding to a 3d curve. This can only be used on analytical surfaces.
If we, for example, intersect a cylinder and a plane and project the resulting ellipse on the cylinder, this will create a 2d sinusoid-like bspline.
~~~~~
cylinder c 5
plane p 0 0 0 0 1 1
intersect i c p
project i2d i c
~~~~~
@subsection occt_draw_6_3 Surface creation
The following types of surfaces exist:
* Analytical surfaces: plane, cylinder, cone, sphere, torus;
* Polar surfaces: bezier surfaces, bspline surfaces;
* Trimmed and Offset surfaces;
* Surfaces produced by Revolution and Extrusion, created from curves with the *revsurf* and *extsurf*;
* NURBS surfaces.
Surfaces are displayed with isoparametric lines. To show the parameterization, a small parametric line with a length 1/10 of V is displayed at 1/10 of U.
@subsubsection occt_draw_6_3_1 plane
Syntax:
~~~~~
plane name [x y z [dx dy dz [ux uy uz]]]
~~~~~
Creates an infinite plane.
A plane is the same as a 3d coordinate system, *x,y,z* is the origin, *dx, dy, dz* is the Z direction and *ux, uy, uz* is the X direction.
The plane is perpendicular to Z and X is the U parameter. *dx,dy,dz* and *ux,uy,uz* must not be null or collinear. *ux,uy,uz* will be modified to be orthogonal to *dx,dy,dz*.
There are default values for the coordinate system. If no arguments are given, the global system (0,0,0), (0,0,1), (1,0,0). If only the origin is given, the axes are those given by default(0,0,1), (1,0,0). If the origin and the Z axis are given, the X axis is generated perpendicular to the Z axis.
Note that this definition will be used for all analytical surfaces.
**Example:**
~~~~~
# a plane through the point 10,0,0 perpendicular to X
# with U direction on Y
plane p1 10 0 0 1 0 0 0 1 0
# an horixontal plane with origin 10, -20, -5
plane p2 10 -20 -5
~~~~~
@subsubsection occt_draw_6_3_2 cylinder
Syntax:
~~~~~
cylinder name [x y z [dx dy dz [ux uy uz]]] radius
~~~~~
A cylinder is defined by a coordinate system, and a radius. The surface generated is an infinite cylinder with the Z axis as the axis. The U parameter is the angle starting from X going in the Y direction.
**Example:**
~~~~~
# a cylinder on the default Z axis, radius 10
cylinder c1 10
# a cylinder, also along the Z axis but with origin 5,
10, -3
cylinder c2 5 10 -3 10
# a cylinder through the origin and on a diagonal
# with longitude pi/3 and latitude pi/4 (euler angles)
dset lo pi/3. la pi/4.
cylinder c3 0 0 0 cos(la)*cos(lo) cos(la)*sin(lo)
sin(la) 10
~~~~~
@subsubsection occt_draw_6_3_3 cone
Syntax:
~~~~~
cone name [x y z [dx dy dz [ux uy uz]]] semi-angle radius
~~~~~
Creates a cone in the infinite coordinate system along the Z-axis. The radius is that of the circle at the intersection of the cone and the XY plane. The semi-angle is the angle formed by the cone relative to the axis; it should be between -90 and 90. If the radius is 0, the vertex is the origin.
**Example:**
~~~~~
# a cone at 45 degrees at the origin on Z
cone c1 45 0
# a cone on axis Z with radius r1 at z1 and r2 at z2
cone c2 0 0 z1 180.*atan2(r2-r1,z2-z1)/pi r1
~~~~~
@subsubsection occt_draw_6_3_4 sphere
Syntax:
~~~~~
sphere name [x y z [dx dy dz [ux uy uz]]] radius
~~~~~
Creates a sphere in the local coordinate system defined in the **plane** command. The sphere is centered at the origin.
To parameterize the sphere, *u* is the angle from X to Y, between 0 and 2*pi. *v* is the angle in the half-circle at angle *u* in the plane containing the Z axis. *v* is between -pi/2 and pi/2. The poles are the points Z = +/- radius; their parameters are u,+/-pi/2 for any u in 0,2*pi.
**Example:**
~~~~~
# a sphere at the origin
sphere s1 10
# a sphere at 10 10 10, with poles on the axis 1,1,1
sphere s2 10 10 10 1 1 1 10
~~~~~
@subsubsection occt_draw_6_3_5 torus
Syntax:
~~~~~
torus name [x y z [dx dy dz [ux uy uz]]] major minor
~~~~~
Creates a torus in the local coordinate system with the given major and minor radii. *Z* is the axis for the major radius. The major radius may be lower in value than the minor radius.
To parameterize a torus, *u* is the angle from X to Y; *v* is the angle in the plane at angle *u* from the XY plane to Z. *u* and *v* are in 0,2*pi.
**Example:**
~~~~~
# a torus at the origin
torus t1 20 5
# a torus in another coordinate system
torus t2 10 5 -2 2 1 0 20 5
~~~~~
@subsubsection occt_draw_6_3_6 beziersurf
Syntax:
~~~~~
beziersurf name nbupoles nbvolpes pole, [weight]
~~~~~
Use this command to create a bezier surface, rational or non-rational. First give the numbers of poles in the u and v directions.
Then give the poles in the following order: *pole(1, 1), pole(nbupoles, 1), pole(1, nbvpoles)* and *pole(nbupoles, nbvpoles)*.
Weights may be omitted, but if you give one weight you must give all of them.
**Example:**
~~~~~
# a non-rational degree 2,3 surface
beziersurf s 3 4 \
0 0 0 10 0 5 20 0 0 \
0 10 2 10 10 3 20 10 2 \
0 20 10 10 20 20 20 20 10 \
0 30 0 10 30 0 20 30 0
~~~~~
@subsubsection occt_draw_6_3_7 bsplinesurf, upbsplinesurf, vpbsplinesurf, uvpbsplinesurf
Syntax:
~~~~~
bsplinesurf name udegree nbuknots uknot umult ... nbvknot vknot
vmult ... x y z w ...
upbsplinesurf ...
vpbsplinesurf ...
uvpbsplinesurf ...
~~~~~
* **bsplinesurf** generates bspline surfaces;
* **upbsplinesurf** creates a bspline surface periodic in u;
* **vpbsplinesurf** creates one periodic in v;
* **uvpbsplinesurf** creates one periodic in uv.
The syntax is similar to the *bsplinecurve* command. First give the degree in u and the knots in u with their multiplicities, then do the same in v. The poles follow. The number of poles is the product of the number in u and the number in v.
See *bsplinecurve* to compute the number of poles, the poles are first given in U as in the *beziersurf* command. You must give weights if the surface is rational.
**Example:**
~~~~~
# create a bspline surface of degree 1 2
# with two knots in U and three in V
bsplinesurf s \
1 2 0 2 1 2 \
2 3 0 3 1 1 2 3 \
0 0 0 1 10 0 5 1 \
0 10 2 1 10 10 3 1 \
0 20 10 1 10 20 20 1 \
0 30 0 1 10 30 0 1
~~~~~
@subsubsection occt_draw_6_3_8 trim, trimu, trimv
Syntax:
~~~~~
trim newname name [u1 u2 [v1 v2]]
trimu newname name
trimv newname name
~~~~~
The **trim** commands create trimmed curves or trimmed surfaces. Note that trimmed curves and surfaces are classes of the *Geom* package.
* *trim* creates either a new trimmed curve from a curve or a new trimmed surface in u and v from a surface.
* *trimu* creates a u-trimmed surface,
* *trimv* creates a v-trimmed surface.
After an initial trim, a second execution with no parameters given recreates the basis curve. The curves can be either 2d or 3d. If the trimming parameters decrease and if the curve or surface is not periodic, the direction is reversed.
**Note** that a trimmed curve or surface contains a copy of the basis geometry: modifying that will not modify the trimmed geometry. Trimming trimmed geometry will not create multiple levels of trimming. The basis geometry will be used.
**Example:**
~~~~~
# create a 3d circle
circle c 0 0 0 10
# trim it, use the same variable, the original is
deleted
trim c c 0 pi/2
# the original can be recovered!
trim orc c
# trim again
trim c c pi/4 pi/2
# the original is not the trimmed curve but the basis
trim orc c
# as the circle is periodic, the two following commands
are identical
trim cc c pi/2 0
trim cc c pi/2 2*pi
# trim an infinite cylinder
cylinder cy 10
trimv cy cy 0 50
~~~~~
@subsubsection occt_draw_6_3_9 offset
Syntax:
~~~~~
offset name basename distance [dx dy dz]
~~~~~
Creates offset curves or surfaces at a given distance from a basis curve or surface. Offset curves and surfaces are classes from the *Geom *package.
The curve can be a 2d or a 3d curve. To compute the offsets for a 3d curve, you must also give a vector *dx,dy,dz*. For a planar curve, this vector is usually the normal to the plane containing the curve.
The offset curve or surface copies the basic geometry, which can be modified later.
**Example:**
~~~~~
# graphic demonstration that the outline of a torus
# is the offset of an ellipse
smallview +X+Y
dset angle pi/6
torus t 0 0 0 0 cos(angle) sin(angle) 50 20
fit
ellipse e 0 0 0 50 50*sin(angle)
# note that the distance can be negative
offset l1 e 20 0 0 1
~~~~~
@subsubsection occt_draw_6_3_10 revsurf
Syntax:
~~~~~
revsurf name curvename x y z dx dy dz
~~~~~
Creates a surface of revolution from a 3d curve.
A surface of revolution or revolved surface is obtained by rotating a curve (called the *meridian*) through a complete revolution about an axis (referred to as the *axis of revolution*). The curve and the axis must be in the same plane (the *reference plane* of the surface). Give the point of origin x,y,z and the vector dx,dy,dz to define the axis of revolution.
To parameterize a surface of revolution: u is the angle of rotation around the axis. Its origin is given by the position of the meridian on the surface. v is the parameter of the meridian.
**Example:**
~~~~~
# another way of creating a torus like surface
circle c 50 0 0 20
revsurf s c 0 0 0 0 1 0
~~~~~
@subsubsection occt_draw_6_3_11 extsurf
Syntax:
~~~~~
extsurf newname curvename dx dy dz
~~~~~
Creates a surface of linear extrusion from a 3d curve. The basis curve is swept in a given direction,the *direction of extrusion* defined by a vector.
In the syntax, *dx,dy,dz* gives the direction of extrusion.
To parameterize a surface of extrusion: *u* is the parameter along the extruded curve; the *v* parameter is along the direction of extrusion.
**Example:**
~~~~~
# an elliptic cylinder
ellipse e 0 0 0 10 5
extsurf s e 0 0 1
# to make it finite
trimv s s 0 10
~~~~~
@subsubsection occt_draw_6_3_12 convert
Syntax:
~~~~~
convert newname name
~~~~~
Creates a 2d or 3d NURBS curve or a NURBS surface from any 2d curve, 3d curve or surface. In other words, conics, beziers and bsplines are turned into NURBS. Offsets are not processed.
**Example:**
~~~~~
# turn a 2d arc of a circle into a 2d NURBS
circle c 0 0 5
trim c c 0 pi/3
convert c1 c
# an easy way to make a planar bspline surface
plane p
trim p p -1 1 -1 1
convert p1 p
~~~~~
**Note** that offset curves and surfaces are not processed by this command.
@subsection occt_draw_6_4 Curve and surface modifications
Draw provides commands to modify curves and surfaces, some of them are general, others restricted to bezier curves or bsplines.
General modifications:
* Reversing the parametrization: **reverse**, **ureverse**, **vreverse**
Modifications for both bezier curves and bsplines:
* Exchanging U and V on a surface: **exchuv**
* Segmentation: **segment**, **segsur**
* Increasing the degree: **incdeg**, **incudeg**, **incvdeg**
* Moving poles: **cmovep**, **movep**, **movecolp**, **moverowp**
Modifications for bezier curves:
* Adding and removing poles: **insertpole**, **rempole**, **remcolpole**, **remrowpole**
Modifications for bspline:
* Inserting and removing knots: **insertknot**, **remknot**, **insertuknot**, **remuknot**, **insetvknot**, **remvknot**
* Modifying periodic curves and surfaces: **setperiodic**, **setnotperiodic**, **setorigin**, **setuperiodic**, **setunotperiodic**, **setuorigin**, **setvperiodic**, **setvnotperiodic**, **setvorigin**
@subsubsection occt_draw_6_4_1 reverse, ureverse, vreverse
Syntax:
~~~~~
reverse curvename
ureverse surfacename
vreverse surfacename
~~~~~
The **reverse** command reverses the parameterization and inverses the orientation of a 2d or 3d curve. Note that the geometry is modified. To keep the curve or the surface, you must copy it before modification.
**ureverse** or **vreverse** reverse the u or v parameter of a surface. Note that the new parameters of the curve may change according to the type of curve. For instance, they will change sign on a line or stay 0,1 on a bezier.
Reversing a parameter on an analytical surface may create an indirect coordinate system.
**Example:**
~~~~~
# reverse a trimmed 2d circle
circle c 0 0 5
trim c c pi/4 pi/2
reverse c
# dumping c will show that it is now trimmed between
# 3*pi/2 and 7*pi/4 i.e. 2*pi-pi/2 and 2*pi-pi/4
~~~~~
@subsubsection occt_draw_6_4_2 exchuv
Syntax:
~~~~~
exchuv surfacename
~~~~~
For a bezier or bspline surface this command exchanges the u and v parameters.
**Example:**
~~~~~
# exchanging u and v on a spline (made from a cylinder)
cylinder c 5
trimv c c 0 10
convert c1 c
exchuv c1
~~~~~
@subsubsection occt_draw_6_4_3 segment, segsur
Syntax:
~~~~~
segment curve Ufirst Ulast
segsur surface Ufirst Ulast Vfirst Vlast
~~~~~
**segment** and **segsur** segment a bezier curve and a bspline curve or surface respectively.
These commands modify the curve to restrict it between the new parameters: *Ufirst*, the starting point of the modified curve, and *Ulast*, the end point. *Ufirst* is less than *Ulast*.
This command must not be confused with **trim** which creates a new geometry.
**Example:**
~~~~~
# segment a bezier curve in half
beziercurve c 3 0 0 0 10 0 0 10 10 0
segment c ufirst ulast
~~~~~
@subsubsection occt_draw_6_4_4 iincudeg, incvdeg
Syntax:
~~~~~
incudeg surfacename newdegree
incvdeg surfacename newdegree
~~~~~
**incudeg** and **incvdeg** increase the degree in the U or V parameter of a bezier or bspline surface.
**Example:**
~~~~~
# make a planar bspline and increase the degree to 2 3
plane p
trim p p -1 1 -1 1
convert p1 p
incudeg p1 2
incvdeg p1 3
~~~~~
**Note** that the geometry is modified.
@subsubsection occt_draw_6_4_5 cmovep, movep, movecolp, moverowp
Syntax:
~~~~~
cmovep curve index dx dy [dz]
movep surface uindex vindex dx dy dz
movecolp surface uindex dx dy dz
moverowp surface vindex dx dy dz
~~~~~
**move** methods translate poles of a bezier curve, a bspline curve or a bspline surface.
* **cmovep** and **movep** translate one pole with a given index.
* **movecolp** and **moverowp** translate a whole column (expressed by the *uindex*) or row (expressed by the *vindex*) of poles.
**Example:**
~~~~~
# start with a plane
# transform to bspline, raise degree and add relief
plane p
trim p p -10 10 -10 10
convert p1 p
incud p1 2
incvd p1 2
movecolp p1 2 0 0 5
moverowp p1 2 0 0 5
movep p1 2 2 0 0 5
~~~~~
@subsubsection occt_draw_6_4_6 insertpole, rempole, remcolpole, remrowpole
Syntax:
~~~~~
insertpole curvename index x y [z] [weight]
rempole curvename index
remcolpole surfacename index
remrowpole surfacename index
~~~~~
**insertpole** inserts a new pole into a 2d or 3d bezier curve. You may add a weight for the pole. The default value for the weight is 1. The pole is added at the position after that of the index pole. Use an index 0 to insert the new pole before the first one already existing in your drawing.
**rempole** removes a pole from a 2d or 3d bezier curve. Leave at least two poles in the curves.
**remcolpole** and **remrowpole** remove a column or a row of poles from a bezier surface. A column is in the v direction and a row in the u direction The resulting degree must be at least 1; i.e there will be two rows and two columns left.
**Example:**
~~~~~
# start with a segment, insert a pole at end
# then remove the central pole
beziercurve c 2 0 0 0 10 0 0
insertpole c 2 10 10 0
rempole c 2
~~~~~
@subsubsection occt_draw_6_4_7 insertknot, insertuknot, insertvknot
Syntax:
~~~~~
insertknot name knot [mult = 1] [knot mult ...]
insertuknot surfacename knot mult
insertvknot surfacename knot mult
~~~~~
**insertknot** inserts knots in the knot sequence of a bspline curve. You must give a knot value and a target multiplicity. The default multiplicity is 1. If there is already a knot with the given value and a multiplicity lower than the target one, its multiplicity will be raised.
**insertuknot** and **insertvknot** insert knots in a surface.
**Example:**
~~~~~
# create a cylindrical surface and insert a knot
cylinder c 10
trim c c 0 pi/2 0 10
convert c1 c
insertuknot c1 pi/4 1
~~~~~
@subsubsection occt_draw_6_4_8 remknot, remuknot, remvknot
Syntax:
~~~~~
remknot index [mult] [tol]
remuknot index [mult] [tol]
remvknot index [mult] [tol]
~~~~~
**remknot** removes a knot from the knot sequence of a curve or a surface. Give the index of the knot and optionally, the target multiplicity. If the target multiplicity is not 0, the multiplicity of the knot will be lowered. As the curve may be modified, you are allowed to set a tolerance to control the process. If the tolerance is low, the knot will only be removed if the curve will not be modified.
By default, if no tolerance is given, the knot will always be removed.
**Example:**
~~~~~
# bspline circle, remove a knot
circle c 0 0 5
convert c1 c
incd c1 5
remknot c1 2
~~~~~
**Note** that Curves or Surfaces may be modified.
@subsubsection occt_draw_6_4_9 setperiodic, setnotperiodic, setuperiodic, setunotperiodic, setvperiodic, setvnotperiodic
Syntax:
~~~~~
setperiodic curve
setnotperiodic curve
setuperiodic surface
setunotperiodic surface
setvperiodic surface
setvnotperiodic surface
~~~~~
**setperiodic** turns a bspline curve into a periodic bspline curve; the knot vector stays the same and excess poles are truncated. The curve may be modified if it has not been closed. **setnotperiodic** removes the periodicity of a periodic curve. The pole table mau be modified. Note that knots are added at the beginning and the end of the knot vector and the multiplicities are knots set to degree+1 at the start and the end.
**setuperiodic** and **setvperiodic** make the u or the v parameter of bspline surfaces periodic; **setunotperiodic**, and **setvnotperiodic** remove periodicity from the u or the v parameter of bspline surfaces.
**Example:**
~~~~~
# a circle deperiodicized
circle c 0 0 5
convert c1 c
setnotperiodic c1
~~~~~
@subsubsection occt_draw_6_4_10 setorigin, setuorigin, setvorigin
Syntax:
~~~~~
setorigin curvename index
setuorigin surfacename index
setuorigin surfacename index
~~~~~
These commands change the origin of the parameters on periodic curves or surfaces. The new origin must be an existing knot. To set an origin other than an existing knot, you must first insert one with the *insertknot* command.
**Example:**
~~~~~
# a torus with new U and V origins
torus t 20 5
convert t1 t
setuorigin t1 2
setvorigin t1 2
~~~~~
@subsection occt_draw_6_5 Transformations
Draw provides commands to apply linear transformations to geometric objects: they include translation, rotation, mirroring and scaling.
@subsubsection occt_draw_6_5_1 translate, dtranslate
Syntax:
~~~~~
translate name [names ...] dx dy dz
2dtranslate name [names ...] dx dy
~~~~~
The **Translate** command translates 3d points, curves and surfaces along a vector *dx,dy,dz*. You can translate more than one object with the same command.
For 2d points or curves, use the **2dtranslate** command.
**Example:**
~~~~~
# 3d tranlation
point p 10 20 30
circle c 10 20 30 5
torus t 10 20 30 5 2
translate p c t 0 0 15
~~~~~
*NOTE*
*Objects are modified by this command.*
@subsubsection occt_draw_6_5_2 rotate, 2drotate
Syntax:
~~~~~
rotate name [name ...] x y z dx dy dz angle
2drotate name [name ...] x y angle
~~~~~
The **rotate** command rotates a 3d point curve or surface. You must give an axis of rotation with a point *x,y,z*, a vector *dx,dy,dz* and an angle in degrees.
For a 2d rotation, you need only give the center point and the angle. In 2d or 3d, the angle can be negative.
**Example:**
~~~~~
# make a helix of circles. create a script file with
this code and execute it using **source**.
circle c0 10 0 0 3
for {set i 1} {$i <= 10} {incr i} {
copy c[expr $i-1] c$i
translate c$i 0 0 3
rotate c$i 0 0 0 0 0 1 36
}
~~~~~
@subsubsection occt_draw_6_5_3 pmirror, lmirror, smirror, dpmirror, dlmirror
Syntax:
~~~~~
pmirror name [names ...] x y z
lmirror name [names ...] x y z dx dy dz
smirror name [names ...] x y z dx dy dz
2dpmirror name [names ...] x y
2dlmirror name [names ...] x y dx dy
~~~~~
The mirror commands perform a mirror transformation of 2d or 3d geometry.
* **pmirror** is the point mirror, mirroring 3d curves and surfaces about a point of symmetry.
* **lmirror** is the line mirror commamd, mirroring 3d curves and surfaces about an axis of symmetry.
* **smirror** is the surface mirror, mirroring 3d curves and surfaces about a plane of symmetry. In the last case, the plane of symmetry is perpendicular to dx,dy,dz.
* **2dpmirror** is the point mirror in 2D.
* **2dlmirror** is the axis symmetry mirror in 2D.
**Example:**
~~~~~
# build 3 images of a torus
torus t 10 10 10 1 2 3 5 1
copy t t1
pmirror t1 0 0 0
copy t t2
lmirror t2 0 0 0 1 0 0
copy t t3
smirror t3 0 0 0 1 0 0
~~~~~
@subsubsection occt_draw_6_5_4 pscale, dpscale
Syntax:
~~~~~
pscale name [name ...] x y z s
2dpscale name [name ...] x y s
~~~~~
The **pscale** and **2dpscale** commands transform an object by point scaling. You must give the center and the scaling factor. Because other scalings modify the type of the object, they are not provided. For example, a sphere may be transformed into an ellipsoid. Using a scaling factor of -1 is similar to using **pmirror**.
**Example:**
~~~~~
# double the size of a sphere
sphere s 0 0 0 10
pscale s 0 0 0 2
~~~~~
@subsection occt_draw_6_6 Curve and surface analysis
**Draw** provides methods to compute information about curves and surfaces:
* **coord** to find the coordinates of a point.
* **cvalue** and **2dcvalue** to compute points and derivatives on curves.
* **svalue** to compute points and derivatives on a surface.
* **localprop** and **minmaxcurandif** to compute the curvature on a curve.
* **parameters** to compute (u,v) values for a point on a surface.
* **proj** and **2dproj** to project a point on a curve or a surface.
* **surface_radius** to compute the curvature on a surface.
@subsubsection occt_draw_6_6_1 coord
Syntax:
~~~~~
coord P x y [z]
~~~~~
Sets the x, y (and optionally z) coordinates of the point P.
**Example:**
~~~~~
# translate a point
point p 10 5 5
translate p 5 0 0
coord p x y z
# x value is 15
~~~~~
@subsubsection occt_draw_6_6_2 cvalue, 2dcvalue
Syntax:
~~~~~
cvalue curve U x y z [d1x d1y d1z [d2x d2y d2z]]
2dcvalue curve U x y [d1x d1y [d2x d2y]]
~~~~~
For a curve at a given parameter, and depending on the number of arguments, **cvalue** computes the coordinates in *x,y,z*, the first derivative in *d1x,d1y,d1z* and the second derivative in *d2x,d2y,d2z*.
**Example:**
Let on a bezier curve at parameter 0 the point is the first pole; the first derivative is the vector to the second pole multiplied by the degree; the second derivative is the difference first to the second pole, second to the third pole multipied by *degree-1* :
~~~~~
2dbeziercurve c 4 0 0 1 1 2 1 3 0
2dcvalue c 0 x y d1x d1y d2x d2y
# values of x y d1x d1y d2x d2y
# are 0 0 3 3 0 -6
~~~~~
@subsubsection occt_draw_6_6_3 svalue
Syntax:
~~~~~
svalue surfname U v x y z [dux duy duz dvx dvy dvz [d2ux d2uy d2uz d2vx d2vy d2vz d2uvx d2uvy d2uvz]]
~~~~~
Computes points and derivatives on a surface for a pair of parameter values. The result depends on the number of arguments. You can compute the first and the second derivatives.
**Example:**
~~~~~
# display points on a sphere
sphere s 10
for {dset t 0} {[dval t] <= 1} {dset t t+0.01} {
svalue s t*2*pi t*pi-pi/2 x y z
point . x y z
}
~~~~~
@subsubsection occt_draw_6_6_4 localprop, minmaxcurandinf
Syntax:
~~~~~
localprop curvename U
minmaxcurandinf curve
~~~~~
**localprop** computes the curvature of a curve.
**minmaxcurandinf** computes and prints the parameters of the points where the curvature is minimum and maximum on a 2d curve.
**Example:**
~~~~~
# show curvature at the center of a bezier curve
beziercurve c 3 0 0 0 10 2 0 20 0 0
localprop c 0.5
== Curvature : 0.02
~~~~~
@subsubsection occt_draw_6_6_5 parameters
Syntax:
~~~~~
parameters surf/curve x y z U [V]
~~~~~
Returns the parameters on the surface of the 3d point *x,y,z* in variables *u* and *v*. This command may only be used on analytical surfaces: plane, cylinder, cone, sphere and torus.
**Example:**
~~~~~
# Compute parameters on a plane
plane p 0 0 10 1 1 0
parameters p 5 5 5 u v
# the values of u and v are : 0 5
~~~~~
@subsubsection occt_draw_6_6_6 proj, 2dproj
Syntax:
~~~~~
proj name x y z
2dproj name xy
~~~~~
Use **proj** to project a point on a 3d curve or a surface and **2dproj** for a 2d curve.
The command will compute and display all points in the projection. The lines joining the point to the projections are created with the names *ext_1, ext_2, ... *
**Example:**
Let us project a point on a torus
~~~~~
torus t 20 5
proj t 30 10 7
== ext_1 ext_2 ext_3 ext_4
~~~~~
@subsubsection occt_draw_6_6_7 surface_radius
Syntax:
~~~~~
surface_radius surface u v [c1 c2]
~~~~~
Computes the main curvatures of a surface at parameters *(u,v)*. If there are extra arguments, their curvatures are stored in variables *c1* and *c2*.
**Example:**
Let us compute curvatures of a cylinder:
~~~~~
cylinder c 5
surface_radius c pi 3 c1 c2
== Min Radius of Curvature : -5
== Min Radius of Curvature : infinite
~~~~~
@subsection occt_draw_6_7 Intersections
* **intersect** computes intersections of surfaces;
* **2dintersect** computes intersections of 2d curves.
* **intconcon** computes intersections of 2d conic curves.
@subsubsection occt_draw_6_7_1 intersect
Syntax:
~~~~~
intersect name surface1 surface2
~~~~~
Intersects two surfaces; if there is one intersection curve it will be named *name*, if there are more than one they will be named *name_1*, *name_2*, ...
**Example:**
~~~~~
# create an ellipse
cone c 45 0
plane p 0 0 40 0 1 5
intersect e c p
~~~~~
@subsubsection occt_draw_6_7_2 2dintersect
Syntax:
~~~~~
2dintersect curve1 [curve2] [-tol tol] [-state]
~~~~~
Displays the intersection points between 2d curves.
Options:
-tol - allows changing the intersection tolerance (default value is 1.e-3);
-state - allows printing the intersection state for each point.
**Example:**
~~~~~
# intersect two 2d ellipses
ellipse e1 0 0 5 2
ellipse e2 0 0 0 1 5 2
2dintersect e1 e2 -tol 1.e-10 -state
~~~~~
@subsubsection occt_draw_6_7_3 intconcon
Syntax:
~~~~~
intconcon curve1 curve2
~~~~~
Displays the intersection points between two 2d curves.
Curves must be only conic sections: 2d lines, circles, ellipses,
hyperbolas, parabolas. The algorithm from *IntAna2d_AnaIntersection* is used.
**Example:**
~~~~~
# intersect two 2d ellipses
ellipse e1 0 0 5 2
ellipse e2 0 0 0 1 5 2
intconcon e1 e2
~~~~~
@subsection occt_draw_6_8 Approximations
Draw provides command to create curves and surfaces by approximation.
* **2dapprox** fits a curve through 2d points;
* **appro** fits a curve through 3d points;
* **surfapp** and **grilapp** fit a surface through 3d points by approximation;
* **surfint** fit a surface through 3d points by interpolation;
* **2dinterpole** interpolates a curve.
@subsubsection occt_draw_6_8_1 appro, dapprox
Syntax:
~~~~~
appro result nbpoint [curve]
2dapprox result nbpoint [curve / x1 y1 x2 y2]
~~~~~
These commands fit a curve through a set of points. First give the number of points, then choose one of the three ways available to get the points. If you have no arguments, click on the points. If you have a curve argument or a list of points, the command launches computation of the points on the curve.
**Example:**
Let us pick points and they will be fitted
~~~~~
2dapprox c 10
~~~~~
@subsubsection occt_draw_6_8_2 surfapp, grilapp, surfint
Syntax:
~~~~~
surfapp name nbupoints nbvpoints x y z ....
or
surfapp name nbupoints nbvpoints surf [periodic_flag = 0]
grilapp name nbupoints nbvpoints xo dx yo dy z11 z12 ...
surfint name surf nbupoints nbvpoints [periodic_flag = 0]
~~~~~
* **surfapp** fits a surface through an array of u and v points, nbupoints*nbvpoints.
* **grilapp** has the same function, but the x,y coordinates of the points are on a grid starting at x0,y0 with steps dx,dy.
* **surfapp** can take array of points from other input surface, if alternative syntax
**surfapp** name nbupoints nbvpoints surf [periodic_flag = 0]
is used.
Both command use for fitting approximation algorithm.
**surfint** uses interpolation algorithm and can take array of point only from other input surface.
Optional parameter **periodic_flag** allows to get correct periodical surfaces in U direction.
U direction of result surface corresponds colums of initial array of points.
If **periodic_flag** = 1, algorithm uses first row of array as last row and builds periodical surface.
**Example:**
~~~~~
# a surface using the same data as in the beziersurf
example sect 4.4
surfapp s 3 4 \
0 0 0 10 0 5 20 0 0 \
0 10 2 10 10 3 20 10 2 \
0 20 10 10 20 20 20 20 10 \
0 30 0 10 30 0 20 30 0
~~~~~
@subsection occt_draw_6_9 Projections
Draw provides commands to project points/curves on curves/surfaces.
* **proj** projects point on the curve/surface (see @ref occt_draw_6_6_6 "proj command description");
* **project** projects 3D curve on the surface (see @ref occt_draw_6_2_11 "project command description");
* **projponf** projects point on the face.
@subsubsection occt_draw_6_9_1 projponf
Syntax:
~~~~~
projponf face pnt [extrema flag: -min/-max/-minmax] [extrema algo: -g(grad)/-t(tree)]
~~~~~
**projponf** projects point *pnt* on the face *face*.
You can change the Extrema options:
* To change the Extrema search algorithm use the following options:<br>
-g - for Grad algorithm;<br>
-t - for Tree algorithm;
* To change the Extrema search solutions use the following options:<br>
-min - to look for Min solutions;<br>
-max - to look for Max solutions;<br>
-minmax - to look for MinMax solutions.
**Example**
~~~~~
plane p 0 0 0 0 0 1
mkface f p
point pnt 5 5 10
projponf f pnt
# proj dist = 10
# uvproj = 5 5
# pproj = 5 5 0
~~~~~
@subsection occt_draw_6_10 Constraints
* **cirtang** constructs 2d circles tangent to curves;
* **lintan** constructs 2d lines tangent to curves.
@subsubsection occt_draw_6_10_1 cirtang
Syntax:
~~~~~
cirtang result [-t <Tolerance>] -c <curve> -p <point> -r <Radius>...
~~~~~
Builds all circles satisfying the condition:
1. the circle must be tangent to every given curve;
2. the circle must pass through every given point;
3. the radius of the circle must be equal to the requested one.
Only following set of input data is supported: Curve-Curve-Curve, Curve-Curve-Point, Curve-Curve-Radius, Curve-Point-Point, Curve-Point-Radius, Point-Point-Point, Point-Point-Radius. The solutions will be stored in variables *result_1*, *result_2*, etc.
**Example:**
~~~~~
# a point, a line and a radius. 2 solutions of type Curve-Point-Radius (C-P-R)
point p 0 0
line l 10 0 -1 1
cirtang c -p p -c l -r 4
== Solution of type C-P-R is: c_1 c_2
~~~~~
Additionally it is possible to create a circle(s) with given center and tangent to the given curve (Curve-Point type).
**Example:**
~~~~~
point pp 1 1
2dbsplinecurve cc 1 2 0 2 1 2 -10 -5 1 10 -5 1
cirtang r -p pp -c cc
== Solution of type C-P is: r_1 r_2
~~~~~
@subsubsection occt_draw_6_10_2 lintan
Syntax:
~~~~~
lintan name curve curve [angle]
~~~~~
Builds all 2d lines tangent to two curves. If the third angle argument is given the second curve must be a line and **lintan** will build all lines tangent to the first curve and forming the given angle with the line. The angle is given in degrees. The solutions are named *name_1*, *name_2*, etc.
**Example:**
~~~~~
# lines tangent to 2 circles, 4 solutions
circle c1 -10 0 10
circle c2 10 0 5
lintan l c1 c2
# lines at 15 degrees tangent to a circle and a line, 2
solutions: l1_1 l1_2
circle c1 -10 0 1
line l 2 0 1 1
lintan l1 c1 l 15
~~~~~
@subsection occt_draw_6_11 Display
Draw provides commands to control the display of geometric objects. Some display parameters are used for all objects, others are valid for surfaces only, some for bezier and bspline only, and others for bspline only.
On curves and surfaces, you can control the mode of representation with the **dmode** command. You can control the parameters for the mode with the **defle** command and the **discr** command, which control deflection and discretization respectively.
On surfaces, you can control the number of isoparametric curves displayed on the surface with the **nbiso** command.
On bezier and bspline curve and surface you can toggle the display of the control points with the **clpoles** and **shpoles** commands.
On bspline curves and surfaces you can toggle the display of the knots with the **shknots** and **clknots** commands.
@subsubsection occt_draw_6_11_1 dmod, discr, defle
Syntax:
~~~~~
dmode name [name ...] u/d
discr name [name ...] nbintervals
defle name [name ...] deflection
~~~~~
**dmod** command allows choosing the display mode for a curve or a surface.
In mode *u*, or *uniform deflection*, the points are computed to keep the polygon at a distance lower than the deflection of the geometry. The deflection is set with the *defle* command. This mode involves intensive use of computational power.
In *d*, or discretization mode, a fixed number of points is computed. This number is set with the *discr* command. This is the default mode. On a bspline, the fixed number of points is computed for each span of the curve. (A span is the interval between two knots).
If the curve or the isolines seem to present too many angles, you can either increase the discretization or lower the deflection, depending on the mode. This will increase the number of points.
**Example:**
~~~~~
# increment the number of points on a big circle
circle c 0 0 50 50
discr 100
# change the mode
dmode c u
~~~~~
@subsubsection occt_draw_6_11_2 nbiso
Syntax:
~~~~~
nbiso name [names...] nuiso nviso
~~~~~
Changes the number of isoparametric curves displayed on a surface in the U and V directions. On a bspline surface, isoparametric curves are displayed by default at knot values. Use *nbiso* to turn this feature off.
**Example:**
Let us display 35 meridians and 15 parallels on a sphere:
~~~~~
sphere s 20
nbiso s 35 15
~~~~~
@subsubsection occt_draw_6_11_3 clpoles, shpoles
Syntax:
~~~~~
clpoles name
shpoles name
~~~~~
On bezier and bspline curves and surfaces, the control polygon is displayed by default: *clpoles* erases it and *shpoles* restores it.
**Example:**
Let us make a bezier curve and erase the poles
~~~~~
beziercurve c 3 0 0 0 10 0 0 10 10 0
clpoles c
~~~~~
@subsubsection occt_draw_6_11_4 clknots, shknots
Syntax:
~~~~~
clknots name
shknots name
~~~~~
By default, knots on a bspline curve or surface are displayed with markers at the points with parametric value equal to the knots. *clknots* removes them and *shknots* restores them.
**Example:**
~~~~~
# hide the knots on a bspline curve
bsplinecurve bc 2 3 0 3 1 1 2 3 \
10 0 7 1 7 0 7 1 3 0 8 1 0 0 7 1
clknots bc
~~~~~
@section occt_draw_7 Topology commands
Draw provides a set of commands to test OCCT Topology libraries. The Draw commands are found in the DRAWEXE executable or in any executable including the BRepTest commands.
Topology defines the relationship between simple geometric entities, which can thus be linked together to represent complex shapes. The type of variable used by Topology in Draw is the shape variable.
The <a href="user_guides__modeling_data.html#occt_modat_5">different topological shapes</a> include:
* **COMPOUND**: A group of any type of topological object.
* **COMPSOLID**: A set of solids connected by their faces. This expands the notions of WIRE and SHELL to solids.
* **SOLID**: A part of space limited by shells. It is three dimensional.
* **SHELL**: A set of faces connected by their edges. A shell can be open or closed.
* **FACE**: In 2d, a plane; in 3d, part of a surface. Its geometry is constrained (trimmed) by contours. It is two dimensional.
* **WIRE**: A set of edges connected by their vertices. It can be open or closed depending on whether the edges are linked or not.
* **EDGE**: A topological element corresponding to a restrained curve. An edge is generally limited by vertices. It has one dimension.
* **VERTEX**: A topological element corresponding to a point. It has a zero dimension.
Shapes are usually shared. **copy** will create a new shape which shares its representation with the original. Nonetheless, two shapes sharing the same topology can be moved independently (see the section on **transformation**).
The following topics are covered in the eight sections of this chapter:
* Basic shape commands to handle the structure of shapes and control the display.
* Curve and surface topology, or methods to create topology from geometry and vice versa.
* Primitive construction commands: box, cylinder, wedge etc.
* Sweeping of shapes.
* Transformations of shapes: translation, copy, etc.
* Topological operations, or booleans.
* Drafting and blending.
* Defeaturing.
* Making shapes periodic in 3D space.
* Making shapes connected.
* Analysis of shapes.
@subsection occt_draw_7_1 Basic topology
The set of basic commands allows simple operations on shapes, or step-by-step construction of objects. These commands are useful for analysis of shape structure and include:
* **isos** and **discretisation** to control display of shape faces by isoparametric curves .
* **orientation**, **complement** and **invert** to modify topological attributes such as orientation.
* **explode**, **exwire** and **nbshapes** to analyze the structure of a shape.
* **emptycopy**, **add**, **compound** to create shapes by stepwise construction.
In Draw, shapes are displayed using isoparametric curves. There is color coding for the edges:
* a red edge is an isolated edge, which belongs to no faces.
* a green edge is a free boundary edge, which belongs to one face,
* a yellow edge is a shared edge, which belongs to at least two faces.
@subsubsection occt_draw_7_1_1 isos, discretisation
Syntax:
~~~~~
isos [name ...][nbisos]
discretisation nbpoints
~~~~~
Determines or changes the number of isoparametric curves on shapes.
The same number is used for the u and v directions. With no arguments, *isos* prints the current default value. To determine, the number of isos for a shape, give it name as the first argument.
*discretisation* changes the default number of points used to display the curves. The default value is 30.
**Example:**
~~~~~
# Display only the edges (the wireframe)
isos 0
~~~~~
**Warning**: don’t confuse *isos* and *discretisation* with the geometric commands *nbisos* and *discr*.
@subsubsection occt_draw_7_1_2 orientation, complement, invert, normals, range
Syntax:
~~~~~
orientation name [name ...] F/R/E/I
complement name [name ...]
invert name
normals s (length = 10), disp normals
range name value value
~~~~~
* **orientation** -- assigns the orientation of simple and complex shapes to one of the following four values: *FORWARD, REVERSED, INTERNAL, EXTERNAL*.
* **complement** -- changes the current orientation of shapes to its complement: *FORWARD* to *REVERSED* and *INTERNAL* to *EXTERNAL*.
* **invert** -- creates a copy of the original shape with a reversed orientation of all subshapes. For example, it may be useful to reverse the normals of a solid.
* *normals** -- returns the assignment of colors to orientation values.
* **range** -- defines the length of a selected edge by defining the values of a starting point and an end point.
**Example:**
~~~~~
# to invert normals of a box
box b 10 20 30
normals b 5
invert b
normals b 5
# to assign a value to an edge
box b1 10 20 30
# to define the box as edges
explode b1 e
b_1 b_2 b_3 b_4 b_5 b_6 b_7 b_8 b_9 b_10 b_11 b_12
# to define as an edge
makedge e 1
# to define the length of the edge as starting from 0
and finishing at 1
range e 0 1
~~~~~
@subsubsection occt_draw_7_1_3 explode, exwire, nbshapes
Syntax:
~~~~~
explode name [C/So/Sh/F/W/E/V]
exwire name
nbshapes name
~~~~~
**explode** extracts subshapes from an entity. The subshapes will be named *name_1*, *name_2*, ... Note that they are not copied but shared with the original.
With name only, **explode** will extract the first sublevel of shapes: the shells of a solid or the edges of a wire, for example. With one argument, **explode** will extract all subshapes of that type: *C* for compounds, *So* for solids, *Sh* for shells, *F* for faces, *W* for wires, *E* for edges, *V* for vertices.
**exwire** is a special case of **explode** for wires, which extracts the edges in an ordered way, if possible. Each edge, for example, is connected to the following one by a vertex.
**nbshapes** counts the number of shapes of each type in an entity.
**Example:**
~~~~~
# on a box
box b 10 20 30
# whatis returns the type and various information
whatis b
= b is a shape SOLID FORWARD Free Modified
# make one shell
explode b
whatis b_1
= b_1 is a shape SHELL FORWARD Modified Orientable
Closed
# extract the edges b_1, ... , b_12
explode b e
==b_1 ... b_12
# count subshapes
nbshapes b
==
Number of shapes in b
VERTEX : 8
EDGE : 12
WIRE : 6
FACE : 6
SHELL : 1
SOLID : 1
COMPSOLID : 0
COMPOUND : 0
SHAPE : 34
~~~~~
@subsubsection occt_draw_7_1_4 emptycopy, add, compound
Syntax:
~~~~~
emptycopy [newname] name
add name toname
compound [name ...] compoundname
~~~~~
**emptycopy** returns an empty shape with the same orientation, location, and geometry as the target shape, but with no sub-shapes. If the **newname** argument is not given, the new shape is stored with the same name. This command is used to modify a frozen shape. A frozen shape is a shape used by another one. To modify it, you must **emptycopy** it. Its subshape may be reinserted with the **add** command.
**add** inserts shape *C* into shape *S*. Verify that *C* and *S* reference compatible types of objects:
* Any *Shape* can be added to a *Compound*.
* Only a *Solid* can be added to a *CompSolid*.
* Only a *Shell* can *Edge* or a *Vertex* can be added into a *Solid*.
* Only a *Face* can be added to a *Shell*.
* Only a *Wire* and *Vertex* can be added in a *Solid*.
* Only an *Edge* can be added to a *Wire*.
* Only a *Vertex* can be added to an *Edge*.
* Nothing can be added to a *Vertex*.
**emptycopy** and **add** should be used with care.
On the other hand, **compound** is a safe way to achieve a similar result. It creates a compound from shapes. If no shapes are given, the compound is empty.
**Example:**
~~~~~
# a compound with three boxes
box b1 0 0 0 1 1 1
box b2 3 0 0 1 1 1
box b3 6 0 0 1 1 1
compound b1 b2 b3 c
~~~~~
@subsubsection occt_draw_7_1_5 compare
Syntax:
~~~~~
compare shape1 shape2
~~~~~
**compare** compares the two shapes *shape1* and *shape2* using the methods *TopoDS_Shape::IsSame()* and *TopoDS_Shape::IsEqual()*.
**Example**
~~~~~
box b1 1 1 1
copy b1 b2
compare b1 b2
# same shapes
# equal shapes
orientation b2 R
compare b1 b2
# same shapes
box b2 1 1 1
compare b1 b2
# shapes are not same
~~~~~
@subsubsection occt_draw_7_1_6 issubshape
Syntax:
~~~~~
issubshape subshape shape
~~~~~
**issubshape** checks if the shape *subshape* is sub-shape of the shape *shape* and gets its index in the shape.
**Example**
~~~~~
box b 1 1 1
explode b f
issubshape b_2 b
# b_2 is sub-shape of b. Index in the shape: 2.
~~~~~
@subsection occt_draw_7_2 Curve and surface topology
This group of commands is used to create topology from shapes and to extract shapes from geometry.
* To create vertices, use the **vertex** command.
* To create edges use, the **edge**, **mkedge** commands.
* To create wires, use the **wire**, **polyline**, **polyvertex** commands.
* To create faces, use the **mkplane**, **mkface** commands.
* To extract the geometry from edges or faces, use the **mkcurve** and **mkface** commands.
* To extract the 2d curves from edges or faces, use the **pcurve** command.
@subsubsection occt_draw_7_2_1 vertex
Syntax:
~~~~~
vertex name [x y z / p edge]
~~~~~
Creates a vertex at either a 3d location x,y,z or the point at parameter p on an edge.
**Example:**
~~~~~
vertex v1 10 20 30
~~~~~
@subsubsection occt_draw_7_2_1a mkpoint
Syntax:
~~~~~
mkpoint name vertex
~~~~~
Creates a point from the coordinates of a given vertex.
**Example:**
~~~~~
mkpoint p v1
~~~~~
@subsubsection occt_draw_7_2_2 edge, mkedge, uisoedge, visoedge
Syntax:
~~~~~
edge name vertex1 vertex2
mkedge edge curve [surface] [pfirst plast] [vfirst [pfirst] vlast [plast]]
uisoedge edge face u v1 v2
visoedge edge face v u1 u2
~~~~~
* **edge** creates a straight line edge between two vertices.
* **mkedge** generates edges from curves<.Two parameters can be given for the vertices: the first and last parameters of the curve are given by default. Vertices can also be given with their parameters, this option allows blocking the creation of new vertices. If the parameters of the vertices are not given, they are computed by projection on the curve. Instead of a 3d curve, a 2d curve and a surface can be given.
**Example:**
~~~~~
# straight line edge
vertex v1 10 0 0
vertex v2 10 10 0
edge e1 v1 v2
# make a circular edge
circle c 0 0 0 5
mkedge e2 c 0 pi/2
# A similar result may be achieved by trimming the curve
# The trimming is removed by mkedge
trim c c 0 pi/2
mkedge e2 c
~~~~~
* **visoedge** and **uisoedge** are commands that generate a *uiso* parameter edge or a *viso* parameter edge.
**Example:**
~~~~~
# to create an edge between v1 and v2 at point u
# to create the example plane
plane p
trim p p 0 1 0 1
convert p p
incudeg p 3
incvdeg p 3
movep p 2 2 0 0 1
movep p 3 3 0 0 0.5
mkface p p
# to create the edge in the plane at the u axis point
0.5, and between the v axis points v=0.2 and v =0.8
uisoedge e p 0.5 0.20 0.8
~~~~~
@subsubsection occt_draw_7_2_3 wire, polyline, polyvertex
Syntax:
~~~~~
wire wirename e1/w1 [e2/w2 ...]
polyline name x1 y1 z1 x2 y2 z2 ...
polyvertex name v1 v2 ...
~~~~~
**wire** creates a wire from edges or wires. The order of the elements should ensure that the wire is connected, and vertex locations will be compared to detect connection. If the vertices are different, new edges will be created to ensure topological connectivity. The original edge may be copied in the new one.
**polyline** creates a polygonal wire from point coordinates. To make a closed wire, you should give the first point again at the end of the argument list.
**polyvertex** creates a polygonal wire from vertices.
**Example:**
~~~~~
# create two polygonal wires
# glue them and define as a single wire
polyline w1 0 0 0 10 0 0 10 10 0
polyline w2 10 10 0 0 10 0 0 0 0
wire w w1 w2
~~~~~
@subsubsection occt_draw_7_2_4 profile
Syntax
~~~~~
profile name [code values] [code values] ...
~~~~~
**profile** builds a profile in a plane using a moving point and direction. By default, the profile is closed and a face is created. The original point is 0 0, and direction is 1 0 situated in the XY plane.
| **Code** | **Values ** | **Action** |
| :------------ | :------------- | :---------------- |
| O | X Y Z | Sets the origin of the plane |
| P | DX DY DZ UX UY UZ | Sets the normal and X of the plane |
| F | X Y | Sets the first point |
| X | DX | Translates a point along X |
| Y | DY | Translates a point along Y |
| L | DL | Translates a point along direction |
| XX | X | Sets point X coordinate |
| YY | Y | Sets point Y coordinate |
| T | DX DY | Translates a point |
| TT | X Y | Sets a point |
| R | Angle | Rotates direction |
| RR | Angle | Sets direction |
| D | DX DY | Sets direction |
| IX | X | Intersects with vertical |
| IY | Y | Intersects with horizontal |
| C | Radius Angle | Arc of circle tangent to direction |
Codes and values are used to define the next point or change the direction. When the profile changes from a straight line to a curve, a tangent is created. All angles are in degrees and can be negative.
The point [code values] can be repeated any number of times and in any order to create the profile contour.
| Suffix | Action |
| :----- | :----- |
| No suffix | Makes a closed face |
| W | Make a closed wire |
| WW | Make an open wire |
The profile shape definition is the suffix; no suffix produces a face, *w* is a closed wire, *ww* is an open wire.
Code letters are not case-sensitive.
**Example:**
~~~~~
# to create a trianglular plane using a vertex at the
origin, in the xy plane
profile p O 0 0 0 X 1 Y 0 x 1 y 1
~~~~~
**Example:**
~~~~~
# to create a contour using the different code
possibilities
# two vertices in the xy plane
profile p F 1 0 x 2 y 1 ww
# to view from a point normal to the plane
top
# add a circular element of 45 degrees
profile p F 1 0 x 2 y 1 c 1 45 ww
# add a tangential segment with a length value 1
profile p F 1 0 x 2 y 1 c 1 45 l 1 ww
# add a vertex with xy values of 1.5 and 1.5
profile p F 1 0 x 2 y 1 c 1 45 l 1 tt 1.5 1.5 ww
# add a vertex with the x value 0.2, y value is constant
profile p F 1 0 x 2 y 1 c 1 45 l 1 tt 1.5 1.5 xx 0.2 ww
# add a vertex with the y value 2 x value is constant
profile p F 1 0 x 2 y 1 c 1 45 l 1 tt 1.5 1.5 yy 2 ww
# add a circular element with a radius value of 1 and a circular value of 290 degrees
profile p F 1 0 x 2 y 1 c 1 45 l 1 tt 1.5 1.5 xx 0.2 yy 2 c 1 290
# wire continues at a tangent to the intersection x = 0
profile p F 1 0 x 2 y 1 c 1 45 l 1 tt 1.5 1.5 xx 0.2 yy 2 c 1 290 ix 0 ww
# continue the wire at an angle of 90 degrees until it intersects the y axis at y= -o.3
profile p F 1 0 x 2 y 1 c 1 45 l 1 tt 1.5 1.5 xx 0.2 yy 2 c 1 290 ix 0 r 90 ix -0.3 ww
#close the wire
profile p F 1 0 x 2 y 1 c 1 45 l 1 tt 1.5 1.5 xx 0.2 yy 2 c 1 290 ix 0 r 90 ix -0.3 w
# to create the plane with the same contour
profile p F 1 0 x 2 y 1 c 1 45 l 1 tt 1.5 1.5 xx 0.2 yy 2 c 1 290 ix 0 r 90 ix -0.3
~~~~~
@subsubsection occt_draw_7_2_5 bsplineprof
Syntax:
~~~~~
bsplineprof name [S face] [W WW]
~~~~~
* for an edge : \<digitizes\> ... <mouse button 2>
* to end profile : <mouse button 3>
Builds a profile in the XY plane from digitizes. By default the profile is closed and a face is built.
**bsplineprof** creates a 2d profile from bspline curves using the mouse as the input. *MB1* creates the points, *MB2* finishes the current curve and starts the next curve, *MB3* closes the profile.
The profile shape definition is the suffix; no suffix produces a face, **w** is a closed wire, **ww** is an open wire.
**Example:**
~~~~~
#to view the xy plane
top
#to create a 2d curve with the mouse
bsplineprof res
# click mb1 to start the curve
# click mb1 to create the second vertex
# click mb1 to create a curve
==
#click mb2 to finish the curve and start a new curve
==
# click mb1 to create the second curve
# click mb3 to create the face
~~~~~
@subsubsection occt_draw_7_2_6 mkoffset
**mkoffset** creates a parallel wire in the same plane using a face or an existing continuous set of wires as a reference. The number of occurrences is not limited.
The offset distance defines the spacing and the positioning of the occurrences.
Syntax:
~~~~~
mkoffset result shape nboffset stepoffset [jointype(a/i) [alt]]
~~~~~
where:
* *result* - the base name for the resulting wires. The index of the occurrence (starting with 1) will be added to this name, so the resulting wires will have the names - *result_1*, *result_2* ...;
* *shape* - input shape (face or compound of wires);
* *nboffset* - the number of the parallel occurrences;
* *stepoffset* - offset distance between occurrences;
* *jointype(a/i)* - join type (a for *arc* (default) and i for *intersection*);
* *alt* - altitude from the plane of the input face in relation to the normal to the face.
**Example:**
~~~~~
# Create a box and select a face
box b 1 2 3
explode b f
# Create three exterior parallel contours with an offset value of 2
mkoffset r b_1 3 2
# wires r_1, r_2 and r_3 are created
# Create three exterior parallel contours with an offset value of 2 without round corners
mkoffset r b_1 3 2 i
# wires r_1, r_2 and r_3 are created
# Create one interior parallel contour with an offset value of 0.4
mkoffset r b_1 1 -0.4
~~~~~
**Note** that on a concave input contour for an interior step *mkoffset* command may produce several wires which will be contained in a single compound.
**Example:**
~~~~~
# to create the example contour
profile p F 0 0 x 2 y 4 tt 1 1 tt 0 4 w
# creates an incoherent interior offset
mkoffset r p 1 -0.50
# creates two incoherent wires
mkoffset r p 1 -0.55
# r_1 is a compound of two wires
~~~~~
@subsubsection occt_draw_7_2_7 mkplane, mkface
Syntax:
~~~~~
mkplane name wire
mkface name surface [ufirst ulast vfirst vlast]
~~~~~
**mkplane** generates a face from a planar wire. The planar surface will be constructed with an orientation which keeps the face inside the wire.
**mkface** generates a face from a surface. Parameter values can be given to trim a rectangular area. The default boundaries are those of the surface.
**Example:**
~~~~~
# make a polygonal face
polyline f 0 0 0 20 0 0 20 10 0 10 10 0 10 20 0 0 20 0 0 0 0
mkplane f f
# make a cylindrical face
cylinder g 10
trim g g -pi/3 pi/2 0 15
mkface g g
~~~~~
@subsubsection occt_draw_7_2_8 mkcurve, mksurface
Syntax:
~~~~~
mkcurve curve edge
mksurface name face
~~~~~
**mkcurve** creates a 3d curve from an edge. The curve will be trimmed to the edge boundaries.
**mksurface** creates a surface from a face. The surface will not be trimmed.
**Example:**
~~~~~
# make a line
vertex v1 0 0 0
vertex v2 10 0 0
edge e v1 v2
~~~~~
@subsubsection occt_draw_7_2_9 pcurve
Syntax:
~~~~~
pcurve [name edgename] facename
~~~~~
Extracts the 2d curve of an edge on a face. If only the face is specified, the command extracts all the curves and colors them according to their orientation. This is useful in checking to see if the edges in a face are correctly oriented, i.e. they turn counter-clockwise. To make curves visible, use a fitted 2d view.
**Example:**
~~~~~
# view the pcurves of a face
plane p
trim p p -1 1 -1 1
mkface p p
av2d; # a 2d view
pcurve p
2dfit
~~~~~
@subsubsection occt_draw_7_2_10 chfi2d
Syntax:
~~~~~
chfi2d result face [edge1 edge2 (F radius/CDD d1 d2/CDA d ang) ....
~~~~~
Creates chamfers and fillets on 2D objects. Select two adjacent edges and:
* a radius value
* two respective distance values
* a distance value and an angle
The radius value produces a fillet between the two faces.
The distance is the length value from the edge between the two selected faces in a normal direction.
**Example:**
Let us create a 2d fillet:
~~~~~
top
profile p x 2 y 2 x -2
chfi2d cfr p . . F 0.3
==Pick an object
#select an edge
==Pick an object
#select an edge
~~~~~
Let us create a 2d chamfer using two distances:
~~~~~
profile p x 2 y 2 x -2
chfi2d cfr p . . CDD 0.3 0.6
==Pick an object
#select an edge
==Pick an object
#select an edge
~~~~~
Let us create a 2d chamfer using a defined distance and angle
~~~~~
top
profile p x 2 y 2 x -2
chfi2d cfr p . . CDA 0.3 75
==Pick an object
#select an edge
==Pick an object
#select an edge
~~~~~
@subsubsection occt_draw_7_2_11 nproject
Syntax:
~~~~~
nproject pj e1 e2 e3 ... surf -g -d [dmax] [Tol
[continuity [maxdeg [maxseg]]]
~~~~~
Creates a shape projection which is normal to the target surface.
**Example:**
~~~~~
# create a curved surface
line l 0 0 0 1 0 0
trim l l 0 2
convert l l
incdeg l 3
cmovep l 1 0 0.5 0
cmovep l 3 0 0.5 0
copy l ll
translate ll 2 -0.5 0
mkedge e1 l
mkedge e2 ll
wire w e1 e2
prism p w 0 0 3
donl p
#display in four views
mu4
fit
# create the example shape
circle c 1.8 -0.5 1 0 1 0 1 0 0 0.4
mkedge e c
donly p e
# create the normal projection of the shape(circle)
nproject r e p
~~~~~
@subsection occt_draw_7_3 Primitives
Primitive commands make it possible to create simple shapes. They include:
* **box** and **wedge** commands.
* **pcylinder**, **pcone**, **psphere**, **ptorus** commands.
* **halfspace** command
@subsubsection occt_draw_7_3_1 box, wedge
Syntax:
~~~~~
box name [x y z] dx dy dz
wedge name dx dy dz ltx / xmin zmin xmax xmax
~~~~~
**box** creates a box parallel to the axes with dimensions *dx,dy,dz*. *x,y,z* is the corner of the box. It is the default origin.
**wedge** creates a box with five faces called a wedge. One face is in the OXZ plane, and has dimensions *dx,dz* while the other face is in the plane *y = dy*. This face either has dimensions *ltx, dz* or is bounded by *xmin,zmin,xmax,zmax*.
The other faces are defined between these faces. The face in the *y=yd* plane may be degenerated into a line if *ltx = 0*, or a point if *xmin = xmax* and *ymin = ymax*. In these cases, the line and the point both have 5 faces each. To position the wedge use the *ttranslate* and *trotate* commands.
**Example:**
~~~~~
# a box at the origin
box b1 10 20 30
# another box
box b2 30 30 40 10 20 30
# a wedge
wedge w1 10 20 30 5
# a wedge with a sharp edge (5 faces)
wedge w2 10 20 30 0
# a pyramid
wedge w3 20 20 20 10 10 10 10
~~~~~
@subsubsection occt_draw_7_3_2 pcylinder, pcone, psphere, ptorus
Syntax:
~~~~~
pcylinder name [plane] radius height [angle]
pcone name [plane] radius1 radius2 height [angle]
pcone name [plane] radius1 radius2 height [angle]
psphere name [plane] radius1 [angle1 angle2] [angle]
ptorus name [plane] radius1 radius2 [angle1 angle2] [angle]
~~~~~
All these commands create solid blocks in the default coordinate system, using the Z axis as the axis of revolution and the X axis as the origin of the angles. To use another system, translate and rotate the resulting solid or use a plane as first argument to specify a coordinate system. All primitives have an optional last argument which is an angle expressed in degrees and located on the Z axis, starting from the X axis. The default angle is 360.
**pcylinder** creates a cylindrical block with the given radius and height.
**pcone** creates a truncated cone of the given height with radius1 in the plane z = 0 and radius2 in the plane z = height. Neither radius can be negative, but one of them can be null.
**psphere** creates a solid sphere centered on the origin. If two angles, *angle1* and *angle2*, are given, the solid will be limited by two planes at latitude *angle1* and *angle2*. The angles must be increasing and in the range -90,90.
**ptorus** creates a solid torus with the given radii, centered on the origin, which is a point along the z axis. If two angles increasing in degree in the range 0 -- 360 are given, the solid will be bounded by two planar surfaces at those positions on the circle.
**Example:**
~~~~~
# a can shape
pcylinder cy 5 10
# a quarter of a truncated cone
pcone co 15 10 10 90
# three-quarters of sphere
psphere sp 10 270
# half torus
ptorus to 20 5 0 90
~~~~~
@subsubsection occt_draw_7_3_3 halfspace
Syntax:
~~~~~
halfspace result face/shell x y z
~~~~~
**halfspace** creates an infinite solid volume based on a face in a defined direction. This volume can be used to perform the boolean operation of cutting a solid by a face or plane.
**Example:**
~~~~~
box b 0 0 0 1 2 3
explode b f
==b_1 b_2 b_3 b_4 b_5 b_6
halfspace hr b_3 0.5 0.5 0.5
~~~~~
@subsection occt_draw_7_4 Sweeping
Sweeping creates shapes by sweeping out a shape along a defined path:
* **prism** -- sweeps along a direction.
* **revol** -- sweeps around an axis.
* **pipe** -- sweeps along a wire.
* **mksweep** and **buildsweep** -- to create sweeps by defining the arguments and algorithms.
* **thrusections** -- creates a sweep from wire in different planes.
@subsubsection occt_draw_7_4_1 prism
Syntax:
~~~~~
prism result base dx dy dz [Copy | Inf | SemiInf]
~~~~~
Creates a new shape by sweeping a shape in a direction. Any shape can be swept: a vertex gives an edge; an edge gives a face; and a face gives a solid.
The shape is swept along the vector *dx dy dz*. The original shape will be shared in the result unless *Copy* is specified. If *Inf* is specified the prism is infinite in both directions. If *SemiInf* is specified the prism is infinite in the *dx,dy,dz* direction, and the length of the vector has no importance.
**Example:**
~~~~~
# sweep a planar face to make a solid
polyline f 0 0 0 10 0 0 10 5 0 5 5 0 5 15 0 0 15 0 0 0 0
mkplane f f
~~~~~
@subsubsection occt_draw_7_4_2 revol
Syntax:
~~~~~
revol result base x y z dx dy dz angle [Copy]
~~~~~
Creates a new shape by sweeping a base shape through an angle along the axis *x,y,z dx,dy,dz*. As with the prism command, the shape can be of any type and is not shared if *Copy* is specified.
**Example:**
~~~~~
# shell by wire rotation
polyline w 0 0 0 10 0 0 10 5 0 5 5 0 5 15 0 0 15 0
revol s w 20 0 0 0 1 0 90
~~~~~
@subsubsection occt_draw_7_4_3 pipe
Syntax:
~~~~~
pipe name wire_spine Profile
~~~~~
Creates a new shape by sweeping a shape known as the profile along a wire known as the spine.
**Example:**
~~~~~
# sweep a circle along a bezier curve to make a solid
pipe
beziercurve spine 4 0 0 0 10 0 0 10 10 0 20 10 0
mkedge spine spine
wire spine spine
circle profile 0 0 0 1 0 0 2
mkedge profile profile
wire profile profile
mkplane profile profile
pipe p spine profile
~~~~~
@subsubsection occt_draw_7_4_4 mksweep, addsweep, setsweep, deletesweep, buildsweep, simulsweep
Syntax:
~~~~~
mksweep wire
addsweep wire[vertex][-M][-C] [auxiilaryshape]
deletesweep wire
setsweep options [arg1 [arg2 [...]]]
simulsweep r [n] [option]
buildsweep [r] [option] [Tol]
~~~~~
options are :
* *-FR* : Tangent and Normal are defined by a Frenet trihedron
* *-CF* : Tangent is given by Frenet, the Normal is computed to minimize the torsion
* *-DX Surf* : Tangent and Normal are given by Darboux trihedron, surf must be a shell or a face
* *-CN dx dy dz* : BiNormal is given by *dx dy dz*
* *-FX Tx Ty TZ [Nx Ny Nz]* : Tangent and Normal are fixed
* *-G guide*
These commands are used to create a shape from wires. One wire is designated as the contour that defines the direction; it is called the spine. At least one other wire is used to define the the sweep profile.
* **mksweep** -- initializes the sweep creation and defines the wire to be used as the spine.
* **addsweep** -- defines the wire to be used as the profile.
* **deletesweep** -- cancels the choice of profile wire, without leaving the mksweep mode. You can re-select a profile wire.
* **setsweep** -- commands the algorithms used for the construction of the sweep.
* **simulsweep** -- can be used to create a preview of the shape. [n] is the number of sections that are used to simulate the sweep.
* **buildsweep** -- creates the sweep using the arguments defined by all the commands.
**Example:**
~~~~~
#create a sweep based on a semi-circular wire using the
Frenet algorithm
#create a circular figure
circle c2 0 0 0 1 0 0 10
trim c2 c2 -pi/2 pi/2
mkedge e2 c2
donly e2
wire w e2
whatis w
mksweep w
# to display all the options for a sweep
setsweep
#to create a sweep using the Frenet algorithm where the
#normal is computed to minimise the torsion
setsweep -CF
addsweep w -R
# to simulate the sweep with a visual approximation
simulsweep w 3
~~~~~
@subsubsection occt_draw_7_4_5 thrusections
Syntax:
~~~~~
thrusections [-N] result issolid isruled wire1 wire2 [..wire..]
~~~~~
**thrusections** creates a shape using wires that are positioned in different planes. Each wire selected must have the same number of edges and vertices.
A bezier curve is generated between the vertices of each wire. The option *[-N]* means that no check is made on wires for direction.
**Example:**
~~~~~
#create three wires in three planes
polyline w1 0 0 0 5 0 0 5 5 0 2 3 0
polyline w2 0 1 3 4 1 3 4 4 3 1 3 3
polyline w3 0 0 5 5 0 5 5 5 5 2 3 5
# create the shape
thrusections th issolid isruled w1 w2 w3
==thrusections th issolid isruled w1 w2 w3
Tolerances obtenues -- 3d : 0
-- 2d : 0
~~~~~
@subsection occt_draw_7_5 Topological transformation
Transformations are applications of matrices. When the transformation is nondeforming, such as translation or rotation, the object is not copied. The topology localcoordinate system feature is used. The copy can be enforced with the **tcopy** command.
* **tcopy** -- makes a copy of the structure of a shape.
* **ttranslate**, **trotate**, **tmove** and **reset** -- move a shape.
* **tmirror** and **tscale** -- always modify the shape.
@subsubsection occt_draw_7_5_1 tcopy
Syntax:
~~~~~
tcopy name toname [name toname ...]
~~~~~
Copies the structure of one shape, including the geometry, into another, newer shape.
**Example:**
~~~~~
# create an edge from a curve and copy it
beziercurve c 3 0 0 0 10 0 0 20 10 0
mkedge e1 c
ttranslate e1 0 5 0
tcopy e1 e2
ttranslate e2 0 5 0
# now modify the curve, only e1 and e2 will be modified
~~~~~
@subsubsection occt_draw_7_5_2 tmove, treset
Syntax:
~~~~~
tmove name [name ...] shape
reset name [name ...]
~~~~~
**tmove** and **reset** modify the location, or the local coordinate system of a shape.
**tmove** applies the location of a given shape to other shapes. **reset** restores one or several shapes it to its or their original coordinate system(s).
**Example:**
~~~~~
# create two boxes
box b1 10 10 10
box b2 20 0 0 10 10 10
# translate the first box
ttranslate b1 0 10 0
# and apply the same location to b2
tmove b2 b1
# return to original positions
reset b1 b2
~~~~~
@subsubsection occt_draw_7_5_3 ttranslate, trotate
Syntax:
~~~~~
ttranslate [name ...] dx dy dz
trotate [name ...] x y z dx dy dz angle
~~~~~
**ttranslate** translates a set of shapes by a given vector, and **trotate** rotates them by a given angle around an axis. Both commands only modify the location of the shape.
When creating multiple shapes, the same location is used for all the shapes. (See *toto.tcl* example below. Note that the code of this file can also be directly executed in interactive mode.)
Locations are very economic in the data structure because multiple occurences of an object share the topological description.
**Example:**
~~~~~
# make rotated copies of a sphere in between two cylinders
# create a file source toto.tcl
# toto.tcl code:
for {set i 0} {$i < 360} {incr i 20} {
copy s s$i
trotate s$i 0 0 0 0 0 1 $i
}
# create two cylinders
pcylinder c1 30 5
copy c1 c2
ttranslate c2 0 0 20
#create a sphere
psphere s 3
ttranslate s 25 0 12.5
# call the source file for multiple copies
source toto.tcl
~~~~~
@subsubsection occt_draw_7_5_4 tmirror, tscale
Syntax:
~~~~~
tmirror name x y z dx dy dz
tscale name x y z scale
~~~~~
* **tmirror** makes a mirror copy of a shape about a plane x,y,z dx,dy,dz.
* **Tscale** applies a central homotopic mapping to a shape.
**Example:**
~~~~~
# mirror a portion of cylinder about the YZ plane
pcylinder c1 10 10 270
copy c1 c2
tmirror c2 15 0 0 1 0 0
# and scale it
tscale c1 0 0 0 0.5
~~~~~
@subsection occt_draw_7_6 Old Topological operations
* **fuse**, **cut**, **common** are boolean operations.
* **section**, **psection** compute sections.
* **sewing** joins two or more shapes.
@subsubsection occt_draw_7_6_1 fuse, cut, common
These commands are no longer supported, so the result may be unpredictable.
Use the commands bfuse, bcut, bcommon instead.
Syntax:
~~~~~
fuse name shape1 shape2
cut name shape1 shape2
common name shape1 shape2
~~~~~
**fuse** creates a new shape by a boolean operation on two existing shapes. The new shape contains both originals intact.
**cut** creates a new shape which contains all parts of the second shape but only the first shape without the intersection of the two shapes.
**common** creates a new shape which contains only what is in common between the two original shapes in their intersection.
**Example:**
~~~~~
# all four boolean operations on a box and a cylinder
box b 0 -10 5 20 20 10
pcylinder c 5 20
fuse s1 b c
ttranslate s1 40 0 0
cut s2 b c
ttranslate s2 -40 0 0
cut s3 c b
ttranslate s3 0 40 0
common s4 b c
ttranslate s4 0 -40 0
~~~~~
@subsubsection occt_draw_7_6_2 section, psection
These commands are no longer supported, so the result may be unpredictable.
Use the command **bsection** instead.
Syntax:
~~~~~
section result shape1 shape2
psection name shape plane
~~~~~
**section** creates a compound object consisting of the edges for the intersection curves on the faces of two shapes.
**psection** creates a planar section consisting of the edges for the intersection curves on the faces of a shape and a plane.
**Example:**
~~~~~
# section line between a cylinder and a box
pcylinder c 10 20
box b 0 0 5 15 15 15
trotate b 0 0 0 1 1 1 20
section s b c
# planar section of a cone
pcone c 10 30 30
plane p 0 0 15 1 1 2
psection s c p
~~~~~
@subsubsection occt_draw_7_6_3 sewing
Syntax:
~~~~~
sewing result [tolerance] shape1 shape2 ...
~~~~~
**Sewing** joins shapes by connecting their adjacent or near adjacent edges. Adjacency can be redefined by modifying the tolerance value.
**Example:**
~~~~~
# create two adjacent boxes
box b 0 0 0 1 2 3
box b2 0 2 0 1 2 3
sewing sr b b2
whatis sr
sr is a shape COMPOUND FORWARD Free Modified
~~~~~
@subsection occt_draw_7_7 New Topological operations
The new algorithm of Boolean operations avoids a large number of weak points and limitations presented in the old Boolean operation algorithm.
It also provides wider range of options and diagnostics.
The algorithms of Boolean component are fully described in the @ref specification__boolean_operations "Boolean Operations" of boolean operation user guide.
For the Draw commands to perform operations in Boolean component, read the dedicated section @ref occt_draw_bop "Boolean operations commands"
@subsection occt_draw_7_8 Drafting and blending
Drafting is creation of a new shape by tilting faces through an angle.
Blending is the creation of a new shape by rounding edges to create a fillet.
* Use the **depouille** command for drafting.
* Use the **chamf** command to add a chamfer to an edge
* Use the **blend** command for simple blending.
* Use **bfuseblend** for a fusion + blending operation.
* Use **bcutblend** for a cut + blending operation.
* Use **buildevol**, **mkevol**, **updatevol** to realize varying radius blending.
@subsubsection occt_draw_7_8_1 depouille
Syntax:
~~~~~
dep result shape dirx diry dirz face angle x y x dx dy dz [face angle...]
~~~~~
Creates a new shape by drafting one or more faces of a shape.
Identify the shape(s) to be drafted, the drafting direction, and the face(s) with an angle and an axis of rotation for each face. You can use dot syntax to identify the faces.
**Example:**
~~~~~
# draft a face of a box
box b 10 10 10
explode b f
== b_1 b_2 b_3 b_4 b_5 b_6
dep a b 0 0 1 b_2 10 0 10 0 1 0 5
~~~~~
@subsubsection occt_draw_7_8_2 chamf
Syntax:
~~~~~
chamf newname shape edge face S dist
chamf newname shape edge face dist1 dist2
chamf newname shape edge face A dist angle
~~~~~
Creates a chamfer along the edge between faces using:
* a equal distances from the edge
* the edge, a face and distance, a second distance
* the edge, a reference face and an angle
Use the dot syntax to select the faces and edges.
**Examples:**
Let us create a chamfer based on equal distances from the edge (45 degree angle):
~~~~~
# create a box
box b 1 2 3
chamf ch b . . S 0.5
==Pick an object
# select an edge
==Pick an object
# select an adjacent face
~~~~~
Let us create a chamfer based on different distances from the selected edge:
~~~~~
box b 1 2 3
chamf ch b . . 0.3 0.4
==Pick an object
# select an edge
==Pick an object
# select an adjacent face
~~~~~
Let us create a chamfer based on a distance from the edge and an angle:
~~~~~
box b 1 2 3
chamf ch b . . A 0.4 30
==Pick an object
# select an edge
==Pick an object
# select an adjacent face
~~~~~
@subsubsection occt_draw_7_8_3 blend
Syntax:
~~~~~
blend result object rad1 ed1 rad2 ed2 ... [R/Q/P]
~~~~~
Creates a new shape by filleting the edges of an existing shape. The edge must be inside the shape. You may use the dot syntax. Note that the blend is propagated to the edges of tangential planar, cylindrical or conical faces.
**Example:**
~~~~~
# blend a box, click on an edge
box b 20 20 20
blend b b 2 .
==tolerance ang : 0.01
==tolerance 3d : 0.0001
==tolerance 2d : 1e-05
==fleche : 0.001
==tolblend 0.01 0.0001 1e-05 0.001
==Pick an object
# click on the edge you want ot fillet
==COMPUTE: temps total 0.1s dont :
==- Init + ExtentAnalyse 0s
==- PerformSetOfSurf 0.02s
==- PerformFilletOnVertex 0.02s
==- FilDS 0s
==- Reconstruction 0.06s
==- SetRegul 0s
~~~~~
@subsubsection occt_draw_7_8_4 bfuseblend
Syntax:
~~~~~
bfuseblend name shape1 shape2 radius [-d]
~~~~~
Creates a boolean fusion of two shapes and then blends (fillets) the intersection edges using the given radius.
Option [-d] enables the Debugging mode in which the error messages, if any, will be printed.
**Example:**
~~~~~
# fuse-blend two boxes
box b1 20 20 5
copy b1 b2
ttranslate b2 -10 10 3
bfuseblend a b1 b2 1
~~~~~
@subsubsection occt_draw_7_8_4a bcutblend
Syntax:
~~~~~
bcutblend name shape1 shape2 radius [-d]
~~~~~
Creates a boolean cut of two shapes and then blends (fillets) the intersection edges using the given radius.
Option [-d] enables the Debugging mode in which the error messages, if any, will be printed.
**Example:**
~~~~~
# cut-blend two boxes
box b1 20 20 5
copy b1 b2
ttranslate b2 -10 10 3
bcutblend a b1 b2 1
~~~~~
@subsubsection occt_draw_7_8_5 mkevol, updatevol, buildevol
Syntax:
~~~~~
mkevol result object (then use updatevol) [R/Q/P]
updatevol edge u1 radius1 [u2 radius2 ...]
buildevol
~~~~~
These three commands work together to create fillets with evolving radii.
* **mkevol** allows specifying the shape and the name of the result. It returns the tolerances of the fillet.
* **updatevol** allows describing the filleted edges you want to create. For each edge, you give a set of coordinates: parameter and radius and the command prompts you to pick the edge of the shape which you want to modify. The parameters will be calculated along the edges and the radius function applied to the whole edge.
* **buildevol** produces the result described previously in **mkevol** and **updatevol**.
**Example:**
~~~~~
# makes an evolved radius on a box
box b 10 10 10
mkevol b b
==tolerance ang : 0.01
==tolerance 3d : 0.0001
==tolerance 2d : 1e-05
==fleche : 0.001
==tolblend 0.01 0.0001 1e-05 0.001
# click an edge
updatevol . 0 1 1 3 2 2
==Pick an object
buildevol
==Dump of SweepApproximation
==Error 3d = 1.28548881203818e-14
==Error 2d = 1.3468326936926e-14 ,
==1.20292299999388e-14
==2 Segment(s) of degree 3
==COMPUTE: temps total 0.91s dont :
==- Init + ExtentAnalyse 0s
==- PerformSetOfSurf 0.33s
==- PerformFilletOnVertex 0.53s
==- FilDS 0.01s
==- Reconstruction 0.04s
==- SetRegul 0s
~~~~~
@subsection occt_draw_defeaturing Defeaturing
Draw command **removefeatures** is intended for performing @ref occt_modalg_defeaturing "3D Model Defeaturing", i.e. it performs the removal of the requested features from the shape.
Syntax:
~~~~
removefeatures result shape f1 f2 ... [-nohist] [-parallel]
Where:
result - result of the operation;
shape - the shape to remove the features from;
f1, f2 - features to remove from the shape;
Options:
nohist - disables the history collection;
parallel - enables the parallel processing mode.
~~~~
@subsection occt_draw_makeperiodic 3D Model Periodicity
Draw module for @ref occt_modalg_makeperiodic "making the shape periodic" includes the following commands:
* **makeperiodic** - makes the shape periodic in required directions;
* **repeatshape** - repeats the periodic shape in requested periodic direction;
* **periodictwins** - returns the periodic twins for the shape;
* **clearrepetitions** - clears all previous repetitions of the periodic shape.
@subsubsection occt_draw_makeperiodic_makeperiodic makeperiodic
The command makes the shape periodic in the required directions with the required period.
If trimming is given it trims the shape to fit the requested period.
Syntax:
~~~~
makeperiodic result shape [-x/y/z period [-trim first]]
Where:
result - resulting periodic shape;
shape - input shape to make it periodic:
-x/y/z period - option to make the shape periodic in X, Y or Z direction with the given period;
-trim first - option to trim the shape to fit the required period, starting the period in first.
~~~~
@subsubsection occt_draw_makeperiodic_repeatshape repeatshape
The command repeats the periodic shape in periodic direction requested number of time.
The result contains the all the repeated shapes glued together.
The command should be called after **makeperiodic** command.
Syntax:
~~~~
repeatshape result -x/y/z times
Where:
result - resulting shape;
-x/y/z times - direction for repetition and number of repetitions (negative number of times means the repetition in negative direction).
~~~~
@subsubsection occt_draw_makeperiodic_periodictwins periodictwins
For the given shape the command returns the identical shapes located on the opposite sides of the periodic direction.
All periodic twins should have the same geometry.
The command should be called after **makeperiodic** command.
Syntax:
~~~~
periodictwins twins shape
Where:
twins - periodic twins for the given shape
shape - shape to find the twins for
~~~~
@subsubsection occt_draw_makeperiodic_clearrepetitions clearrepetitions
The command clears all previous repetitions of the periodic shape allowing to start the repetitions over.
No arguments are needed for the command.
@subsection occt_draw_makeconnected Making the touching shapes connected
Draw module for @ref occt_modalg_makeconnected "making the touching same-dimensional shapes connected" includes the following commands:
* **makeconnected** - make the input shapes connected or glued, performs material associations;
* **cmaterialson** - returns the materials located on the requested side of a shape;
* **cmakeperiodic** - makes the connected shape periodic in requested directions;
* **crepeatshape** - repeats the periodic connected shape in requested directions requested number of times;
* **cperiodictwins** - returns all periodic twins for the shape;
* **cclearrepetitions** - clears all previous repetitions of the periodic shape, keeping the shape periodic.
@subsubsection occt_draw_makeconnected_makeconnected makeconnected
The command makes the input touching shapes connected.
Syntax:
~~~~
makeconnected result shape1 shape2 ...
Where:
result - resulting connected shape.
shape1 shape2 ... - shapes to be made connected.
~~~~
@subsubsection occt_draw_makeconnected_cmaterialson cmaterialson
The command returns the materials located on the requested side of the shape.
The command should be called after the shapes have been made connected, i.e. after the command **makeconnected**.
Syntax:
~~~~
cmaterialson result +/- shape
Where:
result - material shapes
shape - shape for which the materials are needed
+/- - side of a given shape ('+' for positive side, '-' - for negative).
~~~~
@subsubsection occt_draw_makeconnected_cmakeperiodic cmakeperiodic
The command makes the connected shape periodic in the required directions with the required period.
The command should be called after the shapes have been made connected, i.e. after the command **makeconnected**.
Syntax:
~~~~
cmakeperiodic result [-x/y/z period [-trim first]]
Where:
result - resulting periodic shape;
shape - input shape to make it periodic:
-x/y/z period - option to make the shape periodic in X, Y or Z direction with the given period;
-trim first - option to trim the shape to fit the required period, starting the period in first.
~~~~
@subsubsection occt_draw_makeconnected_crepeatshape crepeatshape
The command repeats the connected periodic shape in the required periodic directions required number of times.
The command should be called after the shapes have been made connected and periodic, i.e. after the commands **makeconnected** and **cmakeperiodic**.
Syntax:
~~~~
crepeatshape result -x/y/z times
Where:
result - resulting shape;
-x/y/z times - direction for repetition and number of repetitions (negative number of times means the repetition in negative direction).
~~~~
@subsubsection occt_draw_makeconnected_cperiodictwins cperiodictwins
The command returns all periodic twins for the shape.
The command should be called after the shapes have been made connected and periodic, i.e. after the commands **makeconnected** and **cmakeperiodic**.
Syntax:
~~~~
cperiodictwins twins shape
Where:
twins - periodic twins of a shape.
shape - input shape.
~~~~
@subsubsection occt_draw_makeconnected_cclearrepetitions cclearrepetitions
The command clears all previous repetitions of the periodic shape keeping the shape periodic.
The command should be called after the shapes have been made connected, periodic and the repetitions have been applied to the periodic shape, i.e. after the commands **makeconnected**, **cmakeperiodic** and **crepeatshape**.
Otherwise the command will have no effect.
Syntax:
~~~~
cclearrepetitions [result]
~~~~
@subsection occt_draw_7_9 Analysis of topology and geometry
Analysis of shapes includes commands to compute length, area, volumes and inertial properties, as well as to compute some aspects impacting shape validity.
* Use **lprops**, **sprops**, **vprops** to compute integral properties.
* Use **bounding** to compute and to display the bounding box of a shape.
* Use **distmini** to calculate the minimum distance between two shapes.
* Use **isbbinterf** to check if the two shapes are interfered by their bounding boxes.
* Use **xdistef**, **xdistcs**, **xdistcc**, **xdistc2dc2dss**, **xdistcc2ds** to check the distance between two objects on even grid.
* Use **checkshape** to check validity of the shape.
* Use **tolsphere** to see the tolerance spheres of all vertices in the shape.
* Use **validrange** to check range of an edge not covered by vertices.
@subsubsection occt_draw_7_9_1 lprops, sprops, vprops
Syntax:
~~~~~
lprops shape [x y z] [-skip] [-full] [-tri]
sprops shape [epsilon] [c[losed]] [x y z] [-skip] [-full] [-tri]
vprops shape [epsilon] [c[losed]] [x y z] [-skip] [-full] [-tri]
~~~~~
* **lprops** computes the mass properties of all edges in the shape with a linear density of 1;
* **sprops** of all faces with a surface density of 1;
* **vprops** of all solids with a density of 1.
For computation of properties of the shape, exact geomery (curves, surfaces) or
some discrete data (polygons, triangulations) can be used for calculations.
The epsilon, if given, defines relative precision of computation.
The **closed** flag, if present, forces computation only closed shells of the shape.
The centroid coordinates will be put to DRAW variables x y z (if given).
Shared entities will be taken in account only one time in the **skip** mode.
All values are output with the full precision in the **full** mode.
Preferable source of geometry data are triangulations in case if it exists,
if the **-tri** key is used, otherwise preferable data is exact geometry.
If epsilon is given, exact geometry (curves, surfaces) are used for calculations independently of using key **-tri**.
All three commands print the mass, the coordinates of the center of gravity, the matrix of inertia and the moments. Mass is either the length, the area or the volume. The center and the main axis of inertia are displayed.
**Example:**
~~~~~
# volume of a cylinder
pcylinder c 10 20
vprops c
== results
Mass : 6283.18529981086
Center of gravity :
X = 4.1004749224903e-06
Y = -2.03392858349861e-16
Z = 9.9999999941362
Matrix of Inertia :
366519.141445068 5.71451850691484e-12
0.257640437382627
5.71451850691484e-12 366519.141444962
2.26823064169991e-10 0.257640437382627
2.26823064169991e-10 314159.265358863
Moments :
IX = 366519.141446336
IY = 366519.141444962
I.Z = 314159.265357595
~~~~~
@subsubsection occt_draw_7_9_2 bounding
Syntax:
~~~~~
bounding {-s shape | -c xmin ymin zmin xmax ymax zmax} [-obb] [-shape name] [-dump] [-notriangulation] [-perfmeter name NbIters] [-save xmin ymin zmin xmax ymax zmax] [-nodraw] [-optimal] [-exttoler]
~~~~~
Computes and displays the bounding box (BndBox) of a shape. The bounding box is a cuboid that circumscribes the source shape.
Generaly, bounding boxes can be divided into two main types:
- axis-aligned BndBox (AABB). I.e. the box whose edges are parallel to an axis of World Coordinate System (WCS);
- oriented BndBox (OBB). I.e. not AABB.
Detailed information about this command is availabe in DRAW help-system (enter "help bounding" in DRAW application).
**Example 1: Creation of AABB with given corners**
~~~~~
bounding -c 50 100 30 180 200 100 -shape result
# look at the box
vdisplay result
vfit
vsetdispmode 1
~~~~~
**Example 2: Compare AABB and OBB**
~~~~~
# Create a torus and rotate it
ptorus t 20 5
trotate t 5 10 15 1 1 1 28
# Create AABB from the torus
bounding -s t -shape ra -dump -save x1 y1 z1 x2 y2 z2
==Axes-aligned bounding box
==X-range: -26.888704600189307 23.007685197265488
==Y-range: -22.237699567214314 27.658690230240481
==Z-range: -13.813966507560762 12.273995247458407
# Obtain the boundaries
dump x1 y1 z1 x2 y2 z2
==*********** Dump of x1 *************
==-26.8887046001893
==*********** Dump of y1 *************
==-22.2376995672143
==*********** Dump of z1 *************
==-13.8139665075608
==*********** Dump of x2 *************
==23.0076851972655
==*********** Dump of y2 *************
==27.6586902302405
==*********** Dump of z2 *************
==12.2739952474584
# Compute the volume of AABB
vprops ra 1.0e-12
==Mass : 64949.9
# Let us check this value
dval (x2-x1)*(y2-y1)*(z2-z1)
==64949.886543606823
~~~~~
The same result is obtained.
~~~~~
# Create OBB from the torus
bounding -s t -shape ro -dump -obb
==Oriented bounding box
==Center: -1.9405097014619073 2.7104953315130857 -0.76998563005117782
==X-axis: 0.31006700219833244 -0.23203206410428409 0.9219650619059514
==Y-axis: 0.098302309139513336 -0.95673739537318336 -0.27384340837854165
==Z-axis: 0.94561890324040099 0.17554109923901748 -0.27384340837854493
==Half X: 5.0000002000000077
==Half Y: 26.783728747002169
==Half Z: 26.783728747002165
# Compute the volume of OBB
vprops ro 1.0e-12
==Mass : 28694.7
~~~~~
As we can see, the volume of OBB is significantly less than the volume of AABB.
@subsubsection occt_draw_7_9_2a isbbinterf
Syntax:
~~~~~
isbbinterf shape1 shape2 [-o]
~~~~~
Checks whether the bounding boxes created from the given shapes are interfered. If "-o"-option is switched on then the oriented boxes will be checked. Otherwise, axis-aligned boxes will be checked.
**Example 1: Not interfered AABB**
~~~~~
box b1 100 60 140 20 10 80
box b2 210 200 80 120 60 90
isbbinterf b1 b2
==The shapes are NOT interfered by AABB.
~~~~~
**Example 2: Interfered AABB**
~~~~~
box b1 300 300 300
box b2 100 100 100 50 50 50
isbbinterf b1 b2
==The shapes are interfered by AABB.
~~~~~
**Example 3: Not interfered OBB**
~~~~~
box b1 100 150 200
copy b1 b2
trotate b1 -150 -150 -150 1 2 3 -40
trotate b2 -150 -150 -150 1 5 2 60
# Check of interference
isbbinterf b1 b2 -o
==The shapes are NOT interfered by OBB.
~~~~~
**Example 4: Interfered OBB**
~~~~~
box b1 100 150 200
copy b1 b2
trotate b1 -50 -50 -50 1 1 1 -40
trotate b2 -50 -50 -50 1 1 1 60
# Check of interference
isbbinterf b1 b2 -o
==The shapes are interfered by OBB.
~~~~~
@subsubsection occt_draw_7_9_3 distmini
Syntax:
~~~~~
distmini name Shape1 Shape2
~~~~~
Calculates the minimum distance between two shapes. The calculation returns the number of solutions, if more than one solution exists. The options are displayed in the viewer in red and the results are listed in the shell window. The *distmini* lines are considered as shapes which have a value v.
**Example:**
~~~~~
box b 0 0 0 10 20 30
box b2 30 30 0 10 20 30
distmini d1 b b2
==the distance value is : 22.3606797749979
==the number of solutions is :2
==solution number 1
==the type of the solution on the first shape is 0
==the type of the solution on the second shape is 0
==the coordinates of the point on the first shape are:
==X=10 Y=20 Z=30
==the coordinates of the point on the second shape
are:
==X=30 Y=30 Z=30
==solution number 2:
==the type of the solution on the first shape is 0
==the type of the solution on the second shape is 0
==the coordinates of the point on the first shape are:
==X=10 Y=20 Z=0
==the coordinates of the point on the second shape
are:
==X=30 Y=30 Z=0
==d1_val d1 d12
~~~~~
@subsubsection occt_draw_7_9_4 xdistef, xdistcs, xdistcc, xdistc2dc2dss, xdistcc2ds
Syntax:
~~~~~
xdistef edge face
xdistcs curve surface firstParam lastParam [NumberOfSamplePoints]
xdistcc curve1 curve2 startParam finishParam [NumberOfSamplePoints]
xdistcc2ds c curve2d surf startParam finishParam [NumberOfSamplePoints]
xdistc2dc2dss curve2d_1 curve2d_2 surface_1 surface_2 startParam finishParam [NumberOfSamplePoints]
~~~~~
It is assumed that curves have the same parametrization range and *startParam* is less than *finishParam*.
Commands with prefix *xdist* allow checking the distance between two objects on even grid:
* **xdistef** -- distance between edge and face;
* **xdistcs** -- distance between curve and surface. This means that the projection of each sample point to the surface is computed;
* **xdistcc** -- distance between two 3D curves;
* **xdistcc2ds** -- distance between 3d curve and 2d curve on surface;
* **xdistc2dc2dss** -- distance between two 2d curves on surface.
**Examples**
~~~~~
bopcurves b1 b2 -2d
mksurf s1 b1
mksurf s2 b2
xdistcs c_1 s1 0 1 100
xdistcc2ds c_1 c2d2_1 s2 0 1
xdistc2dc2dss c2d1_1 c2d2_1 s1 s2 0 1 1000
~~~~~
@subsubsection occt_draw_7_9_5 checkshape
Syntax:
~~~~~
checkshape [-top] shape [result] [-short]
~~~~~
Where:
* *top* -- optional parameter, which allows checking only topological validity of a shape.
* *shape* -- the only required parameter, defines the name of the shape to check.
* *result* -- optional parameter, defines custom prefix for the output shape names.
* *short* -- a short description of the check.
**checkshape** examines the selected object for topological and geometric coherence. The object should be a three dimensional shape.
**Example:**
~~~~~
# checkshape returns a comment valid or invalid
box b1 0 0 0 1 1 1
checkshape b1
# returns the comment
this shape seems to be valid
~~~~~
@subsubsection occt_draw_7_9_6 tolsphere
Syntax:
~~~~~
tolsphere shape
~~~~~
Where:
* *shape* -- the name of the shape to process.
**tolsphere** shows vertex tolerances by drawing spheres around each vertex in the shape. Each sphere is assigned a name of the shape with suffix "_vXXX", where XXX is the number of the vertex in the shape.
**Example:**
~~~~~
# tolsphere returns all names of created spheres.
box b1 0 0 0 1 1 1
settolerance b1 0.05
tolsphere b1
# creates spheres and returns the names
b1_v1 b1_v2 b1_v3 b1_v4 b1_v5 b1_v6 b1_v7 b1_v8
~~~~~
@subsubsection occt_draw_7_9_7 validrange
Syntax:
~~~~~
validrange edge [(out) u1 u2]
~~~~~
Where:
* *edge* -- the name of the edge to analyze.
* *u1*, *u2* -- optional names of variables to put into the range.
**validrange** computes valid range of the edge. If *u1* and *u2* are not given, it returns the first and the last parameters. Otherwise, it sets variables *u1* and *u2*.
**Example:**
~~~~~
circle c 0 0 0 10
mkedge e c
mkedge e c 0 pi
validrange e
# returns the range
1.9884375000000002e-008 3.1415926337054181
validrange e u1 u2
dval u1
1.9884375000000002e-008
dval u2
3.1415926337054181
~~~~~
@subsection occt_draw_7_10 Surface creation
Surface creation commands include surfaces created from boundaries and from spaces between shapes.
* **gplate** creates a surface from a boundary definition.
* **filling** creates a surface from a group of surfaces.
@subsubsection occt_draw_7_10_1 gplate,
Syntax:
~~~~~
gplate result nbrcurfront nbrpntconst [SurfInit] [edge 0] [edge tang (1:G1;2:G2) surf]...[point] [u v tang (1:G1;2:G2) surf] ...
~~~~~
Creates a surface from a defined boundary. The boundary can be defined using edges, points, or other surfaces.
**Example:**
~~~~~
plane p
trim p p -1 3 -1 3
mkface p p
beziercurve c1 3 0 0 0 1 0 1 2 0 0
mkedge e1 c1
tcopy e1 e2
tcopy e1 e3
ttranslate e2 0 2 0
trotate e3 0 0 0 0 0 1 90
tcopy e3 e4
ttranslate e4 2 0 0
# create the surface
gplate r1 4 0 p e1 0 e2 0 e3 0 e4 0
==
======== Results ===========
DistMax=8.50014503228635e-16
* GEOMPLATE END*
Calculation time: 0.33
Loop number: 1
Approximation results
Approximation error : 2.06274907619957e-13
Criterium error : 4.97600631215754e-14
#to create a surface defined by edges and passing through a point
# to define the border edges and the point
plane p
trim p p -1 3 -1 3
mkface p p
beziercurve c1 3 0 0 0 1 0 1 2 0 0
mkedge e1 c1
tcopy e1 e2
tcopy e1 e3
ttranslate e2 0 2 0
trotate e3 0 0 0 0 0 1 90
tcopy e3 e4
ttranslate e4 2 0 0
# to create a point
point pp 1 1 0
# to create the surface
gplate r2 4 1 p e1 0 e2 0 e3 0 e4 0 pp
==
======== Results ===========
DistMax=3.65622157610934e-06
* GEOMPLATE END*
Calculculation time: 0.27
Loop number: 1
Approximation results
Approximation error : 0.000422195884750181
Criterium error : 3.43709808053967e-05
~~~~~
@subsubsection occt_draw_7_10_2 filling, fillingparam
Syntax:
~~~~~
filling result nbB nbC nbP [SurfInit] [edge][face]order...
edge[face]order... point/u v face order...
~~~~~
Creates a surface between borders. This command uses the **gplate** algorithm but creates a surface that is tangential to the adjacent surfaces. The result is a smooth continuous surface based on the G1 criterion.
To define the surface border:
* enter the number of edges, constraints, and points
* enumerate the edges, constraints and points
The surface can pass through other points. These are defined after the border definition.
You can use the *fillingparam* command to access the filling parameters.
The options are:
* <i>-l</i> : to list current values
* <i>-i</i> : to set default values
* <i>-rdeg nbPonC nbIt anis </i> : to set filling options
* <i>-c t2d t3d tang tcur </i> : to set tolerances
* <i>-a maxdeg maxseg </i> : Approximation option
**Example:**
~~~~~
# to create four curved survaces and a point
plane p
trim p p -1 3 -1 3
mkface p p
beziercurve c1 3 0 0 0 1 0 1 2 0 0
mkedge e1 c1
tcopy e1 e2
tcopy e1 e3
ttranslate e2 0 2 0
trotate e3 0 0 0 0 0 1 90
tcopy e3 e4
ttranslate e4 2 0 0
point pp 1 1 0
prism f1 e1 0 -1 0
prism f2 e2 0 1 0
prism f3 e3 -1 0 0
prism f4 e4 1 0 0
# to create a tangential surface
filling r1 4 0 0 p e1 f1 1 e2 f2 1 e3 f3 1 e4 f4 1
# to create a tangential surface passing through point pp
filling r2 4 0 1 p e1 f1 1 e2 f2 1 e3 f3 1 e4 f4 1 pp#
# to visualise the surface in detail
isos r2 40
# to display the current filling parameters
fillingparam -l
==
Degree = 3
NbPtsOnCur = 10
NbIter = 3
Anisotropie = 0
Tol2d = 1e-05
Tol3d = 0.0001
TolAng = 0.01
TolCurv = 0.1
MaxDeg = 8
MaxSegments = 9
~~~~~
@subsection occt_draw_7_11 Complex Topology
Complex topology is the group of commands that modify the topology of shapes. This includes feature modeling.
@subsubsection occt_draw_7_11_1 offsetshape, offsetcompshape
Syntax:
~~~~~
offsetshape r shape offset [tol] [face ...]
offsetcompshape r shape offset [face ...]
~~~~~
**offsetshape** and **offsetcompshape** assign a thickness to the edges of a shape. The *offset* value can be negative or positive. This value defines the thickness and direction of the resulting shape. Each face can be removed to create a hollow object.
The resulting shape is based on a calculation of intersections. In case of simple shapes such as a box, only the adjacent intersections are required and you can use the **offsetshape** command.
In case of complex shapes, where intersections can occur from non-adjacent edges and faces, use the **offsetcompshape** command. **comp** indicates complete and requires more time to calculate the result.
The opening between the object interior and exterior is defined by the argument face or faces.
**Example:**
~~~~~
box b1 10 20 30
explode b1 f
== b1_1 b1_2 b1_3 b1_4 b1_5 b1_6
offsetcompshape r b1 -1 b1_3
~~~~~
@subsubsection occt_draw_7_11_2 featprism, featdprism, featrevol, featlf, featrf
Syntax:
~~~~~
featprism shape element skface Dirx Diry Dirz Fuse(0/1/2) Modify(0/1)
featdprism shape face skface angle Fuse(0/1/2) Modify(0/1)
featrevol shape element skface Ox Oy Oz Dx Dy Dz Fuse(0/1/2) Modify(0/1)
featlf shape wire plane DirX DirY DirZ DirX DirY DirZ Fuse(0/1/2) Modify(0/1)
featrf shape wire plane X Y Z DirX DirY DirZ Size Size Fuse(0/1/2) Modify(0/1)
featperform prism/revol/pipe/dprism/lf result [[Ffrom] Funtil]
featperformval prism/revol/dprism/lf result value
~~~~~
**featprism** loads the arguments for a prism with contiguous sides normal to the face.
**featdprism** loads the arguments for a prism which is created in a direction normal to the face and includes a draft angle.
**featrevol** loads the arguments for a prism with a circular evolution.
**featlf** loads the arguments for a linear rib or slot. This feature uses planar faces and a wire as a guideline.
**featrf** loads the arguments for a rib or slot with a curved surface. This feature uses a circular face and a wire as a guideline.
**featperform** loads the arguments to create the feature.
**featperformval** uses the defined arguments to create a feature with a limiting value.
All the features are created from a set of arguments which are defined when you initialize the feature context. Negative values can be used to create depressions.
**Examples:**
Let us create a feature prism with a draft angle and a normal direction :
~~~~~
# create a box with a wire contour on the upper face
box b 1 1 1
profil f O 0 0 1 F 0.25 0.25 x 0.5 y 0.5 x -0.5
explode b f
# loads the feature arguments defining the draft angle
featdprism b f b_6 5 1 0
# create the feature
featperformval dprism r 1
==BRepFeat_MakeDPrism::Perform(Height)
BRepFeat_Form::GlobalPerform ()
Gluer
still Gluer
Gluer result
~~~~~
Let us create a feature prism with circular direction :
~~~~~
# create a box with a wire contour on the upper face
box b 1 1 1
profil f O 0 0 1 F 0.25 0.25 x 0.5 y 0.5 x -0.5
explode b f
# loads the feature arguments defining a rotation axis
featrevol b f b_6 1 0 1 0 1 0 1 0
featperformval revol r 45
==BRepFeat_MakeRevol::Perform(Angle)
BRepFeat_Form::GlobalPerform ()
Gluer
still Gluer
Gluer result
~~~~~
Let us create a slot using the linear feature :
~~~~~
#create the base model using the multi viewer
mu4
profile p x 5 y 1 x -3 y -0.5 x -1.5 y 0.5 x 0.5 y 4 x -1 y -5
prism pr p 0 0 1
# create the contour for the linear feature
vertex v1 -0.2 4 0.3
vertex v2 0.2 4 0.3
vertex v3 0.2 0.2 0.3
vertex v4 4 0.2 0.3
vertex v5 4 -0.2 0.3
edge e1 v1 v2
edge e2 v2 v3
edge e3 v3 v4
edge e4 v4 v5
wire w e1 e2 e3 e4
# define a plane
plane pl 0.2 0.2 0.3 0 0 1
# loads the linear feature arguments
featlf pr w pl 0 0 0.3 0 0 0 0 1
featperform lf result
~~~~~
Let us create a rib using the revolution feature :
~~~~~
#create the base model using the multi viewer
mu4
pcylinder c1 3 5
# create the contour for the revolution feature
profile w c 1 190 WW
trotate w 0 0 0 1 0 0 90
ttranslate w -3 0 1
trotate w -3 0 1.5 0 0 1 180
plane pl -3 0 1.5 0 1 0
# loads the revolution feature arguments
featrf c1 w pl 0 0 0 0 0 1 0.3 0.3 1 1
featperform rf result
~~~~~
@subsubsection occt_draw_7_11_3 draft
Syntax:
~~~~~
draft result shape dirx diry dirz angle shape/surf/length [-IN/-OUT] [Ri/Ro] [-Internal]
~~~~~
Computes a draft angle surface from a wire. The surface is determined by the draft direction, the inclination of the draft surface, a draft angle, and a limiting distance.
* The draft angle is measured in radians.
* The draft direction is determined by the argument -INTERNAL
* The argument Ri/Ro deftermines wether the corner edges of the draft surfaces are angular or rounded.
* Arguments that can be used to define the surface distance are:
* length, a defined distance
* shape, until the surface contacts a shape
* surface, until the surface contacts a surface.
**Note** that the original aim of adding a draft angle to a shape is to produce a shape which can be removed easily from a mould. The Examples below use larger angles than are used normally and the calculation results returned are not indicated.
**Example:**
~~~~~
# to create a simple profile
profile p F 0 0 x 2 y 4 tt 0 4 w
# creates a draft with rounded angles
draft res p 0 0 1 3 1 -Ro
# to create a profile with an internal angle
profile p F 0 0 x 2 y 4 tt 1 1.5 tt 0 4 w
# creates a draft with rounded external angles
draft res p 0 0 1 3 1 -Ro
~~~~~
@subsubsection occt_draw_7_11_4 deform
Syntax:
~~~~~
deform newname name CoeffX CoeffY CoeffZ
~~~~~
Modifies the shape using the x, y, and z coefficients. You can reduce or magnify the shape in the x,y, and z directions.
**Example:**
~~~~~
pcylinder c 20 20
deform a c 1 3 5
# the conversion to bspline is followed by the
deformation
~~~~~
@subsubsection occt_draw_7_11_5 nurbsconvert
Syntax:
~~~~~
nurbsconvert result name [result name]
~~~~~
Changes the NURBS curve definition of a shape to a Bspline curve definition. This conversion is required for assymetric deformation and prepares the arguments for other commands such as **deform**. The conversion can be necessary when transferring shape data to other applications.
@subsubsection occt_draw_7_11_6 edgestofaces
**edgestofaces** - The command allows building planar faces from the planar edges randomly located in 3D space.
It has the following syntax:
~~~~
edgestofaces r_faces edges [-a AngTol -s Shared(0/1)]
~~~~
Options:
* -a AngTol - angular tolerance used for distinguishing the planar faces;
* -s Shared(0/1) - boolean flag which defines whether the input edges are already shared or have to be intersected.
@subsection occt_draw_hist History commands
Draw module for @ref occt_modalg_hist "History Information support" includes the command to save history of modifications performed by Boolean operation or sibling commands into a drawable object and the actual history commands:
* **setfillhistory**;
* **savehistory**;
* **isdeleted**;
* **modified**;
* **generated**.
@subsubsection occt_draw_hist_set setfillhistory
*setfillhistory* command controls if the history is needed to be filled in the supported algorithms and saved into the session after the algorithm is done.
By default it is TRUE, i.e. the history is filled and saved.
Syntax:
~~~~
setfillhistory : Controls the history collection by the algorithms and its saving into the session after algorithm is done.
Usage: setfillhistory [flag]
w/o arguments prints the current state of the option;
flag == 0 - history will not be collected and saved;
flag != 0 - history will be collected and saved into the session (default).
~~~~
Example:
~~~~
box b1 10 10 10
box b2 10 10 10
setfillhistory 0
bfuse r b1 b2
savehistory h
# No history has been prepared yet.
setfillhistory 1
bfuse r b1 b2
savehistory h
dump h
# *********** Dump of h *************
# History contains:
# - 2 Deleted shapes;
# - 52 Modified shapes;
# - 0 Generated shapes.
~~~~
@subsubsection occt_draw_hist_save savehistory
*savehistory* command saves the history from the session into a drawable object with the given name.
Syntax:
~~~~
savehistory : savehistory name
~~~~
If the history of shape modifications performed during an operation is needed, the *savehistory* command should be called after the command performing the operation.
If another operation supporting history will be performed before the history of the first operation is saved it will be overwritten with the new history.
Example:
~~~~
box b1 10 10 10
box b2 5 0 0 10 10 15
bfuse r b1 b2
savehistory fuse_hist
dump fuse_hist
#*********** Dump of fuse_hist *************
# History contains:
# - 4 Deleted shapes;
# - 20 Modified shapes;
# - 6 Generated shapes.
unifysamedom ru r
savehistory usd_hist
dump usd_hist
#*********** Dump of usd_hist *************
#History contains:
# - 14 Deleted shapes;
# - 28 Modified shapes;
# - 0 Generated shapes.
~~~~
@subsubsection occt_draw_hist_isdel isdeleted
*isdeleted* command checks if the given shape has been deleted in the given history.
Syntax:
~~~~
isdeleted : isdeleted history shape
~~~~
Example:
~~~~
box b1 4 4 4 2 2 2
box b2 10 10 10
bcommon r b1 b2
savehistory com_hist
# all vertices, edges and faces of the b2 are deleted
foreach s [join [list [explode b2 v] [explode b2 e] [explode b2 f] ] ] {
isdeleted com_hist $s
# Deleted
}
~~~~
@subsubsection occt_draw_hist_mod modified
*modified* command returns the shapes Modified from the given shape in the given history. All modified shapes are put into a compound. If the shape has not been modified, the resulting compound will be empty. Note that if the shape has been modified into a single shape only, it will be returned without enclosure into the compound.
Syntax:
~~~~
modified : modified modified_shapes history shape
~~~~
Example:
~~~~
box b 10 10 10
explode b e
fillet r b 2 b_1
savehistory fillet_hist
explode b f
modified m3 fillet_hist b_3
modified m5 fillet_hist b_5
~~~~
@subsubsection occt_draw_hist_gen generated
*generated* command returns the shapes Generated from the given shape in the given history. All generated shapes are put into a compound. If no shapes have been generated from the shape, the resulting compound will be empty. Note that; if the shape has generated a single shape only, it will be returned without enclosure into the compound.
Syntax:
~~~~
generated : generated generated_shapes history shape
~~~~
Example:
~~~~
polyline w1 0 0 0 10 0 0 10 10 0
polyline w2 5 1 10 9 1 10 9 5 10
thrusections r 0 0 w1 w2
savehistory loft_hist
explode w1 e
explode w2 e
generated g11 loft_hist w1_1
generated g12 loft_hist w1_2
generated g21 loft_hist w2_1
generated g22 loft_hist w2_2
compare g11 g21
# equal shapes
compare g12 g22
# equal shapes
~~~~
@subsubsection occt_draw_hist_extension Enabling Draw history support for the algorithms
Draw History mechanism allows fast and easy enabling of the Draw history support for the OCCT algorithms supporting standard history methods.
To enable History commands for the algorithm it is necessary to save the history of the algorithm into the session.
For that, it is necessary to put the following code into the command implementation just after the command is done:
~~~~
BRepTest_Objects::SetHistory(ListOfArguments, Algorithm);
~~~~
Here is the example of how it is done in the command performing Split operation (see implementation of the *bapisplit* command):
~~~~
BRepAlgoAPI_Splitter aSplitter;
// setting arguments
aSplitter.SetArguments(BOPTest_Objects::Shapes());
// setting tools
aSplitter.SetTools(BOPTest_Objects::Tools());
// setting options
aSplitter.SetRunParallel(BOPTest_Objects::RunParallel());
aSplitter.SetFuzzyValue(BOPTest_Objects::FuzzyValue());
aSplitter.SetNonDestructive(BOPTest_Objects::NonDestructive());
aSplitter.SetGlue(BOPTest_Objects::Glue());
aSplitter.SetCheckInverted(BOPTest_Objects::CheckInverted());
aSplitter.SetUseOBB(BOPTest_Objects::UseOBB());
aSplitter.SetToFillHistory(BRepTest_Objects::IsHistoryNeeded());
// performing operation
aSplitter.Build();
if (BRepTest_Objects::IsHistoryNeeded())
{
// Store the history for the Objects (overwrites the history in the session)
BRepTest_Objects::SetHistory(BOPTest_Objects::Shapes(), aSplitter);
// Add the history for the Tools
BRepTest_Objects::AddHistory(BOPTest_Objects::Tools(), aSplitter);
}
~~~~
The method *BRepTest_Objects::IsHistoryNeeded()* controls if the history is needed to be filled in the algorithm and saved into the session after the algorithm is done (*setfillhistory* command controls this option in DRAW).
@subsection occt_draw_7_12 Texture Mapping to a Shape
Texture mapping allows you to map textures on a shape. Textures are texture image files and several are predefined. You can control the number of occurrences of the texture on a face, the position of a texture and the scale factor of the texture.
@subsubsection occt_draw_7_12_1 vtexture
Syntax:
~~~~~
vtexture NameOfShape TextureFile
vtexture NameOfShape
vtexture NameOfShape ?
vtexture NameOfShape IdOfTexture
~~~~~
**TextureFile** identifies the file containing the texture you want. The same syntax without **TextureFile** disables texture mapping. The question-mark <b>?</b> lists available textures. **IdOfTexture** allows applying predefined textures.
@subsubsection occt_draw_7_12_2 vtexscale
Syntax:
~~~~~
vtexscale NameOfShape ScaleU ScaleV
vtexscale NameOfShape ScaleUV
vtexscale NameOfShape
~~~~~
*ScaleU* and *Scale V* allow scaling the texture according to the U and V parameters individually, while *ScaleUV* applies the same scale to both parameters.
The syntax without *ScaleU*, *ScaleV* or *ScaleUV* disables texture scaling.
@subsubsection occt_draw_7_12_3 vtexorigin
Syntax:
~~~~~
vtexorigin NameOfShape UOrigin VOrigin
vtexorigin NameOfShape UVOrigin
vtexorigin NameOfShape
~~~~~
*UOrigin* and *VOrigin* allow placing the texture according to the U and V parameters individually, while *UVOrigin* applies the same position value to both parameters.
The syntax without *UOrigin*, *VOrigin* or *UVOrigin* disables origin positioning.
@subsubsection occt_draw_7_12_4 vtexrepeat
Syntax:
~~~~~
vtexrepeat NameOfShape URepeat VRepeat
vtexrepeat NameOfShape UVRepeat
vtexrepeat NameOfShape
~~~~~
*URepeat* and *VRepeat* allow repeating the texture along the U and V parameters individually, while *UVRepeat* applies the same number of repetitions for both parameters.
The same syntax without *URepeat*, *VRepeat* or *UVRepeat* disables texture repetition.
@subsubsection occt_draw_7_12_5 vtexdefault
Syntax:
~~~~~
vtexdefault NameOfShape
~~~~~
*Vtexdefault* sets or resets the texture mapping default parameters.
The defaults are:
* *URepeat = VRepeat = 1* no repetition
* *UOrigin = VOrigin = 1* origin set at (0,0)
* *UScale = VScale = 1* texture covers 100% of the face
@section occt_draw_bop Boolean Operations Commands
This chapter describes existing commands of Open CASCADE Draw Test Harness that are used for performing, analyzing, debugging the algorithm in Boolean Component.
See @ref specification__boolean_operations "Boolean operations" user's guide for the description of these algorithms.
@subsection occt_draw_bop_two Boolean Operations on two operands
All commands in this section perform Boolean operations on two shapes. One of them is considered as object, and the other as a tool.
@subsubsection occt_draw_bop_two_bop bop, bopfuse, bopcut, boptuc, bopcommon, bopsection
These commands perform Boolean operations on two shapes:
* **bop** performs intersection of given shapes and stores the intersection results into internal Data Structure.
* **bopfuse** creates a new shape representing the union of two shapes.
* **bopcut** creates a new shape representing a subtraction of a second argument from the first one.
* **boptuc** creates a new shape representing a subtraction of a first argument from the second one.
* **bopcommon** creates a new shape representing the intersection of two shapes.
* **bopsection** creates a new shape representing the intersection edges and vertices between shapes.
These commands allow intersecting the shapes only once for building all types of Boolean operations. After *bop* command is done, the other commands in this category use the intersection results prepared by *bop*.
It may be very useful as the intersection part is usually most time-consuming part of the operation.
Syntax:
~~~~~
bop shape1 shape2
bopcommon result
bopfuse result
bopcut result
boptuc result
~~~~~
**Example:**
Let's produce all four boolean operations on a box and a cylinder performing intersection only once:
~~~~~
box b 0 -10 5 20 20 10
pcylinder c 5 20
# intersect the shape, storing results into data structure
bop b c
# fuse operation
bopfuse s1
# cut operation
bopcut s2
# opposite cut operation
boptuc s3
# common operation
bopcommon s4
# section operation
bopsection s5
~~~~~
@subsubsection occt_draw_bop_two_bapi bfuse, bcut, btuc, bcommon, bsection
These commands also perform Boolean operations on two shapes. These are the short variants of the bop* commands.
Each of these commands performs both intersection and building the result and may be useful if you need only the result of a single boolean operation.
Syntax:
~~~~~
bcommon result shape1 shape2
bfuse result shape1 shape2
bcut result shape1 shape2
btuc result shape1 shape2
~~~~~
**bection** command has some additional options for faces intersection:
~~~~
bsection result shape1 shape2 [-n2d/-n2d1/-n2d2] [-na]
Where:
result - result of the operation
shape1, shape2 - arguments of the operation
-n2d - disables PCurve construction on both objects
-n2d1 - disables PCurve construction on first object
-n2d2 - disables PCurve construction on second object
-na - disables approximation of the section curves
~~~~
@subsection occt_draw_bop_multi Boolean Operations on multiple arguments
The modern Boolean Operations algorithm available in Open CASCADE Technology is capable of performing a Boolean Operations not only on two shapes, but on arbitrary number of shapes.
In terms of Boolean Operations these arguments are divided on two groups **Objects** and **Tools**. The meaning of these groups is similar to the single object and tool of Boolean Operations on two shapes.
The Boolean operations are based on the General Fuse operation (see @ref specification__boolean_7 "General Fuse algorithm") which splits all input shapes basing on the intersection results.
Depending on the type of Boolean operation the BOP algorithm choses the necessary splits of the arguments.
@subsection occt_draw_bop_general_com General commands for working with multiple arguments
The algorithms based on General Fuse operation are using the same commands for adding and clearing the arguments list and for performing intersection of these arguments.
@subsubsection occt_draw_bop_general_com_add Adding arguments of operation
The following commands are used to add the objects and tools for Boolean operations:
* **baddobjects** *S1 S2...Sn* -- adds shapes *S1, S2, ... Sn* as Objects;
* **baddtools** *S1 S2...Sn* -- adds shapes *S1, S2, ... Sn* as Tools;
The following commands are used to clear the objects and tools:
* **bclearobjects** -- clears the list of Objects;
* **bcleartools** -- clears the list of Tools;
So, when running subsequent operation in one Draw session, make sure you cleared the Objects and Tools from previous operation. Otherwise, the new arguments will be added to the current ones.
@subsubsection occt_draw_bop_general_com_fill Intersection of the arguments
The command **bfillds** performs intersection of the arguments (**Objects** and **Tools**) and stores the intersection results into internal Data Structure.
@subsection occt_draw_bop_build Building the result of operations
@subsubsection occt_draw_bop_build_BOP Boolean operation
The command **bbop** is used for building the result of Boolean Operation. It has to be used after **bfillds** command.
Syntax:
~~~~
bbop result iOp
Where:
result - result of the operation
iOp - type of Boolean Operation. It could have the following values:
0 - COMMON operation
1 - FUSE operation
2 - CUT operation
3 - CUT21 (opposite CUT, i.e. objects and tools are swapped) operation
4 - SECTION operation
~~~~
**Example**
~~~~
box b1 10 10 10
box b2 5 5 5 10 10 10
box b3 -5 -5 -5 10 10 10
# Clear objects and tools from previous runs
bclearobjects
bcleartools
# add b1 as object
baddobjects b1
# add b2 and b3 as tools
baddtools b2 b3
# perform intersection
bfillds
# build result
bbop rcom 0
bbop rfuse 1
bbop rcut 2
bbop rtuc 3
bbop rsec 4
~~~~
@subsubsection occt_draw_bop_build_GF General Fuse operation
The command **bbuild** is used for building the result of General Fuse Operation. It has to be used after **bfillds** command.
General Fuse operation does not make the difference between Objects and Tools considering both as objects.
Syntax:
~~~~
bbuild result
~~~~
**Example**
~~~~
box b1 10 10 10
box b2 5 5 5 10 10 10
box b3 -5 -5 -5 10 10 10
# Clear objects and tools from previous runs
bclearobjects
bcleartools
# add b1 as object
baddobjects b1
# add b2 and b3 as tools
baddtools b2 b3
# perform intersection
bfillds
# build result
bbuild result
~~~~
@subsubsection occt_draw_bop_build_Split Split operation
Split operation splits the **Objects** by the **Tools**.
The command **bsplit** is used for building the result of Split operation. It has to be used after **bfillds** command.
**Example**
~~~~
box b1 10 10 10
box b2 5 5 5 10 10 10
box b3 -5 -5 -5 10 10 10
# Clear objects and tools from previous runs
bclearobjects
bcleartools
# add b1 as object
baddobjects b1
# add b2 and b3 as tools
baddtools b2 b3
# perform intersection
bfillds
# build result
bsplit result
~~~~
@subsubsection occt_draw_bop_build_BOP_opensolids Alternative command for BOP
There is an alternative way to build the result of Boolean operation using the **buildbop** command, which should be run after any other building command, such as **bbuild** or **bbop** or **bsplit**.
The command has the following features:
* It is designed to work on open solids and thus uses the alternative approach for building the results (see @ref specification__boolean_bop_on_opensolids "BOP on open solids" chapter of Boolean operations user guide).
* It allows changing the groups of Objects and Tools of the operation (even excluding some of the arguments is possible).
* History information for solids will be lost.
Syntax:
~~~~
buildbop result -o s1 [s2 ...] -t s3 [s4 ...] -op operation (common/fuse/cut/tuc)
Where:
result - result shape of the operation
s1 s2 s3 s4 - arguments (solids) of the GF operation
operation - type of boolean operation
~~~~
**Example**
~~~~
box b1 10 10 10
box b2 5 5 5 10 10 10
box b3 -5 -5 -5 10 10 10
bclearobjects
bcleartools
baddobjects b1 b2 b3
bfillds
bbuild r
# bbop command will not be available as the tools are not set
# but buildbop is available
# fuse of two
buildbop r1 -o b1 -t b2 -op fuse
buildbop r2 -o b2 -t b3 -op fuse
# fuse of all - it does not matter how the groups are formed
buildbop r3 -o b1 b2 -t b3 -op fuse
buildbop r4 -o b2 -t b1 b3 -op fuse
buildbop r5 -o b1 b2 b3 -op fuse
buildbop r6 -t b1 b2 b3 -op fuse
# common of two
buildbop r7 -o b2 -t b1 -op common
buildbop r8 -o b1 -t b3 -op common
# common
buildbop r9 -o b1 -t b2 b3 -op common
# cut
buildbop r10 -o b1 -t b2 b3 -op cut
# opposite cut
buildbop r11 -o b1 -t b2 b3 -op tuc
~~~~
@subsubsection occt_draw_bop_build_CB Cells Builder
See the @ref specification__boolean_10c_Cells_1 "Cells Builder Usage" for the Draw usage of Cells Builder algorithm.
@subsubsection occt_draw_bop_build_API Building result through API
The following commands are used to perform the operation using API implementation of the algorithms:
* **bapibuild** -- to perform API general fuse operation.
* **bapibop** -- to perform API Boolean operation.
* **bapisplit** -- to perform API Split operation.
These commands have the same syntax as the analogical commands described above.
@subsection occt_draw_bop_options Setting options for the operation
The algorithms in Boolean component have a wide range of options.
To see the current state of all option the command **boptions** should be used.
It has the following syntax:
~~~~
boptions [-default]
-default - allows to set all options to default state.
~~~~
To have an effect the options should be set before the operation (before *bfillds* command).
@subsubsection occt_draw_bop_options_par Parallel processing mode
**brunparallel** command enables/disables the parallel processing mode of the operation.
Syntax:
~~~~
brunparallel flag
Where:
flag is the boolean flag controlling the mode:
flag == 0 - parallel processing mode is off.
flag != 0 - parallel processing mode is on.
~~~~
The command is applicable for all commands in the component.
@subsubsection occt_draw_bop_options_safe Safe processing mode
**bnondestructive** command enables/disables the safe processing mode in which the input arguments are protected from modification.
Syntax:
~~~~
bnondestructive flag
Where:
flag is the boolean flag controlling the mode:
flag == 0 - safe processing mode is off.
flag != 0 - safe processing mode is on.
~~~~
The command is applicable for all commands in the component.
@subsubsection occt_draw_bop_options_fuzzy Fuzzy option
**bfuzzyvalue** command sets the additional tolerance for operations.
Syntax:
~~~~
bfuzzyvalue value
~~~~
The command is applicable for all commands in the component.
@subsubsection occt_draw_bop_options_glue Gluing option
**bglue** command sets the gluing mode for the BOP algorithms.
Syntax:
~~~~
bglue 0/1/2
Where:
0 - disables gluing mode.
1 - enables the Shift gluing mode.
2 - enables the Full gluing mode.
~~~~
The command is applicable for all commands in the component.
@subsubsection occt_draw_bop_options_checkinv Check inversion of input solids
**bcheckinverted** command enables/disables the check of the input solids on inverted status in BOP algorithms.
Syntax:
~~~~
bcheckinverted 0 (off) / 1 (on)
~~~~
The command is applicable for all commands in the component.
@subsubsection occt_draw_bop_options_obb OBB usage
**buseobb** commannd enables/disables the usage of OBB in BOP algorithms.
Syntax:
~~~~
buseobb 0 (off) / 1 (on)
~~~~
The command is applicable for all commands in the component.
@subsubsection occt_draw_bop_options_simplify Result simplification
**bsimplify** command enables/disables the result simplification after BOP. The command is applicable only to the API variants of GF, BOP and Split operations.
Syntax:
~~~~
bsimplify [-e 0/1] [-f 0/1] [-a tol]
Where:
-e 0/1 - enables/disables edges unification
-f 0/1 - enables/disables faces unification
-a tol - changes default angular tolerance of unification algo.
~~~~
@subsubsection occt_draw_bop_options_warn Drawing warning shapes
**bdrawwarnshapes** command enables/disables drawing of warning shapes of BOP algorithms.
Syntax:
~~~~
bdrawwarnshapes 0 (do not draw) / 1 (draw warning shapes)
~~~~
The command is applicable for all commands in the component.
@subsection occt_draw_bop_check Check commands
The following commands are analyzing the given shape on the validity of Boolean operation.
@subsubsection occt_draw_bop_check_1 bopcheck
Syntax:
~~~~
bopcheck shape [level of check: 0 - 9]
~~~~
It checks the given shape for self-interference. The optional level of check allows limiting the check to certain intersection types. Here are the types of interferences that will be checked for given level of check:
* 0 - only V/V;
* 1 - V/V and V/E;
* 2 - V/V, V/E and E/E;
* 3 - V/V, V/E, E/E and V/F;
* 4 - V/V, V/E, E/E, V/F and E/F;
* 5 - V/V, V/E, E/E, V/F, E/F and F/F;
* 6 - V/V, V/E, E/E, V/F, E/F, F/F and V/S;
* 7 - V/V, V/E, E/E, V/F, E/F, F/F, V/S and E/S;
* 8 - V/V, V/E, E/E, V/F, E/F, F/F, V/S, E/S and F/S;
* 9 - V/V, V/E, E/E, V/F, E/F, F/F, V/S, E/S, F/S and S/S - all interferences (Default value)
**Example:**
~~~~
box b1 10 10 10
box b2 3 3 3 4 4 4
compound b1 b2 c
bopcheck c
~~~~
In this example one box is completely included into other box. So the output shows that all sub-shapes of b2 interfering with the solid b1.
**bopcheck** command does not modifies the input shape, thus can be safely used.
@subsubsection occt_draw_bop_check_2 bopargcheck
**bopargcheck** syntax:
~~~~
bopargcheck Shape1 [[Shape2] [-F/O/C/T/S/U] [/R|F|T|V|E|I|P|C|S]] [#BF]
-<Boolean Operation>
F (fuse)
O (common)
C (cut)
T (cut21)
S (section)
U (unknown)
For example: "bopargcheck s1 s2 -F" enables checking for Fuse operation
default - section
/<Test Options>
R (disable small edges (shrank range) test)
F (disable faces verification test)
T (disable tangent faces searching test)
V (disable test possibility to merge vertices)
E (disable test possibility to merge edges)
I (disable self-interference test)
P (disable shape type test)
C (disable test for shape continuity)
S (disable curve on surface check)
For example: "bopargcheck s1 s2 /RI" disables small edge detection and self-intersection detection
default - all options are enabled
#<Additional Test Options>
B (stop test on first faulty found); default OFF
F (full output for faulty shapes); default - output in a short format
NOTE: <Boolean Operation> and <Test Options> are used only for couple of argument shapes, except I and P options that are always used for couple of shapes as well as for single shape test.
~~~~
As you can see *bopargcheck* performs more extended check of the given shapes than *bopcheck*.
**Example:**
Let's make an edge with big vertices:
~~~~
vertex v1 0 0 0
settolerance v1 0.5
vertex v2 1 0 0
settolerance v2 0.5
edge e v1 v2
top; don e; fit
tolsphere e
bopargcheck e
~~~~
Here is the output of this command:
~~~~
Made faulty shape: s1si_1
Made faulty shape: s1se_1
Faulties for FIRST shape found : 2
---------------------------------
Shapes are not suppotrted by BOP: NO
Self-Intersections : YES Cases(1) Total shapes(2)
Check for SI has been aborted : NO
Too small edges : YES Cases(1) Total shapes(1)
Bad faces : NO
Too close vertices : DISABLED
Too close edges : DISABLED
Shapes with Continuity C0 : NO
Invalid Curve on Surface : NO
Faulties for SECOND shape found : 0
~~~~
@subsection occt_draw_bop_debug Debug commands
The following terms and definitions are used in this chapter:
* **DS** -- internal data structure used by the algorithm (*BOPDS_DS* object).
* **PaveFiller** -- intersection part of the algorithm (*BOPAlgo_PaveFiller* object).
* **Builder** -- builder part of the algorithm (*BOPAlgo_Builder* object).
* **IDS Index** -- the index of the vector *myLines*.
@subsubsection occt_draw_bop_debug_int Intersection Part commands
All commands listed below are available when the Intersection Part of the algorithm is done (i.e. after the command *bfillds*).
**bopds**
Syntax:
~~~~
bopds -v [e, f]
~~~~
Displays:
* all BRep shapes of arguments that are in the DS [default];
* <i>-v</i> : only vertices of arguments that are in the DS;
* <i>-e</i> : only edges of arguments that are in the DS;
* <i>-f</i> : only faces of arguments that are in the DS.
**bopdsdump**
Prints contents of the DS.
Example:
~~~~
Draw[28]> bopdsdump
*** DS ***
Ranges:2 number of ranges
range: 0 33 indices for range 1
range: 34 67 indices for range 2
Shapes:68 total number of source shapes
0 : SOLID { 1 }
1 : SHELL { 2 12 22 26 30 32 }
2 : FACE { 4 5 6 7 8 9 10 11 }
3 : WIRE { 4 7 9 11 }
4 : EDGE { 5 6 }
5 : VERTEX { }
6 : VERTEX { }
7 : EDGE { 8 5 }
8 : VERTEX { }
~~~~
@code 0 : SOLID { 1 } @endcode has the following meaning:
* *0* -- index in the DS;
* *SOLID* -- type of the shape;
* <i>{ 1 }</i> -- a DS index of the successors.
**bopindex**
Syntax:
~~~~
bopindex S
~~~~
Prints DS index of shape *S*.
**bopiterator**
Syntax:
~~~~~
bopiterator [t1 t2]
~~~~~
Prints pairs of DS indices of source shapes that are intersected in terms of bounding boxes.
<i>[t1 t2]</i> are types of the shapes:
* *7* -- vertex;
* *6* -- edge;
* *4* -- face.
Example:
~~~~
Draw[104]> bopiterator 6 4
EF: ( z58 z12 )
EF: ( z17 z56 )
EF: ( z19 z64 )
EF: ( z45 z26 )
EF: ( z29 z36 )
EF: ( z38 z32 )
~~~~
* *bopiterator 6 4* prints pairs of indices for types: edge/face;
* *z58 z12* -- DS indices of intersecting edge and face.
**bopinterf**
Syntax:
~~~~
bopinterf t
~~~~
Prints contents of *myInterfTB* for the type of interference *t*:
* *t=0* : vertex/vertex;
* *t=1* : vertex/edge;
* *t=2* : edge/edge;
* *t=3* : vertex/face;
* *t=4* : edge/face.
Example:
~~~~
Draw[108]> bopinterf 4
EF: (58, 12, 68), (17, 56, 69), (19, 64, 70), (45, 26, 71), (29, 36, 72), (38, 32, 73), 6 EF found.
~~~~
Here, record <i>(58, 12, 68)</i> means:
* *58* -- a DS index of the edge;
* *12* -- a DS index of the face;
* *68* -- a DS index of the new vertex.
**bopsp**
Displays split edges.
Example:
~~~~
Draw[33]> bopsp
edge 58 : z58_74 z58_75
edge 17 : z17_76 z17_77
edge 19 : z19_78 z19_79
edge 45 : z45_80 z45_81
edge 29 : z29_82 z29_83
edge 38 : z38_84 z38_85
~~~~
* *edge 58* -- 58 is a DS index of the original edge.
* *z58_74 z58_75* -- split edges, where 74, 75 are DS indices of the split edges.
**bopcb**
Syntax:
~~~~
bopcb [nE]
~~~~
Prints Common Blocks for:
* all source edges (by default);
* the source edge with the specified index *nE*.
Example:
~~~~
Draw[43]> bopcb 17
-- CB:
PB:{ E:71 orE:17 Pave1: { 68 3.000 } Pave2: { 18 10.000 } }
Faces: 36
~~~~
This command dumps common blocks for the source edge with index 17.
* *PB* -- information about the Pave Block;
* *71* -- a DS index of the split edge
* *17* -- a DS index of the original edge
* <i>Pave1 : { 68 3.000 }</i> -- information about the Pave:
* *68* -- a DS index of the vertex of the pave
* *3.000* -- a parameter of vertex 68 on edge 17
* *Faces: 36* -- 36 is a DS index of the face the common block belongs to.
**bopfin**
Syntax:
~~~~
bopfin nF
~~~~
Prints Face Info about IN-parts for the face with DS index *nF*.
Example:
~~~~
Draw[47]> bopfin 36
pave blocks In:
PB:{ E:71 orE:17 Pave1: { 68 3.000 } Pave2: { 18 10.000 } }
PB:{ E:75 orE:19 Pave1: { 69 3.000 } Pave2: { 18 10.000 } }
vrts In:
18
~~~~
* <i>PB:{ E:71 orE:17 Pave1: { 68 3.000 } Pave2: { 18 10.000 } }</i> -- information about the Pave Block;
* <i>vrts In ... 18 </i> -- a DS index of the vertex IN the face.
**bopfon**
Syntax:
~~~~
bopfon nF
~~~~
Print Face Info about ON-parts for the face with DS index *nF*.
Example:
~~~~
Draw[58]> bopfon 36
pave blocks On:
PB:{ E:72 orE:38 Pave1: { 69 0.000 } Pave2: { 68 10.000 } }
PB:{ E:76 orE:45 Pave1: { 69 0.000 } Pave2: { 71 10.000 } }
PB:{ E:78 orE:43 Pave1: { 71 0.000 } Pave2: { 70 10.000 } }
PB:{ E:74 orE:41 Pave1: { 68 0.000 } Pave2: { 70 10.000 } }
vrts On:
68 69 70 71
~~~~
* <i>PB:{ E:72 orE:38 Pave1: { 69 0.000 } Pave2: { 68 10.000 } }</i> -- information about the Pave Block;
* <i>vrts On: ... 68 69 70 71</i> -- DS indices of the vertices ON the face.
**bopwho**
Syntax:
~~~~
bopwho nS
~~~~
Prints the information about the shape with DS index *nF*.
Example:
~~~~
Draw[116]> bopwho 5
rank: 0
~~~~
* *rank: 0* -- means that shape 5 results from the Argument with index 0.
Example:
~~~~
Draw[118]> bopwho 68
the shape is new
EF: (58, 12),
FF curves: (12, 56),
FF curves: (12, 64),
~~~~
This means that shape 68 is a result of the following interferences:
* *EF: (58, 12)* -- edge 58 / face 12
* *FF curves: (12, 56)* -- edge from the intersection curve between faces 12 and 56
* *FF curves: (12, 64)* -- edge from the intersection curve between faces 12 and 64
**bopnews**
Syntax:
~~~~
bopnews -v [-e]
~~~~
* <i>-v</i> -- displays all new vertices produced during the operation;
* <i>-e</i> -- displays all new edges produced during the operation.
@subsubsection occt_draw_bop_debug_build Building Part commands
The commands listed below are available when the Building Part of the algorithm is done (i.e. after the command *bbuild*).
**bopim**
Syntax:
~~~~
bopim S
~~~~
Shows the compound of shapes that are images of shape *S* from the argument.
@section occt_draw_8 Data Exchange commands
This chapter presents some general information about Data Exchange (DE) operations.
DE commands are intended for translation files of various formats (IGES,STEP) into OCCT shapes with their attributes (colors, layers etc.)
This files include a number of entities. Each entity has its own number in the file which we call label and denote as # for a STEP file and D for an IGES file. Each file has entities called roots (one or more). A full description of such entities is contained in the Users' Guides
* for <a href="user_guides__step.html#occt_step_1">STEP format</a> and
* for <a href="user_guides__iges.html#occt_iges_1">IGES format</a>.
Each Draw session has an interface model, which is a structure for keeping various information.
The first step of translation is loading information from a file into a model.
The second step is creation of an OpenCASCADE shape from this model.
Each entity from a file has its own number in the model (num). During the translation a map of correspondences between labels(from file) and numbers (from model) is created.
The model and the map are used for working with most of DE commands.
@subsection occt_draw_8_1 IGES commands
@subsubsection occt_draw_8_1_1 igesread
Syntax:
~~~~~
igesread <file_name> <result_shape_name> [<selection>]
~~~~~
Reads an IGES file to an OCCT shape. This command will interactively ask the user to select a set of entities to be converted.
| N | Mode | Description |
| :-- | :-- | :---------- |
| 0 | End | finish conversion and exit igesbrep |
| 1 | Visible roots | convert only visible roots |
| 2 | All roots | convert all roots |
| 3 | One entity | convert entity with number provided by the user |
| 4 | Selection | convert only entities contained in selection |
After the selected set of entities is loaded the user will be asked how loaded entities should be converted into OCCT shapes (e.g., one shape per root or one shape for all the entities). It is also possible to save loaded shapes in files, and to cancel loading.
The second parameter of this command defines the name of the loaded shape. If several shapes are created, they will get indexed names. For instance, if the last parameter was *s*, they will be *s_1, ... s_N*.
<i>\<selection\></i> specifies the scope of selected entities in the model, by default it is *xst-transferrable-roots*. If we use symbol <i>*</i> as <i>\<selection\></i> all roots will be translated.
See also the detailed description of <a href="user_guides__iges.html#occt_iges_2_3_4">Selecting IGES entities</a>.
**Example:**
~~~~~
# translation all roots from file
igesread /disk01/files/model.igs a *
~~~~~
@subsubsection occt_draw_8_1_2 tplosttrim
Syntax:
~~~~~
tplosttrim [<IGES_type>]
~~~~~
Sometimes the trimming contours of IGES faces (i.e., entity 141 for 143, 142 for 144) can be lost during translation due to fails. This command gives us a number of lost trims and the number of corresponding IGES entities.
It outputs the rank and numbers of faces that lost their trims and their numbers for each type (143, 144, 510) and their total number. If a face lost several of its trims it is output only once.
Optional parameter <i>\<IGES_type\></i> can be *0TrimmedSurface, BoundedSurface* or *Face* to specify the only type of IGES faces.
**Example:**
~~~~~
tplosttrim TrimmedSurface
~~~~~
@subsubsection occt_draw_8_1_3 brepiges
Syntax:
~~~~~
brepiges <shape_name> <filename.igs>
~~~~~
Writes an OCCT shape to an IGES file.
**Example:**
~~~~~
# write shape with name aa to IGES file
brepiges aa /disk1/tmp/aaa.igs
== unit (write) : MM
== mode write : Faces
== To modifiy : command param
== 1 Shapes written, giving 345 Entities
== Now, to write a file, command : writeall filename
== Output on file : /disk1/tmp/aaa.igs
== Write OK
~~~~~
@subsection occt_draw_8_2 STEP commands
These commands are used during the translation of STEP models.
@subsubsection occt_draw_8_2_1 stepread
Syntax:
~~~~~
stepread file_name result_shape_name [selection]
~~~~~
Read a STEP file to an OCCT shape.
This command will interactively ask the user to select a set of entities to be converted:
| N | Mode | Description |
| :---- | :---- | :---- |
| 0 | End | Finish transfer and exit stepread |
| 1 | root with rank 1 | Transfer first root |
| 2 | root by its rank | Transfer root specified by its rank |
| 3 | One entity | Transfer entity with a number provided by the user |
| 4 | Selection | Transfer only entities contained in selection |
After the selected set of entities is loaded the user will be asked how loaded entities should be converted into OCCT shapes.
The second parameter of this command defines the name of the loaded shape. If several shapes are created, they will get indexed names. For instance, if the last parameter was *s*, they will be *s_1, ... s_N*.
<i>\<selection\></i> specifies the scope of selected entities in the model. If we use symbol <i>*</i> as <i>\<selection\></i> all roots will be translated.
See also the detailed description of <a href="user_guides__step.html#occt_step_2_3_6">Selecting STEP entities</a>.
**Example:**
~~~~~
# translation all roots from file
stepread /disk01/files/model.stp a *
~~~~~
@subsubsection occt_draw_8_2_2 stepwrite
Syntax:
~~~~~
stepwrite mode shape_name file_name
~~~~~
Writes an OCCT shape to a STEP file.
The following modes are available :
* *a* -- as is -- the mode is selected automatically depending on the type & geometry of the shape;
* *m* -- *manifold_solid_brep* or *brep_with_voids*
* *f* -- *faceted_brep*
* *w* -- *geometric_curve_set*
* *s* -- *shell_based_surface_model*
For further information see <a href="#user_guides__step.html#occt_step_6_5">Writing a STEP file</a>.
**Example:**
Let us write shape *a* to a STEP file in mode *0*.
~~~~~
stepwrite 0 a /disk1/tmp/aaa.igs
~~~~~
@subsection occt_draw_8_3 General commands
These are auxilary commands used for the analysis of result of translation of IGES and STEP files.
@subsubsection occt_draw_8_3_1 count
Syntax:
~~~~~
count <counter> [<selection>]
~~~~~
Calculates statistics on the entities in the model and outputs a count of entities.
The optional selection argument, if specified, defines a subset of entities, which are to be taken into account. The first argument should be one of the currently defined counters.
| Counter | Operation |
| :-------- | :-------- |
| xst-types | Calculates how many entities of each OCCT type exist |
| step214-types | Calculates how many entities of each STEP type exist |
**Example:**
~~~~~
count xst-types
~~~~~
@subsubsection occt_draw_8_3_2 data
Syntax:
~~~~~
data <symbol>
~~~~~
Obtains general statistics on the loaded data.
The information printed by this command depends on the symbol specified.
**Example:**
~~~~~
# print full information about warnings and fails
data c
~~~~~
| Symbol | Output |
| :------ | :------ |
| g | Prints the information contained in the header of the file |
| c or f | Prints messages generated during the loading of the STEP file (when the procedure of the integrity of the loaded data check is performed) and the resulting statistics (f works only with fail messages while c with both fail and warning messages) |
| t | The same as c or f, with a list of failed or warned entities |
| m or l | The same as t but also prints a status for each entity |
| e | Lists all entities of the model with their numbers, types, validity status etc. |
| R | The same as e but lists only root entities |
@subsubsection occt_draw_8_3_3 elabel
Syntax:
~~~~~
elabel <num>
~~~~~
Entities in the IGES and STEP files are numbered in the succeeding order. An entity can be identified either by its number or by its label. Label is the letter ‘#'(for STEP, for IGES use ‘D’) followed by the rank. This command gives us a label for an entity with a known number.
**Example:**
~~~~~
elabel 84
~~~~~
@subsubsection occt_draw_8_3_4 entity
Syntax:
~~~~~
entity <#(D)>_or_<num> <level_of_information>
~~~~~
The content of an IGES or STEP entity can be obtained by using this command.
Entity can be determined by its number or label.
<i>\<level_of_information\></i> has range [0-6]. You can get more information about this level using this command without parameters.
**Example:**
~~~~~
# full information for STEP entity with label 84
entity #84 6
~~~~~
@subsubsection occt_draw_8_3_5 enum
Syntax:
~~~~~
enum <#(D)>
~~~~~
Prints a number for the entity with a given label.
**Example:**
~~~~~
# give a number for IGES entity with label 21
enum D21
~~~~~
@subsubsection occt_draw_8_3_6 estatus
Syntax:
~~~~~
estatus <#(D)>_or_<num>
~~~~~
The list of entities referenced by a given entity and the list of entities referencing to it can be obtained by this command.
**Example:**
~~~~~
estatus #315
~~~~~
@subsubsection occt_draw_8_3_7 fromshape
Syntax:
~~~~~
fromshape <shape_name>
~~~~~
Gives the number of an IGES or STEP entity corresponding to an OCCT shape. If no corresponding entity can be found and if OCCT shape is a compound the command explodes it to subshapes and try to find corresponding entities for them.
**Example:**
~~~~~
fromshape a_1_23
~~~~~
@subsubsection occt_draw_8_3_8 givecount
Syntax:
~~~~~
givecount <selection_name> [<selection_name>]
~~~~~
Prints a number of loaded entities defined by the selection argument.
Possible values of \<selection_name\> you can find in the “IGES FORMAT Users’s Guide”.
**Example:**
~~~~~
givecount xst-model-roots
~~~~~
@subsubsection occt_draw_8_3_9 givelist
Syntax:
~~~~~
givelist <selection_name>
~~~~~
Prints a list of a subset of loaded entities defined by the selection argument:
| Selection | Description |
| :-------- | :----------- |
| xst-model-all | all entities of the model |
| xst-model-roots | all roots |
| xst-pointed | (Interactively) pointed entities (not used in DRAW) |
| xst-transferrable-all | all transferable (recognized) entities |
| xst-transferrable-roots | Transferable roots |
**Example:**
~~~~~
# give a list of all entities of the model
givelist xst-model-all
~~~~~
@subsubsection occt_draw_8_3_10 listcount
Syntax: listcount \<counter\> [\<selection\> ...]
Prints a list of entities per each type matching the criteria defined by arguments.
Optional <i>\<selection\></i> argument, if specified, defines a subset of entities, which are to be taken into account. Argument <i>\<counter\></i> should be one of the currently defined counters:
| Counter | Operation |
| :----- | :------ |
| xst-types | Calculates how many entities of each OCCT type exist |
| iges-types | Calculates how many entities of each IGES type and form exist |
| iges-levels | Calculates how many entities lie in different IGES levels |
**Example:**
~~~~~
listcount xst-types
~~~~~
@subsubsection occt_draw_8_3_11 listitems
Syntax:
~~~~~
listitems
~~~~~
This command prints a list of objects (counters, selections etc.) defined in the current session.
@subsubsection occt_draw_8_3_12 listtypes
Syntax:
~~~~~
listtypes [<selection_name> ...]
~~~~~
Gives a list of entity types which were encountered in the last loaded file (with a number of entities of each type). The list can be shown not for all entities but for a subset of them. This subset is defined by an optional selection argument.
@subsubsection occt_draw_8_3_13 newmodel
Syntax:
~~~~~
newmodel
~~~~~
Clears the current model.
@subsubsection occt_draw_8_3_14 param
Syntax:
~~~~~
param [<parameter>] [<value>]
~~~~~
This command is used to manage translation parameters.
Command without arguments gives a full list of parameters with current values.
Command with <i>\<parameter\></i> (without <i><value></i>) gives us the current value of this parameter and all possible values for it. Command with <i><value></i> sets this new value to <i>\<parameter\></i>.
**Example:**
Let us get the information about possible schemes for writing STEP file :
~~~~~
param write.step.schema
~~~~~
@subsubsection occt_draw_8_3_15 sumcount
Syntax:
~~~~~
sumcount <counter> [<selection> ...]
~~~~~
Prints only a number of entities per each type matching the criteria defined by arguments.
**Example:**
~~~~~
sumcount xst-types
~~~~~
@subsubsection occt_draw_8_3_16 tpclear
Syntax:
~~~~~
tpclear
~~~~~
Clears the map of correspondences between IGES or STEP entities and OCCT shapes.
@subsubsection occt_draw_8_3_17 tpdraw
Syntax:
~~~~~
tpdraw <#(D)>_or_<num>
~~~~~
**Example:**
~~~~~
tpdraw 57
~~~~~
@subsubsection occt_draw_8_3_18 tpent
Syntax:
~~~~~
tpent <#(D)>_or_<num>
~~~~~
Get information about the result of translation of the given IGES or STEP entity.
**Example:**
~~~~~
tpent \#23
~~~~~
@subsubsection occt_draw_8_3_19 tpstat
Syntax:
~~~~~
tpstat [*|?]<symbol> [<selection>]
~~~~~
Provides all statistics on the last transfer, including a list of transferred entities with mapping from IGES or STEP to OCCT types, as well as fail and warning messages. The parameter <i>\<symbol\></i> defines what information will be printed:
* *g* -- General statistics (a list of results and messages)
* *c* -- Count of all warning and fail messages
* *C* -- List of all warning and fail messages
* *f* -- Count of all fail messages
* *F* -- List of all fail messages
* *n* -- List of all transferred roots
* *s* -- The same, with types of source entity and the type of result
* *b* -- The same, with messages
* *t* -- Count of roots for geometrical types
* *r* -- Count of roots for topological types
* *l* -- The same, with the type of the source entity
The sign \* before parameters *n, s, b, t, r* makes it work on all entities (not only on roots).
The sign ? before *n, s, b, t* limits the scope of information to invalid entities.
Optional argument \<selection\> can limit the action of the command to the selection, not to all entities.
To get help, run this command without arguments.
**Example:**
~~~~~
# translation ratio on IGES faces
tpstat *l iges-faces
~~~~~
@subsubsection occt_draw_8_3_20 xload
Syntax:
~~~~~
xload <file_name>
~~~~~
This command loads an IGES or STEP file into memory (i.e. to fill the model with data from the file) without creation of an OCCT shape.
**Example:**
~~~~~
xload /disk1/tmp/aaa.stp
~~~~~
@subsection occt_draw_8_4 Overview of XDE commands
These commands are used for translation of IGES and STEP files into an XCAF document (special document is inherited from CAF document and is intended for Extended Data Exchange (XDE) ) and working with it. XDE translation allows reading and writing of shapes with additional attributes -- colors, layers etc. All commands can be divided into the following groups:
* XDE translation commands
* XDE general commands
* XDE shape’s commands
* XDE color’s commands
* XDE layer’s commands
* XDE property’s commands
Reminding: All operations of translation are performed with parameters managed by command @ref occt_draw_8_3_14 "param".
@subsubsection occt_draw_8_4_1 ReadIges
Syntax:
~~~~~
ReadIges document file_name
~~~~~
Reads information from an IGES file to an XCAF document.
**Example:**
~~~~~
ReadIges D /disk1/tmp/aaa.igs
==> Document saved with name D
~~~~~
@subsubsection occt_draw_8_4_2 ReadStep
Syntax:
~~~~~
ReadStep <document> <file_name>
~~~~~
Reads information from a STEP file to an XCAF document.
**Example:**
~~~~~
ReadStep D /disk1/tmp/aaa.stp
== Document saved with name D
~~~~~
@subsubsection occt_draw_8_4_3 WriteIges
Syntax:
~~~~~
WriteIges <document> <file_name>
~~~~~
**Example:**
~~~~~
WriteIges D /disk1/tmp/aaa.igs
~~~~~
@subsubsection occt_draw_8_4_4 WriteStep
Syntax:
~~~~~
WriteStep <document> <file_name>
~~~~~
Writes information from an XCAF document to a STEP file.
**Example:**
~~~~~
WriteStep D /disk1/tmp/aaa.stp
~~~~~
@subsubsection occt_draw_8_4_5 XFileCur
Syntax:
~~~~~
XFileCur
~~~~~
Returns the name of file which is set as the current one in the Draw session.
**Example:**
~~~~~
XFileCur
== *as1-ct-203.stp*
~~~~~
@subsubsection occt_draw_8_4_6 XFileList
Syntax:
~~~~~
XFileList
~~~~~
Returns a list all files that were transferred by the last transfer. This command is meant (assigned) for the assemble step file.
**Example:**
~~~~~
XFileList
==> *as1-ct-Bolt.stp*
==> *as1-ct-L-Bracktet.stp*
==> *as1-ct-LBA.stp*
==> *as1-ct-NBA.stp*
==> …
~~~~~
@subsubsection occt_draw_8_4_7 XFileSet
Syntax:
~~~~~
XFileSet <filename>
~~~~~
Sets the current file taking it from the components list of the assemble file.
**Example:**
~~~~~
XFileSet as1-ct-NBA.stp
~~~~~
@subsubsection occt_draw_8_4_8 XFromShape
Syntax:
~~~~~
XFromShape <shape>
~~~~~
This command is similar to the command @ref occt_draw_8_3_7 "fromshape", but gives additional information about the file name. It is useful if a shape was translated from several files.
**Example:**
~~~~~
XFromShape a
==> Shape a: imported from entity 217:#26 in file as1-ct-Nut.stp
~~~~~
@subsection occt_draw_8_5 XDE general commands
@subsubsection occt_draw_8_5_1 XNewDoc
Syntax:
~~~~~
XNewDoc <document>
~~~~~
Creates a new XCAF document.
**Example:**
~~~~~
XNewDoc D
~~~~~
@subsubsection occt_draw_8_5_2 XShow
Syntax:
~~~~~
XShow <document> [ <label1> … ]
~~~~~
Shows a shape from a given label in the 3D viewer. If the label is not given -- shows all shapes from the document.
**Example:**
~~~~~
# show shape from label 0:1:1:4 from document D
XShow D 0:1:1:4
~~~~~
@subsubsection occt_draw_8_5_3 XStat
Syntax:
~~~~~
XStat <document>
~~~~~
Prints common information from an XCAF document.
**Example:**
~~~~~
XStat D
==>Statistis of shapes in the document:
==>level N 0 : 9
==>level N 1 : 18
==>level N 2 : 5
==>Total number of labels for shapes in the document = 32
==>Number of labels with name = 27
==>Number of labels with color link = 3
==Number of labels with layer link = 0
==>Statistis of Props in the document:
==>Number of Centroid Props = 5
==>Number of Volume Props = 5
==>Number of Area Props = 5
==>Number of colors = 4
==>BLUE1 RED YELLOW BLUE2
==>Number of layers = 0
~~~~~
@subsubsection occt_draw_8_5_4 XWdump
Syntax:
~~~~~
XWdump <document> <filename>
~~~~~
Saves the contents of the viewer window as an image (XWD, png or BMP file).
<i>\<filename\></i> must have a corresponding extention.
**Example:**
~~~~~
XWdump D /disk1/tmp/image.png
~~~~~
@subsubsection occt_draw_8_5_5 Xdump
Syntax:
~~~~~
Xdump <document> [int deep {0|1}]
~~~~~
Prints information about the tree structure of the document. If parameter 1 is given, then the tree is printed with a link to shapes.
**Example:**
~~~~~
Xdump D 1
==> ASSEMBLY 0:1:1:1 L-BRACKET(0xe8180448)
==> ASSEMBLY 0:1:1:2 NUT(0xe82151e8)
==> ASSEMBLY 0:1:1:3 BOLT(0xe829b000)
==> ASSEMBLY 0:1:1:4 PLATE(0xe8387780)
==> ASSEMBLY 0:1:1:5 ROD(0xe8475418)
==> ASSEMBLY 0:1:1:6 AS1(0xe8476968)
==> ASSEMBLY 0:1:1:7 L-BRACKET-ASSEMBLY(0xe8476230)
==> ASSEMBLY 0:1:1:1 L-BRACKET(0xe8180448)
==> ASSEMBLY 0:1:1:8 NUT-BOLT-ASSEMBLY(0xe8475ec0)
==> ASSEMBLY 0:1:1:2 NUT(0xe82151e8)
==> ASSEMBLY 0:1:1:3 BOLT(0xe829b000)
etc.
~~~~~
@subsection occt_draw_8_6 XDE shape commands
@subsubsection occt_draw_8_6_1 XAddComponent
Syntax:
~~~~~
XAddComponent <document> <label> <shape>
~~~~~
Adds a component shape to assembly.
**Example:**
Let us add shape b as component shape to assembly shape from label *0:1:1:1*
~~~~~
XAddComponent D 0:1:1:1 b
~~~~~
@subsubsection occt_draw_8_6_2 XAddShape
Syntax:
~~~~~
XAddShape <document> <shape> [makeassembly=1]
~~~~~
Adds a shape (or an assembly) to a document. If this shape already exists in the document, then prints the label which points to it. By default, a new shape is added as an assembly (i.e. last parameter 1), otherwise it is necessary to pass 0 as the last parameter.
**Example:**
~~~~~
# add shape b to document D
XAddShape D b 0
== 0:1:1:10
# if pointed shape is compound and last parameter in
# XAddShape command is used by default (1), then for
# each subshapes new label is created
~~~~~
@subsubsection occt_draw_8_6_3 XFindComponent
Syntax:
~~~~~
XFindComponent <document> <shape>
~~~~~
Prints a sequence of labels of the assembly path.
**Example:**
~~~~~
XFindComponent D b
~~~~~
@subsubsection occt_draw_8_6_4 XFindShape
Syntax:
~~~~~
XFindShape <document> <shape>
~~~~~
Finds and prints a label with an indicated top-level shape.
**Example:**
~~~~~
XFindShape D a
~~~~~
@subsubsection occt_draw_8_6_5 XGetFreeShapes
Syntax:
~~~~~
XGetFreeShapes <document> [shape_prefix]
~~~~~
Print labels or create DRAW shapes for all free shapes in the document.
If *shape_prefix* is absent -- prints labels, else -- creates DRAW shapes with names
<i>shape_prefix</i>_num (i.e. for example: there are 3 free shapes and *shape_prefix* = a therefore shapes will be created with names a_1, a_2 and a_3).
**Note**: a free shape is a shape to which no other shape refers to.
**Example:**
~~~~~
XGetFreeShapes D
== 0:1:1:6 0:1:1:10 0:1:1:12 0:1:1:13
XGetFreeShapes D sh
== sh_1 sh_2 sh_3 sh_4
~~~~~
@subsubsection occt_draw_8_6_6 XGetOneShape
Syntax:
~~~~~
XGetOneShape <shape> <document>
~~~~~
Creates one DRAW shape for all free shapes from a document.
**Example:**
~~~~~
XGetOneShape a D
~~~~~
@subsubsection occt_draw_8_6_7 XGetReferredShape
Syntax:
~~~~~
XGetReferredShape <document> <label>
~~~~~
Prints a label that contains a top-level shape that corresponds to a shape at a given label.
**Example:**
~~~~~
XGetReferredShape D 0:1:1:1:1
~~~~~
@subsubsection occt_draw_8_6_8 XGetShape
Syntax:
~~~~~
XGetShape <result> <document> <label>
~~~~~
Puts a shape from the indicated label in document to result.
**Example:**
~~~~~
XGetShape b D 0:1:1:3
~~~~~
@subsubsection occt_draw_8_6_9 XGetTopLevelShapes
Syntax:
~~~~~
XGetTopLevelShapes <document>
~~~~~
Prints labels that contain top-level shapes.
**Example:**
~~~~~
XGetTopLevelShapes D
== 0:1:1:1 0:1:1:2 0:1:1:3 0:1:1:4 0:1:1:5 0:1:1:6 0:1:1:7
0:1:1:8 0:1:1:9
~~~~~
@subsubsection occt_draw_8_6_10 XLabelInfo
Syntax:
~~~~~
XLabelInfo <document> <label>
~~~~~
Prints information about a shape, stored at an indicated label.
**Example:**
~~~~~
XLabelInfo D 0:1:1:6
==> There are TopLevel shapes. There is an Assembly. This Shape is not used.
~~~~~
@subsubsection occt_draw_8_6_11 XNewShape
Syntax:
~~~~~
XNewShape <document>
~~~~~
Creates a new empty top-level shape.
**Example:**
~~~~~
XNewShape D
~~~~~
@subsubsection occt_draw_8_6_12 XRemoveComponent
Syntax:
~~~~~
XRemoveComponent <document> <label>
~~~~~
Removes a component from the components label.
**Example:**
~~~~~
XRemoveComponent D 0:1:1:1:1
~~~~~
@subsubsection occt_draw_8_6_13 XRemoveShape
Syntax:
~~~~~
XRemoveShape <document> <label>
~~~~~
Removes a shape from a document (by it’s label).
**Example:**
~~~~~
XRemoveShape D 0:1:1:2
~~~~~
@subsubsection occt_draw_8_6_14 XSetShape
Syntax:
~~~~~
XSetShape <document> <label> <shape>
~~~~~
Sets a shape at the indicated label.
**Example:**
~~~~~
XSetShape D 0:1:1:3 b
~~~~~
@subsubsection occt_draw_8_6_15 XUpdateAssemblies
Syntax:
~~~~~
XUpdateAssemblies <document>
~~~~~
Updates all assembly compounds in the XDE document.
**Example:**
~~~~~
XUpdateAssemblies D
~~~~~
@subsection occt_draw_8_7_ XDE color commands
@subsubsection occt_draw_8_7_1 XAddColor
Syntax:
~~~~~
XAddColor <document> <R> <G> <B>
~~~~~
Adds color in document to the color table. Parameters R,G,B are real.
**Example:**
~~~~~
XAddColor D 0.5 0.25 0.25
~~~~~
@subsubsection occt_draw_8_7_2 XFindColor
Syntax:
~~~~~
XFindColor <document> <R> <G> <B>
~~~~~
Finds a label where the indicated color is situated.
**Example:**
~~~~~
XFindColor D 0.25 0.25 0.5
==> 0:1:2:2
~~~~~
@subsubsection occt_draw_8_7_3 XGetAllColors
Syntax:
~~~~~
XGetAllColors <document>
~~~~~
Prints all colors that are defined in the document.
**Example:**
~~~~~
XGetAllColors D
==> RED DARKORANGE BLUE1 GREEN YELLOW3
~~~~~
@subsubsection occt_draw_8_7_4 XGetColor
Syntax:
~~~~~
XGetColor <document> <label>
~~~~~
Returns a color defined at the indicated label from the color table.
**Example:**
~~~~~
XGetColor D 0:1:2:3
== BLUE1
~~~~~
@subsubsection occt_draw_8_7_5 XGetObjVisibility
Syntax:
~~~~~
XGetObjVisibility <document> {<label>|<shape>}
~~~~~
Returns the visibility of a shape.
**Example:**
~~~~~
XGetObjVisibility D 0:1:1:4
~~~~~
@subsubsection occt_draw_8_7_6 XGetShapeColor
Syntax:
~~~~~
XGetShapeColor <document> <label> <colortype(s|c)>
~~~~~
Returns the color defined by label. If <i>colortype</i>=’s’ -- returns surface color, else -- returns curve color.
**Example:**
~~~~~
XGetShapeColor D 0:1:1:4 c
~~~~~
@subsubsection occt_draw_8_7_7 XRemoveColor
Syntax:
~~~~~
XRemoveColor <document> <label>
~~~~~
Removes a color from the color table in a document.
**Example:**
~~~~~
XRemoveColor D 0:1:2:1
~~~~~
@subsubsection occt_draw_8_7_8 XSetColor
Syntax:
~~~~~
XSetColor <document> {<label>|<shape>} <R> <G> <B>
~~~~~
Sets an RGB color to a shape given by label.
**Example:**
~~~~~
XsetColor D 0:1:1:4 0.5 0.5 0.
~~~~~
@subsubsection occt_draw_8_7_9 XSetObjVisibility
Syntax:
~~~~~
XSetObjVisibility <document> {<label>|<shape>} {0|1}
~~~~~
Sets the visibility of a shape.
**Example:**
~~~~~
# set shape from label 0:1:1:4 as invisible
XSetObjVisibility D 0:1:1:4 0
~~~~~
@subsubsection occt_draw_8_7_10 XUnsetColor
Syntax:
~~~~~
XUnsetColor <document> {<label>|<shape>} <colortype>
~~~~~
Unset a color given type (‘s’ or ‘c’) for the indicated shape.
**Example:**
~~~~~
XUnsetColor D 0:1:1:4 s
~~~~~
@subsection occt_draw_8_8_ XDE layer commands
@subsubsection occt_draw_8_8_1 XAddLayer
Syntax:
~~~~~
XAddLayer <document> <layer>
~~~~~
Adds a new layer in an XCAF document.
**Example:**
~~~~~
XAddLayer D layer2
~~~~~
@subsubsection occt_draw_8_8_2 XFindLayer
Syntax:
~~~~~
XFindLayer <document> <layer>
~~~~~
Prints a label where a layer is situated.
**Example:**
~~~~~
XFindLayer D Bolt
== 0:1:3:2
~~~~~
@subsubsection occt_draw_8_8_3 XGetAllLayers
Syntax:
~~~~~
XGetAllLayers <document>
~~~~~
Prints all layers in an XCAF document.
**Example:**
~~~~~
XGetAllLayers D
== *0:1:1:3* *Bolt* *0:1:1:9*
~~~~~
@subsubsection occt_draw_8_8_4 XGetLayers
Syntax:
~~~~~
XGetLayers <document> {<shape>|<label>}
~~~~~
Returns names of layers, which are pointed to by links of an indicated shape.
**Example:**
~~~~~
XGetLayers D 0:1:1:3
== *bolt* *123*
~~~~~
@subsubsection occt_draw_8_8_5 XGetOneLayer
Syntax:
~~~~~
XGetOneLayer <document> <label>
~~~~~
Prints the name of a layer at a given label.
**Example:**
~~~~~
XGetOneLayer D 0:1:3:2
~~~~~
@subsubsection occt_draw_8_8_6 XIsVisible
Syntax:
~~~~~
XIsVisible <document> {<label>|<layer>}
~~~~~
Returns 1 if the indicated layer is visible, else returns 0.
**Example:**
~~~~~
XIsVisible D 0:1:3:1
~~~~~
@subsubsection occt_draw_8_8_7 XRemoveAllLayers
Syntax:
~~~~~
XRemoveAllLayers <document>
~~~~~
Removes all layers from an XCAF document.
**Example:**
~~~~~
XRemoveAllLayers D
~~~~~
@subsubsection occt_draw_8_8_8 XRemoveLayer
Syntax:
~~~~~
XRemoveLayer <document> {<label>|<layer>}
~~~~~
Removes the indicated layer from an XCAF document.
**Example:**
~~~~~
XRemoveLayer D layer2
~~~~~
@subsubsection occt_draw_8_8_9 XSetLayer
Syntax:
~~~~~
XSetLayer XSetLayer <document> {<shape>|<label>} <layer> [shape_in_one_layer {0|1}]
~~~~~
Sets a reference between a shape and a layer (adds a layer if it is necessary).
Parameter <i>\<shape_in_one_layer\></i> shows whether a shape could be in a number of layers or only in one (0 by default).
**Example:**
~~~~~
XSetLayer D 0:1:1:2 layer2
~~~~~
@subsubsection occt_draw_8_8_10 XSetVisibility
Syntax:
~~~~~
XSetVisibility <document> {<label>|<layer>} <isvisible {0|1}>
~~~~~
Sets the visibility of a layer.
**Example:**
~~~~~
# set layer at label 0:1:3:2 as invisible
XSetVisibility D 0:1:3:2 0
~~~~~
@subsubsection occt_draw_8_8_11 XUnSetAllLayers
Syntax:
~~~~~
XUnSetAllLayers <document> {<label>|<shape>}
~~~~~
Unsets a shape from all layers.
**Example:**
~~~~~
XUnSetAllLayers D 0:1:1:2
~~~~~
@subsubsection occt_draw_8_8_12 XUnSetLayer
Syntax:
~~~~~
XUnSetLayer <document> {<label>|<shape>} <layer>
~~~~~
Unsets a shape from the indicated layer.
**Example:**
~~~~~
XUnSetLayer D 0:1:1:2 layer1
~~~~~
@subsection occt_draw_8_9 XDE property commands
@subsubsection occt_draw_8_9_1 XCheckProps
Syntax:
~~~~~
XCheckProps <document> [ {0|deflection} [<shape>|<label>] ]
~~~~~
Gets properties for a given shape (*volume*, *area* and <i>centroid</i>) and compares them with the results after internal calculations. If the second parameter is 0, the standard OCCT tool is used for the computation of properties. If the second parameter is not 0, it is processed as a deflection. If the deflection is positive the computation is done by triangulations, if it is negative -- meshing is forced.
**Example:**
~~~~~
# check properties for shapes at label 0:1:1:1 from
# document using standard Open CASCADE Technology tools
XCheckProps D 0 0:1:1:1
== Label 0:1:1:1 ;L-BRACKET*
== Area defect: -0.0 ( 0%)
== Volume defect: 0.0 ( 0%)
== CG defect: dX=-0.000, dY=0.000, dZ=0.000
~~~~~
@subsubsection occt_draw_8_9_2 XGetArea
Syntax:
~~~~~
XGetArea <document> {<shape>|<label>}
~~~~~
Returns the area of a given shape.
**Example:**
~~~~~
XGetArea D 0:1:1:1
== 24628.31815094999
~~~~~
@subsubsection occt_draw_8_9_3 XGetCentroid
Syntax:
~~~~~
XGetCentroid <document> {<shape>|<label>}
~~~~~
Returns the center of gravity coordinates of a given shape.
**Example:**
~~~~~
XGetCentroid D 0:1:1:1
~~~~~
@subsubsection occt_draw_8_9_4 XGetVolume
Syntax:
~~~~~
XGetVolume <document> {<shape>|<label>}
~~~~~
Returns the volume of a given shape.
**Example:**
~~~~~
XGetVolume D 0:1:1:1
~~~~~
@subsubsection occt_draw_8_9_5 XSetArea
Syntax:
~~~~~
XSetArea <document> {<shape>|<label>} <area>
~~~~~
Sets new area to attribute list ??? given shape.
**Example:**
~~~~~
XSetArea D 0:1:1:1 2233.99
~~~~~
@subsubsection occt_draw_8_9_6 XSetCentroid
Syntax:
~~~~~
XSetCentroid <document> {<shape>|<label>} <x> <y> <z>
~~~~~
Sets new center of gravity to the attribute list given shape.
**Example:**
~~~~~
XSetCentroid D 0:1:1:1 0. 0. 100.
~~~~~
@subsubsection occt_draw_8_9_7 XSetMaterial
Syntax:
~~~~~
XSetMaterial <document> {<shape>|<label>} <name> <density(g/cu sm)>
~~~~~
Adds a new label with material into the material table in a document, and adds a link to this material to the attribute list of a given shape or a given label. The last parameter sets the density of a pointed material.
**Example:**
~~~~~
XSetMaterial D 0:1:1:1 Titanium 8899.77
~~~~~
@subsubsection occt_draw_8_9_8 XSetVolume
Syntax:
~~~~~
XSetVolume <document> {<shape>|<label>} <volume>
~~~~~
Sets new volume to the attribute list ??? given shape.
**Example:**
~~~~~
XSetVolume D 0:1:1:1 444555.33
~~~~~
@subsubsection occt_draw_8_9_9 XShapeMassProps
Syntax:
~~~~~
XShapeMassProps <document> [ <deflection> [{<shape>|<label>}] ]
~~~~~
Computes and returns real mass and real center of gravity for a given shape or for all shapes in a document. The second parameter is used for calculation of the volume and CG(center of gravity). If it is 0, then the standard CASCADE tool (geometry) is used for computation, otherwise -- by triangulations with a given deflection.
**Example:**
~~~~~
XShapeMassProps D
== Shape from label : 0:1:1:1
== Mass = 193.71681469282299
== CenterOfGravity X = 14.594564763807696,Y =
20.20271885211281,Z = 49.999999385313245
== Shape from label : 0:1:1:2 not have a mass
etc.
~~~~~
@subsubsection occt_draw_8_9_10 XShapeVolume
Syntax:
~~~~~
XShapeVolume <shape> <deflection>
~~~~~
Calculates the real volume of a pointed shape with a given deflection.
**Example:**
~~~~~
XShapeVolume a 0
~~~~~
@section occt_draw_9 Shape Healing commands
@subsection occt_draw_9_1 General commands
@subsubsection occt_draw_9_1_1 bsplres
Syntax:
~~~~~
bsplres <result> <shape> <tol3d> <tol2d< <reqdegree> <reqnbsegments> <continuity3d> <continuity2d> <PriorDeg> <RationalConvert>
~~~~~
Performs approximations of a given shape (BSpline curves and surfaces or other surfaces) to BSpline with given required parameters. The specified continuity can be reduced if the approximation with a specified continuity was not done successfully. Results are put into the shape, which is given as a parameter result. For a more detailed description see the ShapeHealing User’s Guide (operator: **BSplineRestriction**).
@subsubsection occt_draw_9_1_2 checkfclass2d
Syntax:
~~~~~
checkfclass2d <face> <ucoord> <vcoord>
~~~~~
Shows where a point which is given by coordinates is located in relation to a given face -- outbound, inside or at the bounds.
**Example:**
~~~~~
checkfclass2d f 10.5 1.1
== Point is OUT
~~~~~
@subsubsection occt_draw_9_1_3 checkoverlapedges
Syntax:
~~~~~
checkoverlapedges <edge1> <edge2> [<toler> <domaindist>]
~~~~~
Checks the overlapping of two given edges. If the distance between two edges is less than the given value of tolerance then edges are overlapped. Parameter \<domaindist\> sets length of part of edges on which edges are overlapped.
**Example:**
~~~~~
checkoverlapedges e1 e2
~~~~~
@subsubsection occt_draw_9_1_4 comtol
Syntax:
~~~~~
comptol <shape> [nbpoints] [prefix]
~~~~~
Compares the real value of tolerance on curves with the value calculated by standard (using 23 points). The maximal value of deviation of 3d curve from pcurve at given simple points is taken as a real value (371 is by default). Command returns the maximal, minimal and average value of tolerance for all edges and difference between real values and set values. Edges with the maximal value of tolerance and relation will be saved if the ‘prefix’ parameter is given.
**Example:**
~~~~~
comptol h 871 t
==> Edges tolerance computed by 871 points:
==> MAX=8.0001130696523449e-008 AVG=6.349346868091096e-009 MIN=0
==> Relation real tolerance / tolerance set in edge
==> MAX=0.80001130696523448 AVG=0.06349345591805905 MIN=0
==> Edge with max tolerance saved to t_edge_tol
==> Concerned faces saved to shapes t_1, t_2
~~~~~
@subsubsection occt_draw_9_1_5 convtorevol
Syntax:
~~~~~
convtorevol <result> <shape>
~~~~~
Converts all elementary surfaces of a given shape into surfaces of revolution.
Results are put into the shape, which is given as the <i>\<result\></i> parameter.
**Example:**
~~~~~
convtorevol r a
~~~~~
@subsubsection occt_draw_9_1_6 directfaces
Syntax:
~~~~~
directfaces <result> <shape>
~~~~~
Converts indirect surfaces and returns the results into the shape, which is given as the result parameter.
**Example:**
~~~~~
directfaces r a
~~~~~
@subsubsection occt_draw_9_1_7 expshape
Syntax:
~~~~~
expshape <shape> <maxdegree> <maxseg>
~~~~~
Gives statistics for a given shape. This test command is working with Bezier and BSpline entities.
**Example:**
~~~~~
expshape a 10 10
==> Number of Rational Bspline curves 128
==> Number of Rational Bspline pcurves 48
~~~~~
@subsubsection occt_draw_9_1_8 fixsmall
Syntax:
~~~~~
fixsmall <result> <shape> [<toler>=1.]
~~~~~
Fixes small edges in given shape by merging adjacent edges with agiven tolerance. Results are put into the shape, which is given as the result parameter.
**Example:**
~~~~~
fixsmall r a 0.1
~~~~~
@subsubsection occt_draw_9_1_9 fixsmalledges
Syntax:
~~~~~
fixsmalledges <result> <shape> [<toler> <mode> <maxangle>]
~~~~~
Searches at least one small edge at a given shape. If such edges have been found, then small edges are merged with a given tolerance. If parameter <i>\<mode\></i> is equal to *Standard_True* (can be given any values, except 2), then small edges, which can not be merged, are removed, otherwise they are to be kept (*Standard_False* is used by default). Parameter <i>\<maxangle\></i> sets a maximum possible angle for merging two adjacent edges, by default no limit angle is applied (-1). Results are put into the shape, which is given as parameter result.
**Example:**
~~~~~
fixsmalledges r a 0.1 1
~~~~~
@subsubsection occt_draw_9_1_10 fixshape
Syntax:
~~~~~
fixshape <result> <shape> [<preci> [<maxpreci>]] [{switches}]
~~~~~
Performs fixes of all sub-shapes (such as *Solids*, *Shells*, *Faces*, *Wires* and *Edges*) of a given shape. Parameter <i>\<preci\></i> sets a basic precision value, <i>\<maxpreci\></i> sets the maximal allowed tolerance. Results are put into the shape, which is given as parameter result. <b>{switches}</b> allows to tune parameters of ShapeFix
The following syntax is used:
* <i>\<symbol\></i> may be
* "-" to set parameter off,
* "+" to set on or
* "*" to set default
* <i>\<parameter\></i> is identified by letters:
* l -- FixLackingMode
* o -- FixOrientationMode
* h -- FixShiftedMode
* m -- FixMissingSeamMode
* d -- FixDegeneratedMode
* s -- FixSmallMode
* i -- FixSelfIntersectionMode
* n -- FixNotchedEdgesMode
For enhanced message output, use switch '+?'
**Example:**
~~~~~
fixshape r a 0.001
~~~~~
@subsubsection occt_draw_9_1_11 fixwgaps
Syntax:
~~~~~
fixwgaps <result> <shape> [<toler>=0]
~~~~~
Fixes gaps between ends of curves of adjacent edges (both 3d and pcurves) in wires in a given shape with a given tolerance. Results are put into the shape, which is given as parameter result.
**Example:**
~~~~~
fixwgaps r a
~~~~~
@subsubsection occt_draw_9_1_12 offsetcurve, offset2dcurve
Syntax:
~~~~~
offsetcurve <result> <curve> <offset> <direction(as point)>
offset2dcurve <result> <curve> <offset>
~~~~~
**offsetcurve** works with the curve in 3d space, **offset2dcurve** in 2d space.
Both commands are intended to create a new offset curve by copying the given curve to distance, given by parameter <i>\<offset\></i>. Parameter <i>\<direction\></i> defines direction of the offset curve. It is created as a point. For correct work of these commands the direction of normal of the offset curve must be perpendicular to the plane, the basis curve is located there. Results are put into the curve, which is given as parameter <i>\<result\></i>.
**Example:**
~~~~~
point pp 10 10 10
offsetcurve r c 20 pp
~~~~~
@subsubsection occt_draw_9_1_13 projcurve
Syntax:
~~~~~
projcurve <edge>|<curve3d>|<curve3d first last> <X> <Y> <Z>
~~~~~
**projcurve** returns the projection of a given point on a given curve. The curve may be defined by three ways: by giving the edge name, giving the 3D curve and by giving the unlimited curve and limiting it by pointing its start and finish values.
**Example:**
~~~~~
projcurve k_1 0 1 5
==Edge k_1 Params from 0 to 1.3
==Precision (BRepBuilderAPI) : 9.9999999999999995e-008 ==Projection : 0 1 5
==Result : 0 1.1000000000000001 0
==Param = -0.20000000000000001 Gap = 5.0009999000199947
~~~~~
@subsubsection occt_draw_9_1_14 projpcurve
Syntax:
~~~~~
projpcurve <edge> <face> <Tol> <X> <Y> <Z> [<start_param>]
~~~~~
**projpcurve** returns the projection of a given point on a given curve on surface. The curve on surface is defined by giving the edge and face names. Edge must have curve 2D repesentation on the face. Optional parameter <i>\<start_param\></i> is any parameter of pcurve, which is used by algoritm as start point for searching projection of given point with help of local Extrema algorithm. If this parameter is not set, algorithm uses whole parametric interval of pcurve for searching projection.
**Example:**
~~~~~
# Using global searching
projpcurve f_1 f 1.e-7 0.877 0 0.479
==Point: 0.87762772831890712 0 0.47934285275342808
==Param: 0.49990578239977856
==Dist: 0.0007152557954264938
~~~~~
~~~~~
# Using starting parameter on edge
projpcurve f_1 f 1.e-7 0.877 0 0.479 .6
==Point: 0.87762772831890712 0 0.47934285275342808
==Param: 0.49990578239977856
==Dist: 0.0007152557954264938
~~~~~
@subsubsection occt_draw_9_1_15 projface
Syntax:
~~~~~
projface <face> <X> <Y> [<Z>]
~~~~~
Returns the projection of a given point to a given face in 2d or 3d space. If two coordinates (2d space) are given then returns coordinates projection of this point in 3d space and vice versa.
**Example:**
~~~~~
projface a_1 10.0 0.0
== Point UV U = 10 V = 0
== = proj X = -116 Y = -45 Z = 0
~~~~~
@subsubsection occt_draw_9_1_16 scaleshape
Syntax:
~~~~~
scaleshape <result> <shape> <scale>
~~~~~
Returns a new shape, which is the result of scaling of a given shape with a coefficient equal to the parameter <i>\<scale\></i>. Tolerance is calculated for the new shape as well.
**Example:**
~~~~~
scaleshape r a_1 0.8
~~~~~
@subsubsection occt_draw_9_1_17 settolerance
Syntax:
~~~~~
settolerance <shape> [<mode>=v-e-w-f-a] <val>(fix value) or
<tolmin> <tolmax>
~~~~~
Sets new values of tolerance for a given shape. If the second parameter <i>mode</i> is given, then the tolerance value is set only for these sub shapes.
**Example:**
~~~~~
settolerance a 0.001
~~~~~
@subsubsection occt_draw_9_1_18 splitface
Syntax:
~~~~~
splitface <result> <face> [u usplit1 usplit2...] [v vsplit1 vsplit2 ...]
~~~~~
Splits a given face in parametric space and puts the result into the given parameter <i>\<result\></i>.
Returns the status of split face.
**Example:**
~~~~~
# split face f by parameter u = 5
splitface r f u 5
==> Splitting by U: ,5
==> Status: DONE1
~~~~~
@subsubsection occt_draw_9_1_19 statshape
Syntax:
~~~~~
statshape <shape> [particul]
~~~~~
Returns the number of sub-shapes, which compose the given shape. For example, the number of solids, number of faces etc. It also returns the number of geometrical objects or sub-shapes with a specified type, example, number of free faces, number of C0
surfaces. The last parameter becomes out of date.
**Example:**
~~~~~
statshape a
==> Count Item
==> ----- ----
==> 402 Edge (oriented)
==> 402 Edge (Shared)
==> 74 Face
==> 74 Face (Free)
==> 804 Vertex (Oriented)
==> 402 Vertex (Shared)
==> 78 Wire
==> 4 Face with more than one wire
==> 34 bspsur: BSplineSurface
~~~~~
@subsubsection occt_draw_9_1_20 tolerance
Syntax:
~~~~~
tolerance <shape> [<mode>:D v e f c] [<tolmin> <tolmax>:real]
~~~~~
Returns tolerance (maximal, avg and minimal values) of all given shapes and tolerance of their *Faces*, *Edges* and *Vertices*. If parameter <i>\<tolmin\></i> or <i>\<tolmax\></i> or both of them are given, then sub-shapes are returned as a result of analys of this shape, which satisfy the given tolerances. If a particular value of entity ((**D**)all shapes (**v**) *vertices* (**e**) *edges* (**f**) *faces* (**c**) *combined* (*faces*)) is given as the second parameter then only this group will be analyzed for tolerance.
**Example:**
~~~~~
tolerance a
==> Tolerance MAX=0.31512672416608001 AVG=0.14901359484722074 MIN=9.9999999999999995e-08
==> FACE : MAX=9.9999999999999995e-08 AVG=9.9999999999999995e-08 MIN=9.9999999999999995e-08
==> EDGE : MAX=0.31512672416608001 AVG=0.098691334511810405 MIN=9.9999999999999995e-08
==> VERTEX : MAX=0.31512672416608001 AVG=0.189076074499648 MIN=9.9999999999999995e-08
tolerance a v 0.1 0.001
==> Analysing Vertices gives 6 Shapes between tol1=0.10000000000000001 and tol2=0.001 , named tol_1 to tol_6
~~~~~
@subsection occt_draw_9_2 Conversion commands
@subsubsection occt_draw_9_2_1 DT_ClosedSplit
Syntax:
~~~~~
DT_ClosedSplit <result> <shape>
~~~~~
Divides all closed faces in the shape (for example cone) and returns result of given shape into shape, which is given as parameter result. Number of faces in resulting shapes will be increased.
Note: A closed face is a face with one or more seam.
**Example:**
~~~~~
DT_ClosetSplit r a
~~~~~
@subsubsection occt_draw_9_2_2 DT_ShapeConvert, DT_ShapeConvertRev
Syntax:
~~~~~
DT_ShapeConvert <result> <shape> <convert2d> <convert3d>
DT_ShapeConvertRev <result> <shape> <convert2d> <convert3d>
~~~~~
Both commands are intended for the conversion of 3D, 2D curves to Bezier curves and surfaces to Bezier based surfaces. Parameters convert2d and convert3d take on a value 0 or 1. If the given value is 1, then the conversion will be performed, otherwise it will not be performed. The results are put into the shape, which is given as parameter Result. Command *DT_ShapeConvertRev* differs from *DT_ShapeConvert* by converting all elementary surfaces into surfaces of revolution first.
**Example:**
~~~~~
DT_ShapeConvert r a 1 1
== Status: DONE1
~~~~~
@subsubsection occt_draw_9_2_3 DT_ShapeDivide
Syntax:
~~~~~
DT_ShapeDivide <result> <shape> <tol>
~~~~~
Divides the shape with C1 criterion and returns the result of geometry conversion of a given shape into the shape, which is given as parameter result. This command illustrates how class *ShapeUpgrade_ShapeDivideContinuity* works. This class allows to convert geometry with a continuity less than the specified continuity to geometry with target continuity. If conversion is not possible then the geometrical object is split into several ones, which satisfy the given tolerance. It also returns the status shape splitting:
* OK : no splitting was done
* Done1 : Some edges were split
* Done2 : Surface was split
* Fail1 : Some errors occurred
**Example:**
~~~~~
DT_ShapeDivide r a 0.001
== Status: OK
~~~~~
@subsubsection occt_draw_9_2_4 DT_SplitAngle
Syntax:
~~~~~
DT_SplitAngle <result> <shape> [MaxAngle=95]
~~~~~
Works with all revolved surfaces, like cylinders, surfaces of revolution, etc. This command divides given revolved surfaces into segments so that each resulting segment covers not more than the given *MaxAngle* degrees and puts the result of splitting into the shape, which is given as parameter result. Values of returned status are given above.
This command illustrates how class *ShapeUpgrade_ShapeDivideAngle* works.
**Example:**
~~~~~
DT_SplitAngle r a
== Status: DONE2
~~~~~
@subsubsection occt_draw_9_2_5 DT_SplitCurve
Syntax:
~~~~~
DT_SplitCurve <curve> <tol> <split(0|1)>
~~~~~
Divides the 3d curve with C1 criterion and returns the result of splitting of the given curve into a new curve. If the curve had been divided by segments, then each segment is put to an individual result. This command can correct a given curve at a knot with the given tolerance, if it is impossible, then the given surface is split at that knot. If the last parameter is 1, then 5 knots are added at the given curve, and its surface is split by segments, but this will be performed not for all parametric spaces.
**Example:**
~~~~~
DT_SplitCurve r c
~~~~~
@subsubsection occt_draw_9_2_6 DT_SplitCurve2d
Syntax:
~~~~~
DT_SplitCurve2d Curve Tol Split(0/1)
~~~~~
Works just as **DT_SplitCurve** (see above), only with 2d curve.
**Example:**
~~~~~
DT_SplitCurve2d r c
~~~~~
@subsubsection occt_draw_9_2_7 DT_SplitSurface
Syntax:
~~~~~
DT_SplitSurface <result> <Surface|GridSurf> <tol> <split(0|1)>
~~~~~
Divides surface with C1 criterion and returns the result of splitting of a given surface into surface, which is given as parameter result. If the surface has been divided into segments, then each segment is put to an individual result. This command can correct a given C0 surface at a knot with a given tolerance, if it is impossible, then the given surface is split at that knot. If the last parameter is 1, then 5 knots are added to the given surface, and its surface is split by segments, but this will be performed not for all parametric spaces.
**Example:**
~~~~~
# split surface with name "su"
DT_SplitSurface res su 0.1 1
==> single surf
==> appel a SplitSurface::Init
==> appel a SplitSurface::Build
==> appel a SplitSurface::GlobalU/VKnots
==> nb GlobalU;nb GlobalV=7 2 0 1 2 3 4 5 6.2831853072 0 1
==> appel a Surfaces
==> transfert resultat
==> res1_1_1 res1_2_1 res1_3_1 res1_4_1 res1_5_1 res1_6_1
~~~~~
@subsubsection occt_draw_9_2_8 DT_ToBspl
Syntax:
~~~~~
DT_ToBspl <result> <shape>
~~~~~
Converts a surface of linear extrusion, revolution and offset surfaces into BSpline surfaces. Returns the result into the shape, which is given as parameter result.
**Example:**
~~~~~
DT_ToBspl res sh
== error = 5.20375663162094e-08 spans = 10
== Surface is aproximated with continuity 2
~~~~~
@section occt_draw_10 Performance evaluation commands
@subsection occt_draw_10_1 VDrawSphere
Syntax:
~~~~~
vdrawsphere shapeName Fineness [X=0.0 Y=0.0 Z=0.0] [Radius=100.0] [ToEnableVBO=1] [NumberOfViewerUpdate=1] [ToShowEdges=0]
~~~~~
Calculates and displays in a given number of steps a sphere with given coordinates, radius and fineness. Returns the information about the properties of the sphere, the time and the amount of memory required to build it.
This command can be used for visualization performance evaluation instead of the outdated Visualization Performance Meter.
**Example:**
~~~~~
vdrawsphere s 200 1 1 1 500 1
== Compute Triangulation...
== NumberOfPoints: 39602
== NumberOfTriangles: 79200
== Amount of memory required for PolyTriangulation without Normals: 2 Mb
== Amount of memory for colors: 0 Mb
== Amount of memory for PolyConnect: 1 Mb
== Amount of graphic card memory required: 2 Mb
== Number of scene redrawings: 1
== CPU user time: 15.6000999999998950 msec
== CPU system time: 0.0000000000000000 msec
== CPU average time of scene redrawing: 15.6000999999998950 msec
~~~~~
@section occt_draw_12 Simple vector algebra and measurements
This section contains description of auxiliary commands that can be useful for simple calculations and manipulations needed when analyzing complex models.
@subsection occt_draw_12_1 Vector algebra commands
This section describes commands providing simple calculations with 2D and 3D vectors. The vector is represented by a TCL list of double values (coordinates). The commands get input vector coordinates from the command line as distinct values. So, if you have a vector stored in a variable you need to use *eval* command as a prefix, for example, to compute the magnitude of cross products of two vectors given by 3 points the following commands can be used:
~~~~~{.cpp}
Draw[10]> set vec1 [vec 12 28 99 12 58 99]
0 30 0
Draw[13]> set vec2 [vec 12 28 99 16 21 89]
4 -7 -10
Draw[14]> set cross [eval cross $vec1 $vec2]
-300 0 -120
Draw[15]> eval module $cross
323.10988842807024
~~~~~
@subsubsection occt_draw_12_1_1 vec
Syntax:
~~~~~
vec <x1> <y1> <z1> <x2> <y2> <z2>
~~~~~
Returns coordinates of vector between two 3D points.
Example:
~~~~~{.cpp}
vec 1 2 3 6 5 4
~~~~~
@subsubsection occt_draw_12_1_2 2dvec
Syntax:
~~~~~
2dvec <x1> <y1> <x2> <y2>
~~~~~
Returns coordinates of vector between two 2D points.
Example:
~~~~~{.cpp}
2dvec 1 2 4 3
~~~~~
@subsubsection occt_draw_12_1_3 pln
Syntax:
~~~~~
pln <x1> <y1> <z1> <x2> <y2> <z2> <x3> <y3> <z3>
~~~~~
Returns plane built on three points. A plane is represented by 6 double values: coordinates of the origin point and the normal directoin.
Example:
~~~~~{.cpp}
pln 1 2 3 6 5 4 9 8 7
~~~~~
@subsubsection occt_draw_12_1_4 module
Syntax:
~~~~~
module <x> <y> <z>
~~~~~
Returns module of a vector.
Example:
~~~~~{.cpp}
module 1 2 3
~~~~~
@subsubsection occt_draw_12_1_5 2dmodule
Syntax:
~~~~~
2dmodule <x> <y>
~~~~~
Returns module of a 2D vector.
Example:
~~~~~{.cpp}
2dmodule 1 2
~~~~~
@subsubsection occt_draw_12_1_6 norm
Syntax:
~~~~~
norm <x> <y> <z>
~~~~~
Returns unified vector from a given 3D vector.
Example:
~~~~~{.cpp}
norm 1 2 3
~~~~~
@subsubsection occt_draw_12_1_7 2dnorm
Syntax:
~~~~~
2dnorm <x> <y>
~~~~~
Returns unified vector from a given 2D vector.
Example:
~~~~~{.cpp}
2dnorm 1 2
~~~~~
@subsubsection occt_draw_12_1_8 inverse
Syntax:
~~~~~
inverse <x> <y> <z>
~~~~~
Returns inversed 3D vector.
Example:
~~~~~{.cpp}
inverse 1 2 3
~~~~~
@subsubsection occt_draw_12_1_9 2dinverse
Syntax:
~~~~~
2dinverse <x> <y>
~~~~~
Returns inversed 2D vector.
Example:
~~~~~{.cpp}
2dinverse 1 2
~~~~~
@subsubsection occt_draw_12_1_10 2dort
Syntax:
~~~~~
2dort <x> <y>
~~~~~
Returns 2D vector rotated on 90 degrees.
Example:
~~~~~{.cpp}
2dort 1 2
~~~~~
@subsubsection occt_draw_12_1_11 distpp
Syntax:
~~~~~
distpp <x1> <y1> <z1> <x2> <y2> <z2>
~~~~~
Returns distance between two 3D points.
Example:
~~~~~{.cpp}
distpp 1 2 3 4 5 6
~~~~~
@subsubsection occt_draw_12_1_12 2ddistpp
Syntax:
~~~~~
2ddistpp <x1> <y1> <x2> <y2>
~~~~~
Returns distance between two 2D points.
Example:
~~~~~{.cpp}
2ddistpp 1 2 3 4
~~~~~
@subsubsection occt_draw_12_1_13 distplp
Syntax:
~~~~~
distplp <x0> <y0> <z0> <nx> <ny> <nz> <xp> <yp> <zp>
~~~~~
Returns distance between plane defined by point and normal direction and another point.
Example:
~~~~~{.cpp}
distplp 0 0 0 0 0 1 5 6 7
~~~~~
@subsubsection occt_draw_12_1_14 distlp
Syntax:
~~~~~
distlp <x0> <y0> <z0> <dx> <dy> <dz> <xp> <yp> <zp>
~~~~~
Returns distance between 3D line defined by point and direction and another point.
Example:
~~~~~{.cpp}
distlp 0 0 0 1 0 0 5 6 7
~~~~~
@subsubsection occt_draw_12_1_15 2ddistlp
Syntax:
~~~~~
2ddistlp <x0> <y0> <dx> <dy> <xp> <yp>
~~~~~
Returns distance between 2D line defined by point and direction and another point.
Example:
~~~~~{.cpp}
2ddistlp 0 0 1 0 5 6
~~~~~
@subsubsection occt_draw_12_1_16 distppp
Syntax:
~~~~~
distppp <x1> <y1> <z1> <x2> <y2> <z2> <x3> <y3> <z3>
~~~~~
Returns deviation of point (x2,y2,z2) from segment defined by points (x1,y1,z1) and (x3,y3,z3).
Example:
~~~~~{.cpp}
distppp 0 0 0 1 1 0 2 0 0
~~~~~
@subsubsection occt_draw_12_1_17 2ddistppp
Syntax:
~~~~~
2ddistppp <x1> <y1> <x2> <y2> <x3> <y3>
~~~~~
Returns deviation of point (x2,y2) from segment defined by points (x1,y1) and (x3,y3). The result is a signed value. It is positive if the point (x2,y2) is on the left side of the segment, and negative otherwise.
Example:
~~~~~{.cpp}
2ddistppp 0 0 1 -1 2 0
~~~~~
@subsubsection occt_draw_12_1_18 barycen
Syntax:
~~~~~
barycen <x1> <y1> <z1> <x2> <y2> <z2> <par>
~~~~~
Returns point of a given parameter between two 3D points.
Example:
~~~~~{.cpp}
barycen 0 0 0 1 1 1 0.3
~~~~~
@subsubsection occt_draw_12_1_19 2dbarycen
Syntax:
~~~~~
2dbarycen <x1> <y1> <x2> <y2> <par>
~~~~~
Returns point of a given parameter between two 2D points.
Example:
~~~~~{.cpp}
2dbarycen 0 0 1 1 0.3
~~~~~
@subsubsection occt_draw_12_1_20 cross
Syntax:
~~~~~
cross <x1> <y1> <z1> <x2> <y2> <z2>
~~~~~
Returns cross product of two 3D vectors.
Example:
~~~~~{.cpp}
cross 1 0 0 0 1 0
~~~~~
@subsubsection occt_draw_12_1_21 2dcross
Syntax:
~~~~~
2dcross <x1> <y1> <x2> <y2>
~~~~~
Returns cross product of two 2D vectors.
Example:
~~~~~{.cpp}
2dcross 1 0 0 1
~~~~~
@subsubsection occt_draw_12_1_22 dot
Syntax:
~~~~~
dot <x1> <y1> <z1> <x2> <y2> <z2>
~~~~~
Returns scalar product of two 3D vectors.
Example:
~~~~~{.cpp}
dot 1 0 0 0 1 0
~~~~~
@subsubsection occt_draw_12_1_23 2ddot
Syntax:
~~~~~
2ddot <x1> <y1> <x2> <y2>
~~~~~
Returns scalar product of two 2D vectors.
Example:
~~~~~{.cpp}
2ddot 1 0 0 1
~~~~~
@subsubsection occt_draw_12_1_24 scale
Syntax:
~~~~~
scale <x> <y> <z> <factor>
~~~~~
Returns 3D vector multiplied by scalar.
Example:
~~~~~{.cpp}
scale 1 0 0 5
~~~~~
@subsubsection occt_draw_12_1_25 2dscale
Syntax:
~~~~~
2dscale <x> <y> <factor>
~~~~~
Returns 2D vector multiplied by scalar.
Example:
~~~~~{.cpp}
2dscale 1 0 5
~~~~~
@subsection occt_draw_12_2 Measurements commands
This section describes commands that make possible to provide measurements on a model.
@subsubsection occt_draw_12_2_1 pnt
Syntax:
~~~~~
pnt <object>
~~~~~
Returns coordinates of point in the given Draw variable. Object can be of type point or vertex. Actually this command is built up from the commands @ref occt_draw_7_2_1a "mkpoint" and @ref occt_draw_6_6_1 "coord".
Example:
~~~~~{.cpp}
vertex v 0 1 0
pnt v
~~~~~
@subsubsection occt_draw_12_2_2 pntc
Syntax:
~~~~~
pntc <curv> <par>
~~~~~
Returns coordinates of point on 3D curve with given parameter. Actually this command is based on the command @ref occt_draw_6_6_2 "cvalue".
Example:
~~~~~{.cpp}
circle c 0 0 0 10
pntc c [dval pi/2]
~~~~~
@subsubsection occt_draw_12_2_3 2dpntc
Syntax:
~~~~~
2dpntc <curv2d> <par>
~~~~~
Returns coordinates of point on 2D curve with given parameter. Actually this command is based on the command @ref occt_draw_6_6_2 "2dcvalue".
Example:
~~~~~{.cpp}
circle c 0 0 10
2dpntc c [dval pi/2]
~~~~~
@subsubsection occt_draw_12_2_4 pntsu
Syntax:
~~~~~
pntsu <surf> <u> <v>
~~~~~
Returns coordinates of point on surface with given parameters. Actually this command is based on the command @ref occt_draw_6_6_3 "svalue".
Example:
~~~~~{.cpp}
cylinder s 10
pntsu s [dval pi/2] 5
~~~~~
@subsubsection occt_draw_12_2_5 pntcons
Syntax:
~~~~~
pntcons <curv2d> <surf> <par>
~~~~~
Returns coordinates of point on surface defined by point on 2D curve with given parameter. Actually this command is based on the commands @ref occt_draw_6_6_2 "2dcvalue" and @ref occt_draw_6_6_3 "svalue".
Example:
~~~~~{.cpp}
line c 0 0 1 0
cylinder s 10
pntcons c s [dval pi/2]
~~~~~
@subsubsection occt_draw_12_2_6 drseg
Syntax:
~~~~~
drseg <name> <x1> <y1> <z1> <x2> <y2> <z2>
~~~~~
Creates a linear segment between two 3D points. The new object is given the *name*. The object is drawn in the axonometric view.
Example:
~~~~~{.cpp}
drseg s 0 0 0 1 0 0
~~~~~
@subsubsection occt_draw_12_2_7 2ddrseg
Syntax:
~~~~~
2ddrseg <name> <x1> <y1> <x2> <y2>
~~~~~
Creates a linear segment between two 2D points. The new object is given the *name*. The object is drawn in the 2D view.
Example:
~~~~~{.cpp}
2ddrseg s 0 0 1 0
~~~~~
@subsubsection occt_draw_12_2_8 mpick
Syntax:
~~~~~
mpick
~~~~~
Prints in the console the coordinates of a point clicked by mouse in a view (axonometric or 2D). This command will wait for mouse click event in a view.
Example:
~~~~~{.cpp}
mpick
~~~~~
@subsubsection occt_draw_12_2_9 mdist
Syntax:
~~~~~
mdist
~~~~~
Prints in the console the distance between two points clicked by mouse in a view (axonometric or 2D). This command will wait for two mouse click events in a view.
Example:
~~~~~{.cpp}
mdist
~~~~~
@section occt_draw_13 Inspector commands
This section describes commands that make possible to use Inspector.
@subsection occt_draw_13_1 tinspector
Syntax:
~~~~~
tinspector [-plugins {name1 ... [nameN] | all}]
[-activate name]
[-shape object [name1] ... [nameN]]
[-open file_name [name1] ... [nameN]]
[-update]
[-select {object | name1 ... [nameN]}]
[-show {0|1} = 1]
~~~~~
Starts inspection tool.
Options:
* *plugins* enters plugins that should be added in the inspector.
Available names are: *dfbrowser*, *vinspector* and *shapeview*.
Plugins order will be the same as defined in the arguments.
'all' adds all available plugins in the order:
DFBrowser, VInspector and ShapeView.
If at the first call this option is not used, 'all' option is applied;
* *activate* activates the plugin in the tool view.
If at the first call this option is not used, the first plugin is activated;
* *shape* initializes plugin(s) by the shape object. If 'name' is empty, initializes all plugins;
* *open* gives the file to the plugin(s). If the plugin is active after open, the content will be updated;
* *update* updates content of the active plugin;
* *select* sets the parameter that should be selected in an active tool view.
Depending on the active tool the parameter is:
ShapeView: 'object' is an instance of *TopoDS_Shape TShape*,
DFBrowser: 'name' is an entry of *TDF_Label* and 'name2' (optionally) for *TDF_Attribute* type name,
VInspector: 'object' is an instance of *AIS_InteractiveObject*;
* *show* sets Inspector view visible or hidden. The first call of this command will show it.
**Example:**
~~~~~
pload DCAF INSPECTOR
NewDocument Doc BinOcaf
set aSetAttr1 100
set aLabel 0:2
SetInteger Doc ${aLabel} ${aSetAttr1}
tinspector -plugins dfbrowser -select 0:2 TDataStd_Integer
~~~~~
**Example:**
~~~~~
pload ALL INSPECTOR
box b1 200 100 120
box b2 100 200 220 100 120 100
tinspector -plugins shapeview -shape b1 -shape b2 -select b1
~~~~~
**Example:**
~~~~~
pload ALL INSPECTOR
tinspector -plugins vinspector
vinit
box box_1 100 100 100
vdisplay box_1
box box_2 180 120 200 150 150 150
vdisplay box_2
vfit
vselmode box_1 1 1
vselmode box_1 3 1
tinspector -update -select box_1
~~~~~
@section occt_draw_11 Extending Test Harness with custom commands
The following chapters explain how to extend Test Harness with custom commands and how to activate them using a plug-in mechanism.
@subsection occt_draw_11_1 Custom command implementation
Custom command implementation has not undergone any changes since the introduction of the plug-in mechanism. The syntax of every command should still be like in the following example.
**Example:**
~~~~~
static Standard_Integer myadvcurve(Draw_Interpretor& di, Standard_Integer n, char** a)
{
...
}
~~~~~
For examples of existing commands refer to Open CASCADE Technology (e.g. GeomliteTest.cxx).
@subsection occt_draw_11_2 Registration of commands in Test Harness
To become available in the Test Harness the custom command must be registered in it. This should be done as follows.
**Example:**
~~~~~
void MyPack::CurveCommands(Draw_Interpretor& theCommands)
{
...
char* g = "Advanced curves creation";
theCommands.Add ( "myadvcurve", "myadvcurve name p1 p2 p3 - Creates my advanced curve from points",
__FILE__, myadvcurve, g );
...
}
~~~~~
@subsection occt_draw_11_3 Creating a toolkit (library) as a plug-in
All custom commands are compiled and linked into a dynamic library (.dll on Windows, or .so on Unix/Linux). To make Test Harness recognize it as a plug-in it must respect certain conventions. Namely, it must export function *PLUGINFACTORY()* accepting the Test Harness interpreter object (*Draw_Interpretor*). This function will be called when the library is dynamically loaded during the Test Harness session.
This exported function *PLUGINFACTORY()* must be implemented only once per library.
For convenience the *DPLUGIN* macro (defined in the *Draw_PluginMacro.hxx* file) has been provided. It implements the *PLUGINFACTORY()* function as a call to the *Package::Factory()* method and accepts *Package* as an argument. Respectively, this *Package::Factory()* method must be implemented in the library and activate all implemented commands.
**Example:**
~~~~~
#include <Draw_PluginMacro.hxx>
void MyPack::Factory(Draw_Interpretor& theDI)
{
...
//
MyPack::CurveCommands(theDI);
...
}
// Declare entry point PLUGINFACTORY
DPLUGIN(MyPack)
~~~~~
@subsection occt_draw_11_4 Creation of the plug-in resource file
As mentioned above, the plug-in resource file must be compliant with Open CASCADE Technology requirements (see *Resource_Manager.hxx* file for details). In particular, it should contain keys separated from their values by a colon (;:;).
For every created plug-in there must be a key. For better readability and comprehension it is recommended to have some meaningful name.
Thus, the resource file must contain a line mapping this name (key) to the library name. The latter should be without file extension (.dll on Windows, .so on Unix/Linux) and without the ;lib; prefix on Unix/Linux.
For several plug-ins one resource file can be created. In such case, keys denoting plug-ins can be combined into groups, these groups -- into their groups and so on (thereby creating some hierarchy). Any new parent key must have its value as a sequence of child keys separated by spaces, tabs or commas. Keys should form a tree without cyclic dependencies.
**Examples** (file MyDrawPlugin):
~~~~~
! Hierarchy of plug-ins
ALL : ADVMODELING, MESHING
DEFAULT : MESHING
ADVMODELING : ADVSURF, ADVCURV
! Mapping from naming to toolkits (libraries)
ADVSURF : TKMyAdvSurf
ADVCURV : TKMyAdvCurv
MESHING : TKMyMesh
~~~~~
For other examples of the plug-in resource file refer to the @ref occt_draw_1_3_2 "Plug-in resource file" chapter above or to the <i>$CASROOT/src/DrawPlugin</i> file shipped with Open CASCADE Technology.
@subsection occt_draw_11_5 Dynamic loading and activation
Loading a plug-in and activating its commands is described in the @ref occt_draw_1_3_3 "Activation of the commands implemented in the plug-in" chapter.
The procedure consists in defining the system variables and using the *pload* commands in the Test Harness session.
**Example:**
~~~~
Draw[]> set env(CSF_MyDrawPluginDefaults) /users/test
Draw[]> pload -MyDrawPlugin ALL
~~~~
|