File: BSplCLib.hxx

package info (click to toggle)
opencascade 7.5.1%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 290,544 kB
  • sloc: cpp: 1,190,524; tcl: 15,703; cs: 5,173; java: 1,557; ansic: 1,174; sh: 901; xml: 699; perl: 54; makefile: 27
file content (1484 lines) | stat: -rw-r--r-- 91,693 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
// Created on: 1991-08-09
// Created by: Jean Claude VAUTHIER
// Copyright (c) 1991-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.

#ifndef _BSplCLib_HeaderFile
#define _BSplCLib_HeaderFile

#include <Standard.hxx>
#include <Standard_DefineAlloc.hxx>
#include <Standard_Handle.hxx>

#include <TColStd_Array1OfReal.hxx>
#include <Standard_Real.hxx>
#include <Standard_Integer.hxx>
#include <TColStd_Array1OfInteger.hxx>
#include <Standard_Boolean.hxx>
#include <BSplCLib_KnotDistribution.hxx>
#include <BSplCLib_MultDistribution.hxx>
#include <GeomAbs_BSplKnotDistribution.hxx>
#include <TColgp_Array1OfPnt.hxx>
#include <TColgp_Array1OfPnt2d.hxx>
#include <TColStd_HArray1OfReal.hxx>
#include <TColStd_HArray1OfInteger.hxx>
#include <BSplCLib_EvaluatorFunction.hxx>
#include <TColStd_Array2OfReal.hxx>
class gp_Pnt;
class gp_Pnt2d;
class gp_Vec;
class gp_Vec2d;
class math_Matrix;


//! BSplCLib   B-spline curve Library.
//!
//! The BSplCLib package is  a basic library  for BSplines. It
//! provides three categories of functions.
//!
//! * Management methods to  process knots and multiplicities.
//!
//! * Multi-Dimensions  spline methods.  BSpline methods where
//! poles have an arbitrary number of dimensions. They divides
//! in two groups :
//!
//! - Global methods modifying the  whole set of  poles. The
//! poles are    described   by an array   of   Reals and  a
//! Dimension. Example : Inserting knots.
//!
//! - Local methods  computing  points and derivatives.  The
//! poles  are described by a pointer  on  a local array  of
//! Reals and a Dimension. The local array is modified.
//!
//! *  2D  and 3D spline   curves  methods.
//!
//! Methods  for 2d and 3d BSplines  curves  rational or not
//! rational.
//!
//! Those methods have the following structure :
//!
//! - They extract the pole informations in a working array.
//!
//! -  They      process the  working   array    with   the
//! multi-dimension  methods. (for example  a  3d  rational
//! curve is processed as a 4 dimension curve).
//!
//! - They get back the result in the original dimension.
//!
//! Note that the  bspline   surface methods found   in the
//! package BSplSLib  uses  the same  structure and rely on
//! BSplCLib.
//!
//! In the following list  of methods the  2d and 3d  curve
//! methods   will be  described   with  the  corresponding
//! multi-dimension method.
//!
//! The 3d or 2d B-spline curve is defined with :
//!
//! . its control points : TColgp_Array1OfPnt(2d)        Poles
//! . its weights        : TColStd_Array1OfReal          Weights
//! . its knots          : TColStd_Array1OfReal          Knots
//! . its multiplicities : TColStd_Array1OfInteger       Mults
//! . its degree         : Standard_Integer              Degree
//! . its periodicity    : Standard_Boolean              Periodic
//!
//! Warnings :
//! The bounds of Poles and Weights should be the same.
//! The bounds of Knots and Mults   should be the same.
//!
//! Note: weight and multiplicity arrays can be passed by pointer for
//! some functions so that NULL pointer is valid.
//! That means no weights/no multiplicities passed.
//!
//! No weights (BSplCLib::NoWeights()) means the curve is non rational.
//! No mults (BSplCLib::NoMults()) means the knots are "flat" knots.
//!
//! KeyWords :
//! B-spline curve, Functions, Library
//!
//! References :
//! . A survey of curves and surfaces methods in CADG Wolfgang
//! BOHM CAGD 1 (1984)
//! . On de Boor-like algorithms and blossoming Wolfgang BOEHM
//! cagd 5 (1988)
//! . Blossoming and knot insertion algorithms for B-spline curves
//! Ronald N. GOLDMAN
//! . Modelisation des surfaces en CAO, Henri GIAUME Peugeot SA
//! . Curves and Surfaces for Computer Aided Geometric Design,
//! a practical guide Gerald Farin
class BSplCLib 
{
public:

  DEFINE_STANDARD_ALLOC

  
  //! This routine searches the position of the real value theX
  //! in the monotonically increasing set of real values theArray using bisection algorithm.
  //!
  //! If the given value is out of range or array values, algorithm returns either
  //! theArray.Lower()-1 or theArray.Upper()+1 depending on theX position in the ordered set.
  //!
  //! This routine is used to locate a knot value in a set of knots.
  Standard_EXPORT static void Hunt (const TColStd_Array1OfReal& theArray,
                                    const Standard_Real theX,
                                    Standard_Integer& theXPos);
  
  //! Computes the index of the knots value which gives
  //! the start point of the curve.
  Standard_EXPORT static Standard_Integer FirstUKnotIndex (const Standard_Integer Degree, const TColStd_Array1OfInteger& Mults);
  
  //! Computes the index of the knots value which gives
  //! the end point of the curve.
  Standard_EXPORT static Standard_Integer LastUKnotIndex (const Standard_Integer Degree, const TColStd_Array1OfInteger& Mults);
  
  //! Computes the index  of  the  flats knots  sequence
  //! corresponding  to  <Index> in  the  knots sequence
  //! which multiplicities are <Mults>.
  Standard_EXPORT static Standard_Integer FlatIndex (const Standard_Integer Degree, const Standard_Integer Index, const TColStd_Array1OfInteger& Mults, const Standard_Boolean Periodic);
  
  //! Locates  the parametric value    U  in the knots
  //! sequence  between  the  knot K1   and the knot  K2.
  //! The value return in Index verifies.
  //!
  //! Knots(Index) <= U < Knots(Index + 1)
  //! if U <= Knots (K1) then Index = K1
  //! if U >= Knots (K2) then Index = K2 - 1
  //!
  //! If Periodic is True U  may be  modified  to fit in
  //! the range  Knots(K1), Knots(K2).  In any case  the
  //! correct value is returned in NewU.
  //!
  //! Warnings :Index is used  as input   data to initialize  the
  //! searching  function.
  //! Warning: Knots have to be "withe repetitions"
  Standard_EXPORT static void LocateParameter (const Standard_Integer Degree, const TColStd_Array1OfReal& Knots, const TColStd_Array1OfInteger& Mults, const Standard_Real U, const Standard_Boolean IsPeriodic, const Standard_Integer FromK1, const Standard_Integer ToK2, Standard_Integer& KnotIndex, Standard_Real& NewU);
  
  //! Locates  the parametric value    U  in the knots
  //! sequence  between  the  knot K1   and the knot  K2.
  //! The value return in Index verifies.
  //!
  //! Knots(Index) <= U < Knots(Index + 1)
  //! if U <= Knots (K1) then Index = K1
  //! if U >= Knots (K2) then Index = K2 - 1
  //!
  //! If Periodic is True U  may be  modified  to fit in
  //! the range  Knots(K1), Knots(K2).  In any case  the
  //! correct value is returned in NewU.
  //!
  //! Warnings :Index is used  as input   data to initialize  the
  //! searching  function.
  //! Warning: Knots have to be "flat"
  Standard_EXPORT static void LocateParameter (const Standard_Integer Degree, const TColStd_Array1OfReal& Knots, const Standard_Real U, const Standard_Boolean IsPeriodic, const Standard_Integer FromK1, const Standard_Integer ToK2, Standard_Integer& KnotIndex, Standard_Real& NewU);
  
  Standard_EXPORT static void LocateParameter (const Standard_Integer Degree, const TColStd_Array1OfReal& Knots, const TColStd_Array1OfInteger* Mults, const Standard_Real U, const Standard_Boolean Periodic, Standard_Integer& Index, Standard_Real& NewU);
  
  //! Finds the greatest multiplicity in a set of knots
  //! between  K1  and K2.   Mults  is  the  multiplicity
  //! associated with each knot value.
  Standard_EXPORT static Standard_Integer MaxKnotMult (const TColStd_Array1OfInteger& Mults, const Standard_Integer K1, const Standard_Integer K2);
  
  //! Finds the lowest multiplicity in  a  set of knots
  //! between   K1  and K2.   Mults is  the  multiplicity
  //! associated with each knot value.
  Standard_EXPORT static Standard_Integer MinKnotMult (const TColStd_Array1OfInteger& Mults, const Standard_Integer K1, const Standard_Integer K2);
  
  //! Returns the number of poles of the curve. Returns 0 if
  //! one of the multiplicities is incorrect.
  //!
  //! * Non positive.
  //!
  //! * Greater than Degree,  or  Degree+1  at the first and
  //! last knot of a non periodic curve.
  //!
  //! *  The  last periodicity  on  a periodic  curve is not
  //! equal to the first.
  Standard_EXPORT static Standard_Integer NbPoles (const Standard_Integer Degree, const Standard_Boolean Periodic, const TColStd_Array1OfInteger& Mults);
  
  //! Returns the length  of the sequence  of knots with
  //! repetition.
  //!
  //! Periodic :
  //!
  //! Sum(Mults(i), i = Mults.Lower(); i <= Mults.Upper());
  //!
  //! Non Periodic :
  //!
  //! Sum(Mults(i); i = Mults.Lower(); i < Mults.Upper())
  //! + 2 * Degree
  Standard_EXPORT static Standard_Integer KnotSequenceLength (const TColStd_Array1OfInteger& Mults, const Standard_Integer Degree, const Standard_Boolean Periodic);
  
  Standard_EXPORT static void KnotSequence (const TColStd_Array1OfReal& Knots, const TColStd_Array1OfInteger& Mults, TColStd_Array1OfReal& KnotSeq, const Standard_Boolean Periodic = Standard_False);
  
  //! Computes  the  sequence   of knots KnotSeq  with
  //! repetition  of the  knots  of multiplicity  greater
  //! than 1.
  //!
  //! Length of KnotSeq must be KnotSequenceLength(Mults,Degree,Periodic)
  Standard_EXPORT static void KnotSequence (const TColStd_Array1OfReal& Knots, const TColStd_Array1OfInteger& Mults, const Standard_Integer Degree, const Standard_Boolean Periodic, TColStd_Array1OfReal& KnotSeq);
  
  //! Returns the  length  of the   sequence of  knots  (and
  //! Mults)  without repetition.
  Standard_EXPORT static Standard_Integer KnotsLength (const TColStd_Array1OfReal& KnotSeq, const Standard_Boolean Periodic = Standard_False);
  
  //! Computes  the  sequence   of knots Knots  without
  //! repetition  of the  knots  of multiplicity  greater
  //! than 1.
  //!
  //! Length  of <Knots> and  <Mults> must be
  //! KnotsLength(KnotSequence,Periodic)
  Standard_EXPORT static void Knots (const TColStd_Array1OfReal& KnotSeq, TColStd_Array1OfReal& Knots, TColStd_Array1OfInteger& Mults, const Standard_Boolean Periodic = Standard_False);
  
  //! Analyses if the  knots distribution is "Uniform"
  //! or  "NonUniform" between  the  knot  FromK1 and the
  //! knot ToK2.  There is  no repetition of  knot in the
  //! knots'sequence <Knots>.
  Standard_EXPORT static BSplCLib_KnotDistribution KnotForm (const TColStd_Array1OfReal& Knots, const Standard_Integer FromK1, const Standard_Integer ToK2);
  

  //! Analyses the distribution of multiplicities between
  //! the knot FromK1 and the Knot ToK2.
  Standard_EXPORT static BSplCLib_MultDistribution MultForm (const TColStd_Array1OfInteger& Mults, const Standard_Integer FromK1, const Standard_Integer ToK2);
  
  //! Analyzes the array of knots.
  //! Returns the form and the maximum knot multiplicity.
  Standard_EXPORT static void KnotAnalysis (const Standard_Integer Degree, const Standard_Boolean Periodic, const TColStd_Array1OfReal& CKnots, const TColStd_Array1OfInteger& CMults, GeomAbs_BSplKnotDistribution& KnotForm, Standard_Integer& MaxKnotMult);
  

  //! Reparametrizes a B-spline curve to [U1, U2].
  //! The knot values are recomputed such that Knots (Lower) = U1
  //! and Knots (Upper) = U2   but the knot form is not modified.
  //! Warnings :
  //! In the array Knots the values must be in ascending order.
  //! U1 must not be equal to U2 to avoid division by zero.
  Standard_EXPORT static void Reparametrize (const Standard_Real U1, const Standard_Real U2, TColStd_Array1OfReal& Knots);
  
  //! Reverses  the  array   knots  to  become  the knots
  //! sequence of the reversed curve.
  Standard_EXPORT static void Reverse (TColStd_Array1OfReal& Knots);
  
  //! Reverses  the  array of multiplicities.
  Standard_EXPORT static void Reverse (TColStd_Array1OfInteger& Mults);
  
  //! Reverses the array of poles. Last is the  index of
  //! the new first pole. On  a  non periodic curve last
  //! is Poles.Upper(). On a periodic curve last is
  //!
  //! (number of flat knots - degree - 1)
  //!
  //! or
  //!
  //! (sum of multiplicities(but  for the last) + degree
  //! - 1)
  Standard_EXPORT static void Reverse (TColgp_Array1OfPnt& Poles, const Standard_Integer Last);
  
  //! Reverses the array of poles.
  Standard_EXPORT static void Reverse (TColgp_Array1OfPnt2d& Poles, const Standard_Integer Last);
  
  //! Reverses the array of poles.
  Standard_EXPORT static void Reverse (TColStd_Array1OfReal& Weights, const Standard_Integer Last);
  

  //! Returns False if all the weights  of the  array <Weights>
  //! between   I1 an I2   are  identic.   Epsilon  is used for
  //! comparing  weights. If Epsilon  is 0. the  Epsilon of the
  //! first weight is used.
  Standard_EXPORT static Standard_Boolean IsRational (const TColStd_Array1OfReal& Weights, const Standard_Integer I1, const Standard_Integer I2, const Standard_Real Epsilon = 0.0);
  
  //! returns the degree maxima for a BSplineCurve.
    static Standard_Integer MaxDegree();
  
  //! Perform the Boor  algorithm  to  evaluate a point at
  //! parameter <U>, with <Degree> and <Dimension>.
  //!
  //! Poles is  an array of  Reals of size
  //!
  //! <Dimension> *  <Degree>+1
  //!
  //! Containing  the poles.  At  the end <Poles> contains
  //! the current point.
  Standard_EXPORT static void Eval (const Standard_Real U, const Standard_Integer Degree, Standard_Real& Knots, const Standard_Integer Dimension, Standard_Real& Poles);
  
  //! Performs the  Boor Algorithm  at  parameter <U> with
  //! the given <Degree> and the  array of <Knots> on  the
  //! poles <Poles> of dimension  <Dimension>.  The schema
  //! is  computed  until  level  <Depth>  on a   basis of
  //! <Length+1> poles.
  //!
  //! * Knots is an array of reals of length :
  //!
  //! <Length> + <Degree>
  //!
  //! * Poles is an array of reals of length :
  //!
  //! (2 * <Length> + 1) * <Dimension>
  //!
  //! The poles values  must be  set  in the array at the
  //! positions.
  //!
  //! 0..Dimension,
  //!
  //! 2 * Dimension ..
  //! 3 * Dimension
  //!
  //! 4  * Dimension ..
  //! 5  * Dimension
  //!
  //! ...
  //!
  //! The results are found in the array poles depending
  //! on the Depth. (See the method GetPole).
  Standard_EXPORT static void BoorScheme (const Standard_Real U, const Standard_Integer Degree, Standard_Real& Knots, const Standard_Integer Dimension, Standard_Real& Poles, const Standard_Integer Depth, const Standard_Integer Length);
  
  //! Compute  the content of  Pole before the BoorScheme.
  //! This method is used to remove poles.
  //!
  //! U is the poles to  remove, Knots should contains the
  //! knots of the curve after knot removal.
  //!
  //! The first  and last poles  do not  change, the other
  //! poles are computed by averaging two possible values.
  //! The distance between  the  two   possible  poles  is
  //! computed, if it  is higher than <Tolerance> False is
  //! returned.
  Standard_EXPORT static Standard_Boolean AntiBoorScheme (const Standard_Real U, const Standard_Integer Degree, Standard_Real& Knots, const Standard_Integer Dimension, Standard_Real& Poles, const Standard_Integer Depth, const Standard_Integer Length, const Standard_Real Tolerance);
  
  //! Computes   the   poles of  the    BSpline  giving the
  //! derivatives of order <Order>.
  //!
  //! The formula for the first order is
  //!
  //! Pole(i) = Degree * (Pole(i+1) - Pole(i)) /
  //! (Knots(i+Degree+1) - Knots(i+1))
  //!
  //! This formula  is repeated  (Degree  is decremented at
  //! each step).
  Standard_EXPORT static void Derivative (const Standard_Integer Degree, Standard_Real& Knots, const Standard_Integer Dimension, const Standard_Integer Length, const Standard_Integer Order, Standard_Real& Poles);
  
  //! Performs the Bohm  Algorithm at  parameter <U>. This
  //! algorithm computes the value and all the derivatives
  //! up to order N (N <= Degree).
  //!
  //! <Poles> is the original array of poles.
  //!
  //! The   result in  <Poles>  is    the value and    the
  //! derivatives.  Poles[0] is  the value,  Poles[Degree]
  //! is the last  derivative.
  Standard_EXPORT static void Bohm (const Standard_Real U, const Standard_Integer Degree, const Standard_Integer N, Standard_Real& Knots, const Standard_Integer Dimension, Standard_Real& Poles);
  
  //! Used as argument for a non rational curve.
    static TColStd_Array1OfReal* NoWeights();
  
  //! Used as argument for a flatknots evaluation.
    static TColStd_Array1OfInteger* NoMults();
  
  //! Stores in LK  the usefull knots  for the BoorSchem
  //! on the span Knots(Index) - Knots(Index+1)
  Standard_EXPORT static void BuildKnots (const Standard_Integer Degree, const Standard_Integer Index, const Standard_Boolean Periodic, const TColStd_Array1OfReal& Knots, const TColStd_Array1OfInteger* Mults, Standard_Real& LK);
  
  //! Return the index of the  first Pole to  use on the
  //! span  Mults(Index)  - Mults(Index+1).  This  index
  //! must be added to Poles.Lower().
  Standard_EXPORT static Standard_Integer PoleIndex (const Standard_Integer Degree, const Standard_Integer Index, const Standard_Boolean Periodic, const TColStd_Array1OfInteger& Mults);
  
  Standard_EXPORT static void BuildEval (const Standard_Integer Degree, const Standard_Integer Index, const TColStd_Array1OfReal& Poles, const TColStd_Array1OfReal* Weights, Standard_Real& LP);
  
  Standard_EXPORT static void BuildEval (const Standard_Integer Degree, const Standard_Integer Index, const TColgp_Array1OfPnt& Poles, const TColStd_Array1OfReal* Weights, Standard_Real& LP);
  
  //! Copy in <LP>  the poles and  weights for  the Eval
  //! scheme. starting from  Poles(Poles.Lower()+Index)
  Standard_EXPORT static void BuildEval (const Standard_Integer Degree, const Standard_Integer Index, const TColgp_Array1OfPnt2d& Poles, const TColStd_Array1OfReal* Weights, Standard_Real& LP);
  
  //! Copy in <LP>  poles for <Dimension>  Boor  scheme.
  //! Starting  from    <Index>     *  <Dimension>, copy
  //! <Length+1> poles.
  Standard_EXPORT static void BuildBoor (const Standard_Integer Index, const Standard_Integer Length, const Standard_Integer Dimension, const TColStd_Array1OfReal& Poles, Standard_Real& LP);
  
  //! Returns the index in  the Boor result array of the
  //! poles <Index>. If  the Boor  algorithm was perform
  //! with <Length> and <Depth>.
  Standard_EXPORT static Standard_Integer BoorIndex (const Standard_Integer Index, const Standard_Integer Length, const Standard_Integer Depth);
  
  //! Copy  the  pole at  position  <Index>  in  the Boor
  //! scheme of   dimension <Dimension> to  <Position> in
  //! the array <Pole>. <Position> is updated.
  Standard_EXPORT static void GetPole (const Standard_Integer Index, const Standard_Integer Length, const Standard_Integer Depth, const Standard_Integer Dimension, Standard_Real& LocPoles, Standard_Integer& Position, TColStd_Array1OfReal& Pole);
  
  //! Returns in <NbPoles, NbKnots> the  new number of poles
  //! and  knots    if  the  sequence   of  knots <AddKnots,
  //! AddMults> is inserted in the sequence <Knots, Mults>.
  //!
  //! Epsilon is used to compare knots for equality.
  //!
  //! If Add is True  the multiplicities on  equal knots are
  //! added.
  //!
  //! If Add is False the max value of the multiplicities is
  //! kept.
  //!
  //! Return False if :
  //! The knew knots are knot increasing.
  //! The new knots are not in the range.
  Standard_EXPORT static Standard_Boolean PrepareInsertKnots (const Standard_Integer Degree, const Standard_Boolean Periodic, const TColStd_Array1OfReal& Knots, const TColStd_Array1OfInteger& Mults, const TColStd_Array1OfReal& AddKnots, const TColStd_Array1OfInteger* AddMults, Standard_Integer& NbPoles, Standard_Integer& NbKnots, const Standard_Real Epsilon, const Standard_Boolean Add = Standard_True);
  
  Standard_EXPORT static void InsertKnots (const Standard_Integer Degree, const Standard_Boolean Periodic, const Standard_Integer Dimension, const TColStd_Array1OfReal& Poles, const TColStd_Array1OfReal& Knots, const TColStd_Array1OfInteger& Mults, const TColStd_Array1OfReal& AddKnots, const TColStd_Array1OfInteger* AddMults, TColStd_Array1OfReal& NewPoles, TColStd_Array1OfReal& NewKnots, TColStd_Array1OfInteger& NewMults, const Standard_Real Epsilon, const Standard_Boolean Add = Standard_True);
  
  Standard_EXPORT static void InsertKnots (const Standard_Integer Degree, const Standard_Boolean Periodic, const TColgp_Array1OfPnt& Poles, const TColStd_Array1OfReal* Weights, const TColStd_Array1OfReal& Knots, const TColStd_Array1OfInteger& Mults, const TColStd_Array1OfReal& AddKnots, const TColStd_Array1OfInteger* AddMults, TColgp_Array1OfPnt& NewPoles, TColStd_Array1OfReal* NewWeights, TColStd_Array1OfReal& NewKnots, TColStd_Array1OfInteger& NewMults, const Standard_Real Epsilon, const Standard_Boolean Add = Standard_True);
  
  //! Insert   a  sequence  of  knots <AddKnots> with
  //! multiplicities   <AddMults>. <AddKnots>   must  be a   non
  //! decreasing sequence and verifies :
  //!
  //! Knots(Knots.Lower()) <= AddKnots(AddKnots.Lower())
  //! Knots(Knots.Upper()) >= AddKnots(AddKnots.Upper())
  //!
  //! The NewPoles and NewWeights arrays must have a length :
  //! Poles.Length() + Sum(AddMults())
  //!
  //! When a knot  to insert is identic  to an existing knot the
  //! multiplicities   are added.
  //!
  //! Epsilon is used to test knots for equality.
  //!
  //! When AddMult is negative or null the knot is not inserted.
  //! No multiplicity will becomes higher than the degree.
  //!
  //! The new Knots and Multiplicities  are copied in <NewKnots>
  //! and  <NewMults>.
  //!
  //! All the New arrays should be correctly dimensioned.
  //!
  //! When all  the new knots  are existing knots, i.e. only the
  //! multiplicities  will  change it is   safe to  use the same
  //! arrays as input and output.
  Standard_EXPORT static void InsertKnots (const Standard_Integer Degree, const Standard_Boolean Periodic, const TColgp_Array1OfPnt2d& Poles, const TColStd_Array1OfReal* Weights, const TColStd_Array1OfReal& Knots, const TColStd_Array1OfInteger& Mults, const TColStd_Array1OfReal& AddKnots, const TColStd_Array1OfInteger* AddMults, TColgp_Array1OfPnt2d& NewPoles, TColStd_Array1OfReal* NewWeights, TColStd_Array1OfReal& NewKnots, TColStd_Array1OfInteger& NewMults, const Standard_Real Epsilon, const Standard_Boolean Add = Standard_True);
  
  Standard_EXPORT static void InsertKnot (const Standard_Integer UIndex, const Standard_Real U, const Standard_Integer UMult, const Standard_Integer Degree, const Standard_Boolean Periodic, const TColgp_Array1OfPnt& Poles, const TColStd_Array1OfReal* Weights, const TColStd_Array1OfReal& Knots, const TColStd_Array1OfInteger& Mults, TColgp_Array1OfPnt& NewPoles, TColStd_Array1OfReal* NewWeights);
  
  //! Insert a new knot U of multiplicity UMult in the
  //! knot sequence.
  //!
  //! The  location of the new Knot  should be given as an input
  //! data.  UIndex locates the new knot U  in the knot sequence
  //! and Knots (UIndex) < U < Knots (UIndex + 1).
  //!
  //! The new control points corresponding to this insertion are
  //! returned. Knots and Mults are not updated.
  Standard_EXPORT static void InsertKnot (const Standard_Integer UIndex, const Standard_Real U, const Standard_Integer UMult, const Standard_Integer Degree, const Standard_Boolean Periodic, const TColgp_Array1OfPnt2d& Poles, const TColStd_Array1OfReal* Weights, const TColStd_Array1OfReal& Knots, const TColStd_Array1OfInteger& Mults, TColgp_Array1OfPnt2d& NewPoles, TColStd_Array1OfReal* NewWeights);
  
  Standard_EXPORT static void RaiseMultiplicity (const Standard_Integer KnotIndex, const Standard_Integer Mult, const Standard_Integer Degree, const Standard_Boolean Periodic, const TColgp_Array1OfPnt& Poles, const TColStd_Array1OfReal* Weights, const TColStd_Array1OfReal& Knots, const TColStd_Array1OfInteger& Mults, TColgp_Array1OfPnt& NewPoles, TColStd_Array1OfReal* NewWeights);
  
  //! Raise the multiplicity of knot to <UMult>.
  //!
  //! The new control points  are  returned. Knots and Mults are
  //! not updated.
  Standard_EXPORT static void RaiseMultiplicity (const Standard_Integer KnotIndex, const Standard_Integer Mult, const Standard_Integer Degree, const Standard_Boolean Periodic, const TColgp_Array1OfPnt2d& Poles, const TColStd_Array1OfReal* Weights, const TColStd_Array1OfReal& Knots, const TColStd_Array1OfInteger& Mults, TColgp_Array1OfPnt2d& NewPoles, TColStd_Array1OfReal* NewWeights);
  
  Standard_EXPORT static Standard_Boolean RemoveKnot (const Standard_Integer Index, const Standard_Integer Mult, const Standard_Integer Degree, const Standard_Boolean Periodic, const Standard_Integer Dimension, const TColStd_Array1OfReal& Poles, const TColStd_Array1OfReal& Knots, const TColStd_Array1OfInteger& Mults, TColStd_Array1OfReal& NewPoles, TColStd_Array1OfReal& NewKnots, TColStd_Array1OfInteger& NewMults, const Standard_Real Tolerance);
  
  Standard_EXPORT static Standard_Boolean RemoveKnot (const Standard_Integer Index, const Standard_Integer Mult, const Standard_Integer Degree, const Standard_Boolean Periodic, const TColgp_Array1OfPnt& Poles, const TColStd_Array1OfReal* Weights, const TColStd_Array1OfReal& Knots, const TColStd_Array1OfInteger& Mults, TColgp_Array1OfPnt& NewPoles, TColStd_Array1OfReal* NewWeights, TColStd_Array1OfReal& NewKnots, TColStd_Array1OfInteger& NewMults, const Standard_Real Tolerance);
  
  //! Decrement the  multiplicity  of <Knots(Index)>
  //! to <Mult>. If <Mult>   is  null the   knot  is
  //! removed.
  //!
  //! As there are two ways to compute the new poles
  //! the midlle   will  be used  as  long    as the
  //! distance is lower than Tolerance.
  //!
  //! If a  distance is  bigger  than  tolerance the
  //! methods returns False  and  the new arrays are
  //! not modified.
  //!
  //! A low  tolerance can be  used  to test  if the
  //! knot  can be  removed  without  modifying  the
  //! curve.
  //!
  //! A high tolerance  can be used  to "smooth" the
  //! curve.
  Standard_EXPORT static Standard_Boolean RemoveKnot (const Standard_Integer Index, const Standard_Integer Mult, const Standard_Integer Degree, const Standard_Boolean Periodic, const TColgp_Array1OfPnt2d& Poles, const TColStd_Array1OfReal* Weights, const TColStd_Array1OfReal& Knots, const TColStd_Array1OfInteger& Mults, TColgp_Array1OfPnt2d& NewPoles, TColStd_Array1OfReal* NewWeights, TColStd_Array1OfReal& NewKnots, TColStd_Array1OfInteger& NewMults, const Standard_Real Tolerance);
  
  //! Returns the   number   of  knots   of  a  curve   with
  //! multiplicities <Mults> after elevating the degree from
  //! <Degree> to <NewDegree>. See the IncreaseDegree method
  //! for more comments.
  Standard_EXPORT static Standard_Integer IncreaseDegreeCountKnots (const Standard_Integer Degree, const Standard_Integer NewDegree, const Standard_Boolean Periodic, const TColStd_Array1OfInteger& Mults);
  
  Standard_EXPORT static void IncreaseDegree (const Standard_Integer Degree, const Standard_Integer NewDegree, const Standard_Boolean Periodic, const Standard_Integer Dimension, const TColStd_Array1OfReal& Poles, const TColStd_Array1OfReal& Knots, const TColStd_Array1OfInteger& Mults, TColStd_Array1OfReal& NewPoles, TColStd_Array1OfReal& NewKnots, TColStd_Array1OfInteger& NewMults);
  
  Standard_EXPORT static void IncreaseDegree (const Standard_Integer Degree, const Standard_Integer NewDegree, const Standard_Boolean Periodic, const TColgp_Array1OfPnt& Poles, const TColStd_Array1OfReal* Weights, const TColStd_Array1OfReal& Knots, const TColStd_Array1OfInteger& Mults, TColgp_Array1OfPnt& NewPoles, TColStd_Array1OfReal* NewWeights, TColStd_Array1OfReal& NewKnots, TColStd_Array1OfInteger& NewMults);
  
  Standard_EXPORT static void IncreaseDegree (const Standard_Integer Degree, const Standard_Integer NewDegree, const Standard_Boolean Periodic, const TColgp_Array1OfPnt2d& Poles, const TColStd_Array1OfReal* Weights, const TColStd_Array1OfReal& Knots, const TColStd_Array1OfInteger& Mults, TColgp_Array1OfPnt2d& NewPoles, TColStd_Array1OfReal* NewWeights, TColStd_Array1OfReal& NewKnots, TColStd_Array1OfInteger& NewMults);
  
  Standard_EXPORT static void IncreaseDegree (const Standard_Integer NewDegree, const TColgp_Array1OfPnt& Poles, const TColStd_Array1OfReal* Weights, TColgp_Array1OfPnt& NewPoles, TColStd_Array1OfReal* NewWeights);
  
  //! Increase the degree of a bspline (or bezier) curve
  //! of   dimension  <Dimension>  form <Degree>      to
  //! <NewDegree>.
  //!
  //! The number of poles in the new curve is :
  //!
  //! Poles.Length() + (NewDegree - Degree) * Number of spans
  //!
  //! Where the number of spans is :
  //!
  //! LastUKnotIndex(Mults) - FirstUKnotIndex(Mults) + 1
  //!
  //! for a non-periodic curve
  //!
  //! And Knots.Length() - 1 for a periodic curve.
  //!
  //! The multiplicities of all  knots  are increased by
  //! the degree elevation.
  //!
  //! The new knots are usually  the same knots with the
  //! exception of  a non-periodic curve with  the first
  //! and last multiplicity not  equal to Degree+1 where
  //! knots are removed  form the start  and the  bottom
  //! untils the sum of the  multiplicities is  equal to
  //! NewDegree+1  at the  knots   corresponding  to the
  //! first and last parameters of the curve.
  //!
  //! Example  :  Suppose a  curve  of degree 3 starting
  //! with following knots and multiplicities :
  //!
  //! knot : 0.  1.  2.
  //! mult : 1   2   1
  //!
  //! The  FirstUKnot is  2.     because the   sum    of
  //! multiplicities is Degree+1 : 1 + 2 + 1 = 4 = 3 + 1
  //!
  //! i.e. the first parameter  of the  curve is  2. and
  //! will still be   2.  after degree  elevation.   Let
  //! raises this curve to degree 4.  The multiplicities
  //! are increased by 2.
  //!
  //! They   become 2 3  2.   But     we need a   sum of
  //! multiplicities  of 5 at knot  2. So the first knot
  //! is removed and the new knots are :
  //!
  //! knot : 1.  2.
  //! mult : 3   2
  //!
  //! The multipicity   of the first  knot may   also be
  //! reduced if the sum is still to big.
  //!
  //! In the  most common situations (periodic  curve or
  //! curve with first and last multiplicities equals to
  //! Degree+1) the knots are knot changes.
  //!
  //! The method IncreaseDegreeCountKnots can be used to
  //! compute the new number of knots.
  Standard_EXPORT static void IncreaseDegree (const Standard_Integer NewDegree, const TColgp_Array1OfPnt2d& Poles, const TColStd_Array1OfReal* Weights, TColgp_Array1OfPnt2d& NewPoles, TColStd_Array1OfReal* NewWeights);
  
  //! Set in <NbKnots> and <NbPolesToAdd> the number of Knots and
  //! Poles   of  the NotPeriodic  Curve   identical  at the
  //! periodic     curve with    a  degree    <Degree>  ,  a
  //! knots-distribution with Multiplicities <Mults>.
  Standard_EXPORT static void PrepareUnperiodize (const Standard_Integer Degree, const TColStd_Array1OfInteger& Mults, Standard_Integer& NbKnots, Standard_Integer& NbPoles);
  
  Standard_EXPORT static void Unperiodize (const Standard_Integer Degree, const Standard_Integer Dimension, const TColStd_Array1OfInteger& Mults, const TColStd_Array1OfReal& Knots, const TColStd_Array1OfReal& Poles, TColStd_Array1OfInteger& NewMults, TColStd_Array1OfReal& NewKnots, TColStd_Array1OfReal& NewPoles);
  
  Standard_EXPORT static void Unperiodize (const Standard_Integer Degree, const TColStd_Array1OfInteger& Mults, const TColStd_Array1OfReal& Knots, const TColgp_Array1OfPnt& Poles, const TColStd_Array1OfReal* Weights, TColStd_Array1OfInteger& NewMults, TColStd_Array1OfReal& NewKnots, TColgp_Array1OfPnt& NewPoles, TColStd_Array1OfReal* NewWeights);
  
  Standard_EXPORT static void Unperiodize (const Standard_Integer Degree, const TColStd_Array1OfInteger& Mults, const TColStd_Array1OfReal& Knots, const TColgp_Array1OfPnt2d& Poles, const TColStd_Array1OfReal* Weights, TColStd_Array1OfInteger& NewMults, TColStd_Array1OfReal& NewKnots, TColgp_Array1OfPnt2d& NewPoles, TColStd_Array1OfReal* NewWeights);
  
  //! Set in <NbKnots> and <NbPoles> the number of Knots and
  //! Poles of the  curve resulting  of  the trimming of the
  //! BSplinecurve definded with <degree>, <knots>, <mults>
  Standard_EXPORT static void PrepareTrimming (const Standard_Integer Degree, const Standard_Boolean Periodic, const TColStd_Array1OfReal& Knots, const TColStd_Array1OfInteger& Mults, const Standard_Real U1, const Standard_Real U2, Standard_Integer& NbKnots, Standard_Integer& NbPoles);
  
  Standard_EXPORT static void Trimming (const Standard_Integer Degree, const Standard_Boolean Periodic, const Standard_Integer Dimension, const TColStd_Array1OfReal& Knots, const TColStd_Array1OfInteger& Mults, const TColStd_Array1OfReal& Poles, const Standard_Real U1, const Standard_Real U2, TColStd_Array1OfReal& NewKnots, TColStd_Array1OfInteger& NewMults, TColStd_Array1OfReal& NewPoles);
  
  Standard_EXPORT static void Trimming (const Standard_Integer Degree, const Standard_Boolean Periodic, const TColStd_Array1OfReal& Knots, const TColStd_Array1OfInteger& Mults, const TColgp_Array1OfPnt& Poles, const TColStd_Array1OfReal* Weights, const Standard_Real U1, const Standard_Real U2, TColStd_Array1OfReal& NewKnots, TColStd_Array1OfInteger& NewMults, TColgp_Array1OfPnt& NewPoles, TColStd_Array1OfReal* NewWeights);
  
  Standard_EXPORT static void Trimming (const Standard_Integer Degree, const Standard_Boolean Periodic, const TColStd_Array1OfReal& Knots, const TColStd_Array1OfInteger& Mults, const TColgp_Array1OfPnt2d& Poles, const TColStd_Array1OfReal* Weights, const Standard_Real U1, const Standard_Real U2, TColStd_Array1OfReal& NewKnots, TColStd_Array1OfInteger& NewMults, TColgp_Array1OfPnt2d& NewPoles, TColStd_Array1OfReal* NewWeights);
  
  Standard_EXPORT static void D0 (const Standard_Real U, const Standard_Integer Index, const Standard_Integer Degree, const Standard_Boolean Periodic, const TColStd_Array1OfReal& Poles, const TColStd_Array1OfReal* Weights, const TColStd_Array1OfReal& Knots, const TColStd_Array1OfInteger* Mults, Standard_Real& P);
  
  Standard_EXPORT static void D0 (const Standard_Real U, const Standard_Integer Index, const Standard_Integer Degree, const Standard_Boolean Periodic, const TColgp_Array1OfPnt& Poles, const TColStd_Array1OfReal* Weights, const TColStd_Array1OfReal& Knots, const TColStd_Array1OfInteger* Mults, gp_Pnt& P);
  
  Standard_EXPORT static void D0 (const Standard_Real U, const Standard_Integer UIndex, const Standard_Integer Degree, const Standard_Boolean Periodic, const TColgp_Array1OfPnt2d& Poles, const TColStd_Array1OfReal* Weights, const TColStd_Array1OfReal& Knots, const TColStd_Array1OfInteger* Mults, gp_Pnt2d& P);
  
  Standard_EXPORT static void D0 (const Standard_Real U, const TColgp_Array1OfPnt& Poles, const TColStd_Array1OfReal* Weights, gp_Pnt& P);
  
  Standard_EXPORT static void D0 (const Standard_Real U, const TColgp_Array1OfPnt2d& Poles, const TColStd_Array1OfReal* Weights, gp_Pnt2d& P);
  
  Standard_EXPORT static void D1 (const Standard_Real U, const Standard_Integer Index, const Standard_Integer Degree, const Standard_Boolean Periodic, const TColStd_Array1OfReal& Poles, const TColStd_Array1OfReal* Weights, const TColStd_Array1OfReal& Knots, const TColStd_Array1OfInteger* Mults, Standard_Real& P, Standard_Real& V);
  
  Standard_EXPORT static void D1 (const Standard_Real U, const Standard_Integer Index, const Standard_Integer Degree, const Standard_Boolean Periodic, const TColgp_Array1OfPnt& Poles, const TColStd_Array1OfReal* Weights, const TColStd_Array1OfReal& Knots, const TColStd_Array1OfInteger* Mults, gp_Pnt& P, gp_Vec& V);
  
  Standard_EXPORT static void D1 (const Standard_Real U, const Standard_Integer UIndex, const Standard_Integer Degree, const Standard_Boolean Periodic, const TColgp_Array1OfPnt2d& Poles, const TColStd_Array1OfReal* Weights, const TColStd_Array1OfReal& Knots, const TColStd_Array1OfInteger* Mults, gp_Pnt2d& P, gp_Vec2d& V);
  
  Standard_EXPORT static void D1 (const Standard_Real U, const TColgp_Array1OfPnt& Poles, const TColStd_Array1OfReal* Weights, gp_Pnt& P, gp_Vec& V);
  
  Standard_EXPORT static void D1 (const Standard_Real U, const TColgp_Array1OfPnt2d& Poles, const TColStd_Array1OfReal* Weights, gp_Pnt2d& P, gp_Vec2d& V);
  
  Standard_EXPORT static void D2 (const Standard_Real U, const Standard_Integer Index, const Standard_Integer Degree, const Standard_Boolean Periodic, const TColStd_Array1OfReal& Poles, const TColStd_Array1OfReal* Weights, const TColStd_Array1OfReal& Knots, const TColStd_Array1OfInteger* Mults, Standard_Real& P, Standard_Real& V1, Standard_Real& V2);
  
  Standard_EXPORT static void D2 (const Standard_Real U, const Standard_Integer Index, const Standard_Integer Degree, const Standard_Boolean Periodic, const TColgp_Array1OfPnt& Poles, const TColStd_Array1OfReal* Weights, const TColStd_Array1OfReal& Knots, const TColStd_Array1OfInteger* Mults, gp_Pnt& P, gp_Vec& V1, gp_Vec& V2);
  
  Standard_EXPORT static void D2 (const Standard_Real U, const Standard_Integer UIndex, const Standard_Integer Degree, const Standard_Boolean Periodic, const TColgp_Array1OfPnt2d& Poles, const TColStd_Array1OfReal* Weights, const TColStd_Array1OfReal& Knots, const TColStd_Array1OfInteger* Mults, gp_Pnt2d& P, gp_Vec2d& V1, gp_Vec2d& V2);
  
  Standard_EXPORT static void D2 (const Standard_Real U, const TColgp_Array1OfPnt& Poles, const TColStd_Array1OfReal* Weights, gp_Pnt& P, gp_Vec& V1, gp_Vec& V2);
  
  Standard_EXPORT static void D2 (const Standard_Real U, const TColgp_Array1OfPnt2d& Poles, const TColStd_Array1OfReal* Weights, gp_Pnt2d& P, gp_Vec2d& V1, gp_Vec2d& V2);
  
  Standard_EXPORT static void D3 (const Standard_Real U, const Standard_Integer Index, const Standard_Integer Degree, const Standard_Boolean Periodic, const TColStd_Array1OfReal& Poles, const TColStd_Array1OfReal* Weights, const TColStd_Array1OfReal& Knots, const TColStd_Array1OfInteger* Mults, Standard_Real& P, Standard_Real& V1, Standard_Real& V2, Standard_Real& V3);
  
  Standard_EXPORT static void D3 (const Standard_Real U, const Standard_Integer Index, const Standard_Integer Degree, const Standard_Boolean Periodic, const TColgp_Array1OfPnt& Poles, const TColStd_Array1OfReal* Weights, const TColStd_Array1OfReal& Knots, const TColStd_Array1OfInteger* Mults, gp_Pnt& P, gp_Vec& V1, gp_Vec& V2, gp_Vec& V3);
  
  Standard_EXPORT static void D3 (const Standard_Real U, const Standard_Integer UIndex, const Standard_Integer Degree, const Standard_Boolean Periodic, const TColgp_Array1OfPnt2d& Poles, const TColStd_Array1OfReal* Weights, const TColStd_Array1OfReal& Knots, const TColStd_Array1OfInteger* Mults, gp_Pnt2d& P, gp_Vec2d& V1, gp_Vec2d& V2, gp_Vec2d& V3);
  
  Standard_EXPORT static void D3 (const Standard_Real U, const TColgp_Array1OfPnt& Poles, const TColStd_Array1OfReal* Weights, gp_Pnt& P, gp_Vec& V1, gp_Vec& V2, gp_Vec& V3);
  
  Standard_EXPORT static void D3 (const Standard_Real U, const TColgp_Array1OfPnt2d& Poles, const TColStd_Array1OfReal* Weights, gp_Pnt2d& P, gp_Vec2d& V1, gp_Vec2d& V2, gp_Vec2d& V3);
  
  Standard_EXPORT static void DN (const Standard_Real U, const Standard_Integer N, const Standard_Integer Index, const Standard_Integer Degree, const Standard_Boolean Periodic, const TColStd_Array1OfReal& Poles, const TColStd_Array1OfReal* Weights, const TColStd_Array1OfReal& Knots, const TColStd_Array1OfInteger* Mults, Standard_Real& VN);
  
  Standard_EXPORT static void DN (const Standard_Real U, const Standard_Integer N, const Standard_Integer Index, const Standard_Integer Degree, const Standard_Boolean Periodic, const TColgp_Array1OfPnt& Poles, const TColStd_Array1OfReal* Weights, const TColStd_Array1OfReal& Knots, const TColStd_Array1OfInteger* Mults, gp_Vec& VN);
  
  Standard_EXPORT static void DN (const Standard_Real U, const Standard_Integer N, const Standard_Integer UIndex, const Standard_Integer Degree, const Standard_Boolean Periodic, const TColgp_Array1OfPnt2d& Poles, const TColStd_Array1OfReal* Weights, const TColStd_Array1OfReal& Knots, const TColStd_Array1OfInteger* Mults, gp_Vec2d& V);
  
  Standard_EXPORT static void DN (const Standard_Real U, const Standard_Integer N, const TColgp_Array1OfPnt& Poles, const TColStd_Array1OfReal& Weights, gp_Pnt& P, gp_Vec& VN);
  
  //! The  above  functions  compute   values and
  //! derivatives in the following situations :
  //!
  //! * 3D, 2D and 1D
  //!
  //! * Rational or not Rational.
  //!
  //! * Knots  and multiplicities or "flat knots" without
  //! multiplicities.
  //!
  //! * The  <Index>  is   the the  localization  of  the
  //! parameter in the knot sequence.  If <Index> is  out
  //! of range the correct value will be searched.
  //!
  //! VERY IMPORTANT!!!
  //! USE  BSplCLib::NoWeights()  as Weights argument for non
  //! rational curves computations.
  Standard_EXPORT static void DN (const Standard_Real U, const Standard_Integer N, const TColgp_Array1OfPnt2d& Poles, const TColStd_Array1OfReal& Weights, gp_Pnt2d& P, gp_Vec2d& VN);
  
  //! This  evaluates  the Bspline  Basis  at  a
  //! given  parameter  Parameter   up   to  the
  //! requested   DerivativeOrder  and store the
  //! result  in the  array BsplineBasis  in the
  //! following   fashion
  //! BSplineBasis(1,1)   =
  //! value of first non vanishing
  //! Bspline function which has Index FirstNonZeroBsplineIndex
  //! BsplineBasis(1,2)   =
  //! value of second non vanishing
  //! Bspline   function which  has   Index
  //! FirstNonZeroBsplineIndex + 1
  //! BsplineBasis(1,n)   =
  //! value of second non vanishing non vanishing
  //! Bspline   function which  has   Index
  //! FirstNonZeroBsplineIndex + n (n <= Order)
  //! BSplineBasis(2,1)   =
  //! value of derivative of first non vanishing
  //! Bspline function which has Index FirstNonZeroBsplineIndex
  //! BSplineBasis(N,1)   =
  //! value of Nth derivative of first non vanishing
  //! Bspline function which has Index FirstNonZeroBsplineIndex
  //! if N <= DerivativeOrder + 1
  Standard_EXPORT static Standard_Integer EvalBsplineBasis (const Standard_Integer DerivativeOrder,
                                                            const Standard_Integer Order,
                                                            const TColStd_Array1OfReal& FlatKnots,
                                                            const Standard_Real Parameter,
                                                            Standard_Integer& FirstNonZeroBsplineIndex,
                                                            math_Matrix& BsplineBasis,
                                                            const Standard_Boolean isPeriodic = Standard_False);
  
  //! This Builds   a fully  blown   Matrix of
  //! (ni)
  //! Bi    (tj)
  //!
  //! with i  and j within 1..Order + NumPoles
  //! The  integer ni is   the ith slot of the
  //! array OrderArray, tj is the jth slot of
  //! the array Parameters
  Standard_EXPORT static Standard_Integer BuildBSpMatrix (const TColStd_Array1OfReal& Parameters, const TColStd_Array1OfInteger& OrderArray, const TColStd_Array1OfReal& FlatKnots, const Standard_Integer Degree, math_Matrix& Matrix, Standard_Integer& UpperBandWidth, Standard_Integer& LowerBandWidth);
  
  //! this  factors  the Banded Matrix in
  //! the LU form with a Banded storage of
  //! components of the L matrix
  //! WARNING : do not use if the Matrix is
  //! totally positive (It is the case for
  //! Bspline matrices build as above with
  //! parameters being the Schoenberg points
  Standard_EXPORT static Standard_Integer FactorBandedMatrix (math_Matrix& Matrix, const Standard_Integer UpperBandWidth, const Standard_Integer LowerBandWidth, Standard_Integer& PivotIndexProblem);
  
  //! This solves  the system Matrix.X =  B
  //! with when Matrix is factored in LU form
  //! The  Array   is    an   seen   as    an
  //! Array[1..N][1..ArrayDimension] with N =
  //! the  rank  of the  matrix  Matrix.  The
  //! result is stored   in Array  when  each
  //! coordinate is  solved that is  B is the
  //! array whose values are
  //! B[i] = Array[i][p] for each p in 1..ArrayDimension
  Standard_EXPORT static Standard_Integer SolveBandedSystem (const math_Matrix& Matrix, const Standard_Integer UpperBandWidth, const Standard_Integer LowerBandWidth, const Standard_Integer ArrayDimension, Standard_Real& Array);
  
  //! This solves  the system Matrix.X =  B
  //! with when Matrix is factored in LU form
  //! The  Array   has the length of
  //! the  rank  of the  matrix  Matrix.  The
  //! result is stored   in Array  when  each
  //! coordinate is  solved that is  B is the
  //! array whose values are
  //! B[i] = Array[i][p] for each p in 1..ArrayDimension
  Standard_EXPORT static Standard_Integer SolveBandedSystem (const math_Matrix& Matrix, const Standard_Integer UpperBandWidth, const Standard_Integer LowerBandWidth, TColgp_Array1OfPnt2d& Array);
  
  //! This solves  the system Matrix.X =  B
  //! with when Matrix is factored in LU form
  //! The  Array   has the length of
  //! the  rank  of the  matrix  Matrix.  The
  //! result is stored   in Array  when  each
  //! coordinate is  solved that is  B is the
  //! array whose values are
  //! B[i] = Array[i][p] for each p in 1..ArrayDimension
  Standard_EXPORT static Standard_Integer SolveBandedSystem (const math_Matrix& Matrix, const Standard_Integer UpperBandWidth, const Standard_Integer LowerBandWidth, TColgp_Array1OfPnt& Array);
  
  Standard_EXPORT static Standard_Integer SolveBandedSystem (const math_Matrix& Matrix, const Standard_Integer UpperBandWidth, const Standard_Integer LowerBandWidth, const Standard_Boolean HomogenousFlag, const Standard_Integer ArrayDimension, Standard_Real& Array, Standard_Real& Weights);
  
  //! This solves the  system Matrix.X =  B
  //! with when Matrix is factored in LU form
  //! The    Array   is    an   seen  as   an
  //! Array[1..N][1..ArrayDimension] with N =
  //! the  rank  of  the  matrix Matrix.  The
  //! result is  stored   in Array when  each
  //! coordinate is  solved that is B  is the
  //! array  whose   values     are   B[i]  =
  //! Array[i][p]       for     each  p    in
  //! 1..ArrayDimension. If  HomogeneousFlag ==
  //! 0  the  Poles  are  multiplied by   the
  //! Weights   uppon   Entry   and      once
  //! interpolation   is    carried  over the
  //! result of the  poles are divided by the
  //! result of   the   interpolation of  the
  //! weights. Otherwise if HomogenousFlag == 1
  //! the Poles and Weigths are treated homogenously
  //! that is that those are interpolated as they
  //! are and result is returned without division
  //! by the interpolated weigths.
  Standard_EXPORT static Standard_Integer SolveBandedSystem (const math_Matrix& Matrix, const Standard_Integer UpperBandWidth, const Standard_Integer LowerBandWidth, const Standard_Boolean HomogenousFlag, TColgp_Array1OfPnt2d& Array, TColStd_Array1OfReal& Weights);
  
  //! This solves  the system Matrix.X =  B
  //! with when Matrix is factored in LU form
  //! The  Array   is    an   seen   as    an
  //! Array[1..N][1..ArrayDimension] with N =
  //! the  rank  of the  matrix  Matrix.  The
  //! result is stored   in Array  when  each
  //! coordinate is  solved that is  B is the
  //! array whose values are
  //! B[i] = Array[i][p] for each p in 1..ArrayDimension
  //! If  HomogeneousFlag ==
  //! 0  the  Poles  are  multiplied by   the
  //! Weights   uppon   Entry   and      once
  //! interpolation   is    carried  over the
  //! result of the  poles are divided by the
  //! result of   the   interpolation of  the
  //! weights. Otherwise if HomogenousFlag == 1
  //! the Poles and Weigths are treated homogenously
  //! that is that those are interpolated as they
  //! are and result is returned without division
  //! by the interpolated weigths.
  Standard_EXPORT static Standard_Integer SolveBandedSystem (const math_Matrix& Matrix, const Standard_Integer UpperBandWidth, const Standard_Integer LowerBandWidth, const Standard_Boolean HomogeneousFlag, TColgp_Array1OfPnt& Array, TColStd_Array1OfReal& Weights);
  
  //! Merges  two knot vector by   setting the starting and
  //! ending values to StartValue and EndValue
  Standard_EXPORT static void MergeBSplineKnots (const Standard_Real Tolerance, const Standard_Real StartValue, const Standard_Real EndValue, const Standard_Integer Degree1, const TColStd_Array1OfReal& Knots1, const TColStd_Array1OfInteger& Mults1, const Standard_Integer Degree2, const TColStd_Array1OfReal& Knots2, const TColStd_Array1OfInteger& Mults2, Standard_Integer& NumPoles, Handle(TColStd_HArray1OfReal)& NewKnots, Handle(TColStd_HArray1OfInteger)& NewMults);
  
  //! This function will compose  a given Vectorial BSpline F(t)
  //! defined  by its  BSplineDegree and BSplineFlatKnotsl,
  //! its Poles  array which are coded as  an array of Real
  //! of  the  form  [1..NumPoles][1..PolesDimension] with  a
  //! function     a(t) which is   assumed to   satisfy the
  //! following:
  //!
  //! 1. F(a(t))  is a polynomial BSpline
  //! that can be expressed  exactly as a BSpline of degree
  //! NewDegree on the knots FlatKnots
  //!
  //! 2. a(t) defines a differentiable
  //! isomorphism between the range of FlatKnots to the range
  //! of BSplineFlatKnots which is the
  //! same as the  range of F(t)
  //!
  //! Warning: it is
  //! the caller's responsability to insure that conditions
  //! 1. and  2. above are  satisfied : no check whatsoever
  //! is made in this method
  //!
  //! theStatus will return 0 if OK else it will return the pivot index
  //! of the matrix that was inverted to compute the multiplied
  //! BSpline : the method used is interpolation at Schoenenberg
  //! points of F(a(t))
  Standard_EXPORT static void FunctionReparameterise (const BSplCLib_EvaluatorFunction& Function, const Standard_Integer BSplineDegree, const TColStd_Array1OfReal& BSplineFlatKnots, const Standard_Integer PolesDimension, Standard_Real& Poles, const TColStd_Array1OfReal& FlatKnots, const Standard_Integer NewDegree, Standard_Real& NewPoles, Standard_Integer& theStatus);
  
  //! This function will compose  a given Vectorial BSpline F(t)
  //! defined  by its  BSplineDegree and BSplineFlatKnotsl,
  //! its Poles  array which are coded as  an array of Real
  //! of  the  form  [1..NumPoles][1..PolesDimension] with  a
  //! function     a(t) which is   assumed to   satisfy the
  //! following:
  //!
  //! 1. F(a(t))  is a polynomial BSpline
  //! that can be expressed  exactly as a BSpline of degree
  //! NewDegree on the knots FlatKnots
  //!
  //! 2. a(t) defines a differentiable
  //! isomorphism between the range of FlatKnots to the range
  //! of BSplineFlatKnots which is the
  //! same as the  range of F(t)
  //!
  //! Warning: it is
  //! the caller's responsability to insure that conditions
  //! 1. and  2. above are  satisfied : no check whatsoever
  //! is made in this method
  //!
  //! theStatus will return 0 if OK else it will return the pivot index
  //! of the matrix that was inverted to compute the multiplied
  //! BSpline : the method used is interpolation at Schoenenberg
  //! points of F(a(t))
  Standard_EXPORT static void FunctionReparameterise (const BSplCLib_EvaluatorFunction& Function, const Standard_Integer BSplineDegree, const TColStd_Array1OfReal& BSplineFlatKnots, const TColStd_Array1OfReal& Poles, const TColStd_Array1OfReal& FlatKnots, const Standard_Integer NewDegree, TColStd_Array1OfReal& NewPoles, Standard_Integer& theStatus);
  
  //! this will compose  a given Vectorial BSpline F(t)
  //! defined  by its  BSplineDegree and BSplineFlatKnotsl,
  //! its Poles  array which are coded as  an array of Real
  //! of  the  form  [1..NumPoles][1..PolesDimension] with  a
  //! function     a(t) which is   assumed to   satisfy the
  //! following  : 1. F(a(t))  is a polynomial BSpline
  //! that can be expressed  exactly as a BSpline of degree
  //! NewDegree on the knots FlatKnots
  //! 2. a(t) defines a differentiable
  //! isomorphism between the range of FlatKnots to the range
  //! of BSplineFlatKnots which is the
  //! same as the  range of F(t)
  //! Warning: it is
  //! the caller's responsability to insure that conditions
  //! 1. and  2. above are  satisfied : no check whatsoever
  //! is made in this method
  //! theStatus will return 0 if OK else it will return the pivot index
  //! of the matrix that was inverted to compute the multiplied
  //! BSpline : the method used is interpolation at Schoenenberg
  //! points of F(a(t))
  Standard_EXPORT static void FunctionReparameterise (const BSplCLib_EvaluatorFunction& Function, const Standard_Integer BSplineDegree, const TColStd_Array1OfReal& BSplineFlatKnots, const TColgp_Array1OfPnt& Poles, const TColStd_Array1OfReal& FlatKnots, const Standard_Integer NewDegree, TColgp_Array1OfPnt& NewPoles, Standard_Integer& theStatus);
  
  //! this will compose  a given Vectorial BSpline F(t)
  //! defined  by its  BSplineDegree and BSplineFlatKnotsl,
  //! its Poles  array which are coded as  an array of Real
  //! of  the  form  [1..NumPoles][1..PolesDimension] with  a
  //! function     a(t) which is   assumed to   satisfy the
  //! following  : 1. F(a(t))  is a polynomial BSpline
  //! that can be expressed  exactly as a BSpline of degree
  //! NewDegree on the knots FlatKnots
  //! 2. a(t) defines a differentiable
  //! isomorphism between the range of FlatKnots to the range
  //! of BSplineFlatKnots which is the
  //! same as the  range of F(t)
  //! Warning: it is
  //! the caller's responsability to insure that conditions
  //! 1. and  2. above are  satisfied : no check whatsoever
  //! is made in this method
  //! theStatus will return 0 if OK else it will return the pivot index
  //! of the matrix that was inverted to compute the multiplied
  //! BSpline : the method used is interpolation at Schoenenberg
  //! points of F(a(t))
  Standard_EXPORT static void FunctionReparameterise (const BSplCLib_EvaluatorFunction& Function, const Standard_Integer BSplineDegree, const TColStd_Array1OfReal& BSplineFlatKnots, const TColgp_Array1OfPnt2d& Poles, const TColStd_Array1OfReal& FlatKnots, const Standard_Integer NewDegree, TColgp_Array1OfPnt2d& NewPoles, Standard_Integer& theStatus);
  
  //! this will  multiply a given Vectorial BSpline F(t)
  //! defined  by its  BSplineDegree and BSplineFlatKnotsl,
  //! its Poles  array which are coded as  an array of Real
  //! of  the  form  [1..NumPoles][1..PolesDimension] by  a
  //! function     a(t) which is   assumed to   satisfy the
  //! following  : 1. a(t)  * F(t)  is a polynomial BSpline
  //! that can be expressed  exactly as a BSpline of degree
  //! NewDegree on the knots FlatKnots 2. the range of a(t)
  //! is the same as the  range of F(t)
  //! Warning: it is
  //! the caller's responsability to insure that conditions
  //! 1. and  2. above are  satisfied : no check whatsoever
  //! is made in this method
  //! theStatus will return 0 if OK else it will return the pivot index
  //! of the matrix that was inverted to compute the multiplied
  //! BSpline : the method used is interpolation at Schoenenberg
  //! points of a(t)*F(t)
  Standard_EXPORT static void FunctionMultiply (const BSplCLib_EvaluatorFunction& Function, const Standard_Integer BSplineDegree, const TColStd_Array1OfReal& BSplineFlatKnots, const Standard_Integer PolesDimension, Standard_Real& Poles, const TColStd_Array1OfReal& FlatKnots, const Standard_Integer NewDegree, Standard_Real& NewPoles, Standard_Integer& theStatus);
  
  //! this will  multiply a given Vectorial BSpline F(t)
  //! defined  by its  BSplineDegree and BSplineFlatKnotsl,
  //! its Poles  array which are coded as  an array of Real
  //! of  the  form  [1..NumPoles][1..PolesDimension] by  a
  //! function     a(t) which is   assumed to   satisfy the
  //! following  : 1. a(t)  * F(t)  is a polynomial BSpline
  //! that can be expressed  exactly as a BSpline of degree
  //! NewDegree on the knots FlatKnots 2. the range of a(t)
  //! is the same as the  range of F(t)
  //! Warning: it is
  //! the caller's responsability to insure that conditions
  //! 1. and  2. above are  satisfied : no check whatsoever
  //! is made in this method
  //! theStatus will return 0 if OK else it will return the pivot index
  //! of the matrix that was inverted to compute the multiplied
  //! BSpline : the method used is interpolation at Schoenenberg
  //! points of a(t)*F(t)
  Standard_EXPORT static void FunctionMultiply (const BSplCLib_EvaluatorFunction& Function, const Standard_Integer BSplineDegree, const TColStd_Array1OfReal& BSplineFlatKnots, const TColStd_Array1OfReal& Poles, const TColStd_Array1OfReal& FlatKnots, const Standard_Integer NewDegree, TColStd_Array1OfReal& NewPoles, Standard_Integer& theStatus);
  
  //! this will  multiply a given Vectorial BSpline F(t)
  //! defined  by its  BSplineDegree and BSplineFlatKnotsl,
  //! its Poles  array which are coded as  an array of Real
  //! of  the  form  [1..NumPoles][1..PolesDimension] by  a
  //! function     a(t) which is   assumed to   satisfy the
  //! following  : 1. a(t)  * F(t)  is a polynomial BSpline
  //! that can be expressed  exactly as a BSpline of degree
  //! NewDegree on the knots FlatKnots 2. the range of a(t)
  //! is the same as the  range of F(t)
  //! Warning: it is
  //! the caller's responsability to insure that conditions
  //! 1. and  2. above are  satisfied : no check whatsoever
  //! is made in this method
  //! theStatus will return 0 if OK else it will return the pivot index
  //! of the matrix that was inverted to compute the multiplied
  //! BSpline : the method used is interpolation at Schoenenberg
  //! points of a(t)*F(t)
  Standard_EXPORT static void FunctionMultiply (const BSplCLib_EvaluatorFunction& Function, const Standard_Integer BSplineDegree, const TColStd_Array1OfReal& BSplineFlatKnots, const TColgp_Array1OfPnt2d& Poles, const TColStd_Array1OfReal& FlatKnots, const Standard_Integer NewDegree, TColgp_Array1OfPnt2d& NewPoles, Standard_Integer& theStatus);
  
  //! this will  multiply a given Vectorial BSpline F(t)
  //! defined  by its  BSplineDegree and BSplineFlatKnotsl,
  //! its Poles  array which are coded as  an array of Real
  //! of  the  form  [1..NumPoles][1..PolesDimension] by  a
  //! function     a(t) which is   assumed to   satisfy the
  //! following  : 1. a(t)  * F(t)  is a polynomial BSpline
  //! that can be expressed  exactly as a BSpline of degree
  //! NewDegree on the knots FlatKnots 2. the range of a(t)
  //! is the same as the  range of F(t)
  //! Warning: it is
  //! the caller's responsability to insure that conditions
  //! 1. and  2. above are  satisfied : no check whatsoever
  //! is made in this method
  //! theStatus will return 0 if OK else it will return the pivot index
  //! of the matrix that was inverted to compute the multiplied
  //! BSpline : the method used is interpolation at Schoenenberg
  //! points of a(t)*F(t)
  Standard_EXPORT static void FunctionMultiply (const BSplCLib_EvaluatorFunction& Function, const Standard_Integer BSplineDegree, const TColStd_Array1OfReal& BSplineFlatKnots, const TColgp_Array1OfPnt& Poles, const TColStd_Array1OfReal& FlatKnots, const Standard_Integer NewDegree, TColgp_Array1OfPnt& NewPoles, Standard_Integer& theStatus);
  
  //! Perform the De Boor   algorithm  to  evaluate a point at
  //! parameter <U>, with <Degree> and <Dimension>.
  //!
  //! Poles is  an array of  Reals of size
  //!
  //! <Dimension> *  <Degree>+1
  //!
  //! Containing the  poles.  At  the end <Poles> contains
  //! the current point.   Poles Contain all  the poles of
  //! the BsplineCurve, Knots  also Contains all the knots
  //! of the BsplineCurve.  ExtrapMode has two slots [0] =
  //! Degree used to extrapolate before the first knot [1]
  //! = Degre used to  extrapolate after the last knot has
  //! to be between 1 and  Degree
  Standard_EXPORT static void Eval (const Standard_Real U, const Standard_Boolean PeriodicFlag, const Standard_Integer DerivativeRequest, Standard_Integer& ExtrapMode, const Standard_Integer Degree, const TColStd_Array1OfReal& FlatKnots, const Standard_Integer ArrayDimension, Standard_Real& Poles, Standard_Real& Result);
  
  //! Perform the  De Boor algorithm  to evaluate a point at
  //! parameter   <U>,  with   <Degree>    and  <Dimension>.
  //! Evaluates by multiplying the  Poles by the Weights and
  //! gives  the homogeneous  result  in PolesResult that is
  //! the results of the evaluation of the numerator once it
  //! has     been  multiplied   by  the     weights and  in
  //! WeightsResult one has  the result of the evaluation of
  //! the denominator
  //!
  //! Warning:   <PolesResult> and <WeightsResult>  must be   dimensionned
  //! properly.
  Standard_EXPORT static void Eval (const Standard_Real U, const Standard_Boolean PeriodicFlag, const Standard_Integer DerivativeRequest, Standard_Integer& ExtrapMode, const Standard_Integer Degree, const TColStd_Array1OfReal& FlatKnots, const Standard_Integer ArrayDimension, Standard_Real& Poles, Standard_Real& Weights, Standard_Real& PolesResult, Standard_Real& WeightsResult);
  
  //! Perform the evaluation of the Bspline Basis
  //! and then multiplies by the weights
  //! this just evaluates the current point
  Standard_EXPORT static void Eval (const Standard_Real U, const Standard_Boolean PeriodicFlag, const Standard_Boolean HomogeneousFlag, Standard_Integer& ExtrapMode, const Standard_Integer Degree, const TColStd_Array1OfReal& FlatKnots, const TColgp_Array1OfPnt& Poles, const TColStd_Array1OfReal& Weights, gp_Pnt& Point, Standard_Real& Weight);
  
  //! Perform the evaluation of the Bspline Basis
  //! and then multiplies by the weights
  //! this just evaluates the current point
  Standard_EXPORT static void Eval (const Standard_Real U, const Standard_Boolean PeriodicFlag, const Standard_Boolean HomogeneousFlag, Standard_Integer& ExtrapMode, const Standard_Integer Degree, const TColStd_Array1OfReal& FlatKnots, const TColgp_Array1OfPnt2d& Poles, const TColStd_Array1OfReal& Weights, gp_Pnt2d& Point, Standard_Real& Weight);
  
  //! Extend a BSpline nD using the tangency map
  //! <C1Coefficient> is the coefficient of reparametrisation
  //! <Continuity> must be equal to 1, 2 or 3.
  //! <Degree> must be greater or equal than <Continuity> + 1.
  //!
  //! Warning:   <KnotsResult> and <PolesResult>  must be   dimensionned
  //! properly.
  Standard_EXPORT static void TangExtendToConstraint (const TColStd_Array1OfReal& FlatKnots, const Standard_Real C1Coefficient, const Standard_Integer NumPoles, Standard_Real& Poles, const Standard_Integer Dimension, const Standard_Integer Degree, const TColStd_Array1OfReal& ConstraintPoint, const Standard_Integer Continuity, const Standard_Boolean After, Standard_Integer& NbPolesResult, Standard_Integer& NbKnotsRsult, Standard_Real& KnotsResult, Standard_Real& PolesResult);
  
  //! Perform the evaluation of the of the cache
  //! the parameter must be normalized between
  //! the 0 and 1 for the span.
  //! The Cache must be valid when calling this
  //! routine. Geom Package will insure that.
  //! and then multiplies by the weights
  //! this just evaluates the current point
  //! the CacheParameter is where the Cache was
  //! constructed the SpanLength is to normalize
  //! the polynomial in the cache to avoid bad conditioning
  //! effects
  Standard_EXPORT static void CacheD0 (const Standard_Real U, const Standard_Integer Degree, const Standard_Real CacheParameter, const Standard_Real SpanLenght, const TColgp_Array1OfPnt& Poles, const TColStd_Array1OfReal* Weights, gp_Pnt& Point);
  
  //! Perform the evaluation of the Bspline Basis
  //! and then multiplies by the weights
  //! this just evaluates the current point
  //! the parameter must be normalized between
  //! the 0 and 1 for the span.
  //! The Cache must be valid when calling this
  //! routine. Geom Package will insure that.
  //! and then multiplies by the weights
  //! ththe CacheParameter is where the Cache was
  //! constructed the SpanLength is to normalize
  //! the polynomial in the cache to avoid bad conditioning
  //! effectsis just evaluates the current point
  Standard_EXPORT static void CacheD0 (const Standard_Real U, const Standard_Integer Degree, const Standard_Real CacheParameter, const Standard_Real SpanLenght, const TColgp_Array1OfPnt2d& Poles, const TColStd_Array1OfReal* Weights, gp_Pnt2d& Point);
  
  //! Calls CacheD0 for Bezier  Curves Arrays computed with
  //! the method PolesCoefficients.
  //! Warning: To be used for Beziercurves ONLY!!!
    static void CoefsD0 (const Standard_Real U, const TColgp_Array1OfPnt& Poles, const TColStd_Array1OfReal* Weights, gp_Pnt& Point);
  
  //! Calls CacheD0 for Bezier  Curves Arrays computed with
  //! the method PolesCoefficients.
  //! Warning: To be used for Beziercurves ONLY!!!
    static void CoefsD0 (const Standard_Real U, const TColgp_Array1OfPnt2d& Poles, const TColStd_Array1OfReal* Weights, gp_Pnt2d& Point);
  
  //! Perform the evaluation of the of the cache
  //! the parameter must be normalized between
  //! the 0 and 1 for the span.
  //! The Cache must be valid when calling this
  //! routine. Geom Package will insure that.
  //! and then multiplies by the weights
  //! this just evaluates the current point
  //! the CacheParameter is where the Cache was
  //! constructed the SpanLength is to normalize
  //! the polynomial in the cache to avoid bad conditioning
  //! effects
  Standard_EXPORT static void CacheD1 (const Standard_Real U, const Standard_Integer Degree, const Standard_Real CacheParameter, const Standard_Real SpanLenght, const TColgp_Array1OfPnt& Poles, const TColStd_Array1OfReal* Weights, gp_Pnt& Point, gp_Vec& Vec);
  
  //! Perform the evaluation of the Bspline Basis
  //! and then multiplies by the weights
  //! this just evaluates the current point
  //! the parameter must be normalized between
  //! the 0 and 1 for the span.
  //! The Cache must be valid when calling this
  //! routine. Geom Package will insure that.
  //! and then multiplies by the weights
  //! ththe CacheParameter is where the Cache was
  //! constructed the SpanLength is to normalize
  //! the polynomial in the cache to avoid bad conditioning
  //! effectsis just evaluates the current point
  Standard_EXPORT static void CacheD1 (const Standard_Real U, const Standard_Integer Degree, const Standard_Real CacheParameter, const Standard_Real SpanLenght, const TColgp_Array1OfPnt2d& Poles, const TColStd_Array1OfReal* Weights, gp_Pnt2d& Point, gp_Vec2d& Vec);
  
  //! Calls CacheD1 for Bezier  Curves Arrays computed with
  //! the method PolesCoefficients.
  //! Warning: To be used for Beziercurves ONLY!!!
    static void CoefsD1 (const Standard_Real U, const TColgp_Array1OfPnt& Poles, const TColStd_Array1OfReal* Weights, gp_Pnt& Point, gp_Vec& Vec);
  
  //! Calls CacheD1 for Bezier  Curves Arrays computed with
  //! the method PolesCoefficients.
  //! Warning: To be used for Beziercurves ONLY!!!
    static void CoefsD1 (const Standard_Real U, const TColgp_Array1OfPnt2d& Poles, const TColStd_Array1OfReal* Weights, gp_Pnt2d& Point, gp_Vec2d& Vec);
  
  //! Perform the evaluation of the of the cache
  //! the parameter must be normalized between
  //! the 0 and 1 for the span.
  //! The Cache must be valid when calling this
  //! routine. Geom Package will insure that.
  //! and then multiplies by the weights
  //! this just evaluates the current point
  //! the CacheParameter is where the Cache was
  //! constructed the SpanLength is to normalize
  //! the polynomial in the cache to avoid bad conditioning
  //! effects
  Standard_EXPORT static void CacheD2 (const Standard_Real U, const Standard_Integer Degree, const Standard_Real CacheParameter, const Standard_Real SpanLenght, const TColgp_Array1OfPnt& Poles, const TColStd_Array1OfReal* Weights, gp_Pnt& Point, gp_Vec& Vec1, gp_Vec& Vec2);
  
  //! Perform the evaluation of the Bspline Basis
  //! and then multiplies by the weights
  //! this just evaluates the current point
  //! the parameter must be normalized between
  //! the 0 and 1 for the span.
  //! The Cache must be valid when calling this
  //! routine. Geom Package will insure that.
  //! and then multiplies by the weights
  //! ththe CacheParameter is where the Cache was
  //! constructed the SpanLength is to normalize
  //! the polynomial in the cache to avoid bad conditioning
  //! effectsis just evaluates the current point
  Standard_EXPORT static void CacheD2 (const Standard_Real U, const Standard_Integer Degree, const Standard_Real CacheParameter, const Standard_Real SpanLenght, const TColgp_Array1OfPnt2d& Poles, const TColStd_Array1OfReal* Weights, gp_Pnt2d& Point, gp_Vec2d& Vec1, gp_Vec2d& Vec2);
  
  //! Calls CacheD1 for Bezier  Curves Arrays computed with
  //! the method PolesCoefficients.
  //! Warning: To be used for Beziercurves ONLY!!!
    static void CoefsD2 (const Standard_Real U, const TColgp_Array1OfPnt& Poles, const TColStd_Array1OfReal* Weights, gp_Pnt& Point, gp_Vec& Vec1, gp_Vec& Vec2);
  
  //! Calls CacheD1 for Bezier  Curves Arrays computed with
  //! the method PolesCoefficients.
  //! Warning: To be used for Beziercurves ONLY!!!
    static void CoefsD2 (const Standard_Real U, const TColgp_Array1OfPnt2d& Poles, const TColStd_Array1OfReal* Weights, gp_Pnt2d& Point, gp_Vec2d& Vec1, gp_Vec2d& Vec2);
  
  //! Perform the evaluation of the of the cache
  //! the parameter must be normalized between
  //! the 0 and 1 for the span.
  //! The Cache must be valid when calling this
  //! routine. Geom Package will insure that.
  //! and then multiplies by the weights
  //! this just evaluates the current point
  //! the CacheParameter is where the Cache was
  //! constructed the SpanLength is to normalize
  //! the polynomial in the cache to avoid bad conditioning
  //! effects
  Standard_EXPORT static void CacheD3 (const Standard_Real U, const Standard_Integer Degree, const Standard_Real CacheParameter, const Standard_Real SpanLenght, const TColgp_Array1OfPnt& Poles, const TColStd_Array1OfReal* Weights, gp_Pnt& Point, gp_Vec& Vec1, gp_Vec& Vec2, gp_Vec& Vec3);
  
  //! Perform the evaluation of the Bspline Basis
  //! and then multiplies by the weights
  //! this just evaluates the current point
  //! the parameter must be normalized between
  //! the 0 and 1 for the span.
  //! The Cache must be valid when calling this
  //! routine. Geom Package will insure that.
  //! and then multiplies by the weights
  //! ththe CacheParameter is where the Cache was
  //! constructed the SpanLength is to normalize
  //! the polynomial in the cache to avoid bad conditioning
  //! effectsis just evaluates the current point
  Standard_EXPORT static void CacheD3 (const Standard_Real U, const Standard_Integer Degree, const Standard_Real CacheParameter, const Standard_Real SpanLenght, const TColgp_Array1OfPnt2d& Poles, const TColStd_Array1OfReal* Weights, gp_Pnt2d& Point, gp_Vec2d& Vec1, gp_Vec2d& Vec2, gp_Vec2d& Vec3);
  
  //! Calls CacheD1 for Bezier  Curves Arrays computed with
  //! the method PolesCoefficients.
  //! Warning: To be used for Beziercurves ONLY!!!
    static void CoefsD3 (const Standard_Real U, const TColgp_Array1OfPnt& Poles, const TColStd_Array1OfReal* Weights, gp_Pnt& Point, gp_Vec& Vec1, gp_Vec& Vec2, gp_Vec& Vec3);
  
  //! Calls CacheD1 for Bezier  Curves Arrays computed with
  //! the method PolesCoefficients.
  //! Warning: To be used for Beziercurves ONLY!!!
    static void CoefsD3 (const Standard_Real U, const TColgp_Array1OfPnt2d& Poles, const TColStd_Array1OfReal* Weights, gp_Pnt2d& Point, gp_Vec2d& Vec1, gp_Vec2d& Vec2, gp_Vec2d& Vec3);
  
  //! Perform the evaluation of the Taylor expansion
  //! of the Bspline normalized between 0 and 1.
  //! If rational computes the homogeneous Taylor expension
  //! for the numerator and stores it in CachePoles
  Standard_EXPORT static void BuildCache (const Standard_Real U, const Standard_Real InverseOfSpanDomain, const Standard_Boolean PeriodicFlag, const Standard_Integer Degree, const TColStd_Array1OfReal& FlatKnots, const TColgp_Array1OfPnt& Poles, const TColStd_Array1OfReal* Weights, TColgp_Array1OfPnt& CachePoles, TColStd_Array1OfReal* CacheWeights);
  
  //! Perform the evaluation of the Taylor expansion
  //! of the Bspline normalized between 0 and 1.
  //! If rational computes the homogeneous Taylor expension
  //! for the numerator and stores it in CachePoles
  Standard_EXPORT static void BuildCache (const Standard_Real U, const Standard_Real InverseOfSpanDomain, const Standard_Boolean PeriodicFlag, const Standard_Integer Degree, const TColStd_Array1OfReal& FlatKnots, const TColgp_Array1OfPnt2d& Poles, const TColStd_Array1OfReal* Weights, TColgp_Array1OfPnt2d& CachePoles, TColStd_Array1OfReal* CacheWeights);
  
  //! Perform the evaluation of the Taylor expansion
  //! of the Bspline normalized between 0 and 1.
  //! Structure of result optimized for BSplCLib_Cache.
  Standard_EXPORT static void BuildCache (const Standard_Real theParameter, const Standard_Real theSpanDomain, const Standard_Boolean thePeriodicFlag, const Standard_Integer theDegree, const Standard_Integer theSpanIndex, const TColStd_Array1OfReal& theFlatKnots, const TColgp_Array1OfPnt& thePoles, const TColStd_Array1OfReal* theWeights, TColStd_Array2OfReal& theCacheArray);
  
  //! Perform the evaluation of the Taylor expansion
  //! of the Bspline normalized between 0 and 1.
  //! Structure of result optimized for BSplCLib_Cache.
  Standard_EXPORT static void BuildCache (const Standard_Real theParameter, const Standard_Real theSpanDomain, const Standard_Boolean thePeriodicFlag, const Standard_Integer theDegree, const Standard_Integer theSpanIndex, const TColStd_Array1OfReal& theFlatKnots, const TColgp_Array1OfPnt2d& thePoles, const TColStd_Array1OfReal* theWeights, TColStd_Array2OfReal& theCacheArray);
  
    static void PolesCoefficients (const TColgp_Array1OfPnt2d& Poles, TColgp_Array1OfPnt2d& CachePoles);
  
  Standard_EXPORT static void PolesCoefficients (const TColgp_Array1OfPnt2d& Poles, const TColStd_Array1OfReal* Weights, TColgp_Array1OfPnt2d& CachePoles, TColStd_Array1OfReal* CacheWeights);
  
    static void PolesCoefficients (const TColgp_Array1OfPnt& Poles, TColgp_Array1OfPnt& CachePoles);
  
  //! Encapsulation   of  BuildCache    to   perform   the
  //! evaluation  of the Taylor expansion for beziercurves
  //! at parameter 0.
  //! Warning: To be used for Beziercurves ONLY!!!
  Standard_EXPORT static void PolesCoefficients (const TColgp_Array1OfPnt& Poles, const TColStd_Array1OfReal* Weights, TColgp_Array1OfPnt& CachePoles, TColStd_Array1OfReal* CacheWeights);
  
  //! Returns pointer to statically allocated array representing
  //! flat knots for bezier curve of the specified degree.
  //! Raises OutOfRange if Degree > MaxDegree()
  Standard_EXPORT static const Standard_Real& FlatBezierKnots (const Standard_Integer Degree);
  
  //! builds the Schoenberg points from the flat knot
  //! used to interpolate a BSpline since the
  //! BSpline matrix is invertible.
  Standard_EXPORT static void BuildSchoenbergPoints (const Standard_Integer Degree, const TColStd_Array1OfReal& FlatKnots, TColStd_Array1OfReal& Parameters);
  
  //! Performs the interpolation of  the data given in
  //! the Poles  array  according  to the  requests in
  //! ContactOrderArray    that is      :           if
  //! ContactOrderArray(i) has value  d it means  that
  //! Poles(i)   containes the dth  derivative of  the
  //! function to be interpolated. The length L of the
  //! following arrays must be the same :
  //! Parameters, ContactOrderArray, Poles,
  //! The length of FlatKnots is Degree + L + 1
  //! Warning:
  //! the method used to do that interpolation is
  //! gauss elimination WITHOUT pivoting. Thus if the
  //! diagonal is not dominant there is no guarantee
  //! that the algorithm will work. Nevertheless for
  //! Cubic interpolation or interpolation at Scheonberg
  //! points the method will work
  //! The InversionProblem will report 0 if there was no
  //! problem else it will give the index of the faulty
  //! pivot
  Standard_EXPORT static void Interpolate (const Standard_Integer Degree, const TColStd_Array1OfReal& FlatKnots, const TColStd_Array1OfReal& Parameters, const TColStd_Array1OfInteger& ContactOrderArray, TColgp_Array1OfPnt& Poles, Standard_Integer& InversionProblem);
  
  //! Performs the interpolation of  the data given in
  //! the Poles  array  according  to the  requests in
  //! ContactOrderArray    that is      :           if
  //! ContactOrderArray(i) has value  d it means  that
  //! Poles(i)   containes the dth  derivative of  the
  //! function to be interpolated. The length L of the
  //! following arrays must be the same :
  //! Parameters, ContactOrderArray, Poles,
  //! The length of FlatKnots is Degree + L + 1
  //! Warning:
  //! the method used to do that interpolation is
  //! gauss elimination WITHOUT pivoting. Thus if the
  //! diagonal is not dominant there is no guarantee
  //! that the algorithm will work. Nevertheless for
  //! Cubic interpolation at knots or interpolation at Scheonberg
  //! points the method will work.
  //! The InversionProblem w
  //! ll report 0 if there was no
  //! problem else it will give the index of the faulty
  //! pivot
  Standard_EXPORT static void Interpolate (const Standard_Integer Degree, const TColStd_Array1OfReal& FlatKnots, const TColStd_Array1OfReal& Parameters, const TColStd_Array1OfInteger& ContactOrderArray, TColgp_Array1OfPnt2d& Poles, Standard_Integer& InversionProblem);
  
  //! Performs the interpolation of  the data given in
  //! the Poles  array  according  to the  requests in
  //! ContactOrderArray    that is      :           if
  //! ContactOrderArray(i) has value  d it means  that
  //! Poles(i)   containes the dth  derivative of  the
  //! function to be interpolated. The length L of the
  //! following arrays must be the same :
  //! Parameters, ContactOrderArray, Poles,
  //! The length of FlatKnots is Degree + L + 1
  //! Warning:
  //! the method used to do that interpolation is
  //! gauss elimination WITHOUT pivoting. Thus if the
  //! diagonal is not dominant there is no guarantee
  //! that the algorithm will work. Nevertheless for
  //! Cubic interpolation at knots or interpolation at Scheonberg
  //! points the method will work.
  //! The InversionProblem will report 0 if there was no
  //! problem else it will give the index of the faulty
  //! pivot
  Standard_EXPORT static void Interpolate (const Standard_Integer Degree, const TColStd_Array1OfReal& FlatKnots, const TColStd_Array1OfReal& Parameters, const TColStd_Array1OfInteger& ContactOrderArray, TColgp_Array1OfPnt& Poles, TColStd_Array1OfReal& Weights, Standard_Integer& InversionProblem);
  
  //! Performs the interpolation of  the data given in
  //! the Poles  array  according  to the  requests in
  //! ContactOrderArray    that is      :           if
  //! ContactOrderArray(i) has value  d it means  that
  //! Poles(i)   containes the dth  derivative of  the
  //! function to be interpolated. The length L of the
  //! following arrays must be the same :
  //! Parameters, ContactOrderArray, Poles,
  //! The length of FlatKnots is Degree + L + 1
  //! Warning:
  //! the method used to do that interpolation is
  //! gauss elimination WITHOUT pivoting. Thus if the
  //! diagonal is not dominant there is no guarantee
  //! that the algorithm will work. Nevertheless for
  //! Cubic interpolation at knots or interpolation at Scheonberg
  //! points the method will work.
  //! The InversionProblem w
  //! ll report 0 if there was no
  //! problem else it will give the i
  Standard_EXPORT static void Interpolate (const Standard_Integer Degree, const TColStd_Array1OfReal& FlatKnots, const TColStd_Array1OfReal& Parameters, const TColStd_Array1OfInteger& ContactOrderArray, TColgp_Array1OfPnt2d& Poles, TColStd_Array1OfReal& Weights, Standard_Integer& InversionProblem);
  
  //! Performs the interpolation of  the data given in
  //! the Poles  array  according  to the  requests in
  //! ContactOrderArray    that is      :           if
  //! ContactOrderArray(i) has value  d it means  that
  //! Poles(i)   containes the dth  derivative of  the
  //! function to be interpolated. The length L of the
  //! following arrays must be the same :
  //! Parameters, ContactOrderArray
  //! The length of FlatKnots is Degree + L + 1
  //! The  PolesArray   is    an   seen   as    an
  //! Array[1..N][1..ArrayDimension] with N = tge length
  //! of the parameters array
  //! Warning:
  //! the method used to do that interpolation is
  //! gauss elimination WITHOUT pivoting. Thus if the
  //! diagonal is not dominant there is no guarantee
  //! that the algorithm will work. Nevertheless for
  //! Cubic interpolation or interpolation at Scheonberg
  //! points the method will work
  //! The InversionProblem will report 0 if there was no
  //! problem else it will give the index of the faulty
  //! pivot
  Standard_EXPORT static void Interpolate (const Standard_Integer Degree, const TColStd_Array1OfReal& FlatKnots, const TColStd_Array1OfReal& Parameters, const TColStd_Array1OfInteger& ContactOrderArray, const Standard_Integer ArrayDimension, Standard_Real& Poles, Standard_Integer& InversionProblem);
  
  Standard_EXPORT static void Interpolate (const Standard_Integer Degree, const TColStd_Array1OfReal& FlatKnots, const TColStd_Array1OfReal& Parameters, const TColStd_Array1OfInteger& ContactOrderArray, const Standard_Integer ArrayDimension, Standard_Real& Poles, Standard_Real& Weights, Standard_Integer& InversionProblem);
  
  //! Find the new poles which allows  an old point (with a
  //! given  u as parameter) to reach a new position
  //! Index1 and Index2 indicate the range of poles we can move
  //! (1, NbPoles-1) or (2, NbPoles) -> no constraint for one side
  //! don't enter (1,NbPoles) -> error: rigid move
  //! (2, NbPoles-1) -> the ends are enforced
  //! (3, NbPoles-2) -> the ends and the tangency are enforced
  //! if Problem in BSplineBasis calculation, no change for the curve
  //! and FirstIndex, LastIndex = 0
  Standard_EXPORT static void MovePoint (const Standard_Real U, const gp_Vec2d& Displ, const Standard_Integer Index1, const Standard_Integer Index2, const Standard_Integer Degree, const TColgp_Array1OfPnt2d& Poles, const TColStd_Array1OfReal* Weights, const TColStd_Array1OfReal& FlatKnots, Standard_Integer& FirstIndex, Standard_Integer& LastIndex, TColgp_Array1OfPnt2d& NewPoles);
  
  //! Find the new poles which allows  an old point (with a
  //! given  u as parameter) to reach a new position
  //! Index1 and Index2 indicate the range of poles we can move
  //! (1, NbPoles-1) or (2, NbPoles) -> no constraint for one side
  //! don't enter (1,NbPoles) -> error: rigid move
  //! (2, NbPoles-1) -> the ends are enforced
  //! (3, NbPoles-2) -> the ends and the tangency are enforced
  //! if Problem in BSplineBasis calculation, no change for the curve
  //! and FirstIndex, LastIndex = 0
  Standard_EXPORT static void MovePoint (const Standard_Real U, const gp_Vec& Displ, const Standard_Integer Index1, const Standard_Integer Index2, const Standard_Integer Degree, const TColgp_Array1OfPnt& Poles, const TColStd_Array1OfReal* Weights, const TColStd_Array1OfReal& FlatKnots, Standard_Integer& FirstIndex, Standard_Integer& LastIndex, TColgp_Array1OfPnt& NewPoles);
  
  //! This is the dimension free version of the utility
  //! U is the parameter  must be within the  first FlatKnots and the
  //! last FlatKnots  Delta is the amount the  curve has  to be moved
  //! DeltaDerivative is the  amount the derivative  has to be moved.
  //! Delta  and   DeltaDerivative   must be    array   of  dimension
  //! ArrayDimension  Degree  is the degree  of   the BSpline and the
  //! FlatKnots are the knots of the BSpline  Starting Condition if =
  //! -1 means the starting point of the curve can move
  //! = 0 means the
  //! starting  point  of the cuve  cannot  move but  tangen  starting
  //! point of the curve cannot move
  //! = 1 means the starting point and tangents cannot move
  //! = 2 means the starting point tangent and curvature cannot move
  //! = ...
  //! Same holds for EndingCondition
  //! Poles are the poles of the curve
  //! Weights are the weights of the curve if not NULL
  //! NewPoles are the poles of the deformed curve
  //! ErrorStatus will be 0 if no error happened
  //! 1 if there are not enough knots/poles
  //! the imposed conditions
  //! The way to solve this problem is to add knots to the BSpline
  //! If StartCondition = 1 and EndCondition = 1 then you need at least
  //! 4 + 2 = 6 poles so for example to have a C1 cubic you will need
  //! have at least 2 internal knots.
  Standard_EXPORT static void MovePointAndTangent (const Standard_Real U, const Standard_Integer ArrayDimension, Standard_Real& Delta, Standard_Real& DeltaDerivative, const Standard_Real Tolerance, const Standard_Integer Degree, const Standard_Integer StartingCondition, const Standard_Integer EndingCondition, Standard_Real& Poles, const TColStd_Array1OfReal* Weights, const TColStd_Array1OfReal& FlatKnots, Standard_Real& NewPoles, Standard_Integer& ErrorStatus);
  
  //! This is the dimension free version of the utility
  //! U is the parameter  must be within the  first FlatKnots and the
  //! last FlatKnots  Delta is the amount the  curve has  to be moved
  //! DeltaDerivative is the  amount the derivative  has to be moved.
  //! Delta  and   DeltaDerivative   must be    array   of  dimension
  //! ArrayDimension  Degree  is the degree  of   the BSpline and the
  //! FlatKnots are the knots of the BSpline  Starting Condition if =
  //! -1 means the starting point of the curve can move
  //! = 0 means the
  //! starting  point  of the cuve  cannot  move but  tangen  starting
  //! point of the curve cannot move
  //! = 1 means the starting point and tangents cannot move
  //! = 2 means the starting point tangent and curvature cannot move
  //! = ...
  //! Same holds for EndingCondition
  //! Poles are the poles of the curve
  //! Weights are the weights of the curve if not NULL
  //! NewPoles are the poles of the deformed curve
  //! ErrorStatus will be 0 if no error happened
  //! 1 if there are not enough knots/poles
  //! the imposed conditions
  //! The way to solve this problem is to add knots to the BSpline
  //! If StartCondition = 1 and EndCondition = 1 then you need at least
  //! 4 + 2 = 6 poles so for example to have a C1 cubic you will need
  //! have at least 2 internal knots.
  Standard_EXPORT static void MovePointAndTangent (const Standard_Real U, const gp_Vec& Delta, const gp_Vec& DeltaDerivative, const Standard_Real Tolerance, const Standard_Integer Degree, const Standard_Integer StartingCondition, const Standard_Integer EndingCondition, const TColgp_Array1OfPnt& Poles, const TColStd_Array1OfReal* Weights, const TColStd_Array1OfReal& FlatKnots, TColgp_Array1OfPnt& NewPoles, Standard_Integer& ErrorStatus);
  
  //! This is the dimension free version of the utility
  //! U is the parameter  must be within the  first FlatKnots and the
  //! last FlatKnots  Delta is the amount the  curve has  to be moved
  //! DeltaDerivative is the  amount the derivative  has to be moved.
  //! Delta  and   DeltaDerivative   must be    array   of  dimension
  //! ArrayDimension  Degree  is the degree  of   the BSpline and the
  //! FlatKnots are the knots of the BSpline  Starting Condition if =
  //! -1 means the starting point of the curve can move
  //! = 0 means the
  //! starting  point  of the cuve  cannot  move but  tangen  starting
  //! point of the curve cannot move
  //! = 1 means the starting point and tangents cannot move
  //! = 2 means the starting point tangent and curvature cannot move
  //! = ...
  //! Same holds for EndingCondition
  //! Poles are the poles of the curve
  //! Weights are the weights of the curve if not NULL
  //! NewPoles are the poles of the deformed curve
  //! ErrorStatus will be 0 if no error happened
  //! 1 if there are not enough knots/poles
  //! the imposed conditions
  //! The way to solve this problem is to add knots to the BSpline
  //! If StartCondition = 1 and EndCondition = 1 then you need at least
  //! 4 + 2 = 6 poles so for example to have a C1 cubic you will need
  //! have at least 2 internal knots.
  Standard_EXPORT static void MovePointAndTangent (const Standard_Real U, const gp_Vec2d& Delta, const gp_Vec2d& DeltaDerivative, const Standard_Real Tolerance, const Standard_Integer Degree, const Standard_Integer StartingCondition, const Standard_Integer EndingCondition, const TColgp_Array1OfPnt2d& Poles, const TColStd_Array1OfReal* Weights, const TColStd_Array1OfReal& FlatKnots, TColgp_Array1OfPnt2d& NewPoles, Standard_Integer& ErrorStatus);
  

  //! given a tolerance in 3D space returns a
  //! tolerance    in U parameter space such that
  //! all u1 and u0 in the domain of the curve f(u)
  //! | u1 - u0 | < UTolerance and
  //! we have |f (u1) - f (u0)| < Tolerance3D
  Standard_EXPORT static void Resolution (Standard_Real& PolesArray, const Standard_Integer ArrayDimension, const Standard_Integer NumPoles, const TColStd_Array1OfReal* Weights, const TColStd_Array1OfReal& FlatKnots, const Standard_Integer Degree, const Standard_Real Tolerance3D, Standard_Real& UTolerance);
  

  //! given a tolerance in 3D space returns a
  //! tolerance    in U parameter space such that
  //! all u1 and u0 in the domain of the curve f(u)
  //! | u1 - u0 | < UTolerance and
  //! we have |f (u1) - f (u0)| < Tolerance3D
  Standard_EXPORT static void Resolution (const TColgp_Array1OfPnt& Poles, const TColStd_Array1OfReal* Weights, const Standard_Integer NumPoles, const TColStd_Array1OfReal& FlatKnots, const Standard_Integer Degree, const Standard_Real Tolerance3D, Standard_Real& UTolerance);
  

  //! given a tolerance in 3D space returns a
  //! tolerance    in U parameter space such that
  //! all u1 and u0 in the domain of the curve f(u)
  //! | u1 - u0 | < UTolerance and
  //! we have |f (u1) - f (u0)| < Tolerance3D
  Standard_EXPORT static void Resolution (const TColgp_Array1OfPnt2d& Poles, const TColStd_Array1OfReal* Weights, const Standard_Integer NumPoles, const TColStd_Array1OfReal& FlatKnots, const Standard_Integer Degree, const Standard_Real Tolerance3D, Standard_Real& UTolerance);




protected:





private:

  
  Standard_EXPORT static void LocateParameter (const TColStd_Array1OfReal& Knots, const Standard_Real U, const Standard_Boolean Periodic, const Standard_Integer K1, const Standard_Integer K2, Standard_Integer& Index, Standard_Real& NewU, const Standard_Real Uf, const Standard_Real Ue);




};


#include <BSplCLib.lxx>





#endif // _BSplCLib_HeaderFile