1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
|
//-----------------------------------------------------------------------------
// Product: OpenCTM
// File: compressMG1.c
// Description: Implementation of the MG1 compression method.
//-----------------------------------------------------------------------------
// Copyright (c) 2009-2010 Marcus Geelnard
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
//
// 2. Altered source versions must be plainly marked as such, and must not
// be misrepresented as being the original software.
//
// 3. This notice may not be removed or altered from any source
// distribution.
//-----------------------------------------------------------------------------
#include <stdlib.h>
#include <math.h>
#include "openctm.h"
#include "internal.h"
#ifdef __DEBUG_
#include <stdio.h>
#endif
//-----------------------------------------------------------------------------
// _compareTriangle() - Comparator for the triangle sorting.
//-----------------------------------------------------------------------------
static int _compareTriangle(const void * elem1, const void * elem2)
{
CTMuint * tri1 = (CTMuint *) elem1;
CTMuint * tri2 = (CTMuint *) elem2;
if(tri1[0] != tri2[0])
return tri1[0] - tri2[0];
else
return tri1[1] - tri2[1];
}
//-----------------------------------------------------------------------------
// _ctmReArrangeTriangles() - Re-arrange all triangles for optimal
// compression.
//-----------------------------------------------------------------------------
static void _ctmReArrangeTriangles(_CTMcontext * self, CTMuint * aIndices)
{
CTMuint * tri, tmp, i;
// Step 1: Make sure that the first index of each triangle is the smallest
// one (rotate triangle nodes if necessary)
for(i = 0; i < self->mTriangleCount; ++ i)
{
tri = &aIndices[i * 3];
if((tri[1] < tri[0]) && (tri[1] < tri[2]))
{
tmp = tri[0];
tri[0] = tri[1];
tri[1] = tri[2];
tri[2] = tmp;
}
else if((tri[2] < tri[0]) && (tri[2] < tri[1]))
{
tmp = tri[0];
tri[0] = tri[2];
tri[2] = tri[1];
tri[1] = tmp;
}
}
// Step 2: Sort the triangles based on the first triangle index
qsort((void *) aIndices, self->mTriangleCount, sizeof(CTMuint) * 3, _compareTriangle);
}
//-----------------------------------------------------------------------------
// _ctmMakeIndexDeltas() - Calculate various forms of derivatives in order to
// reduce data entropy.
//-----------------------------------------------------------------------------
static void _ctmMakeIndexDeltas(_CTMcontext * self, CTMuint * aIndices)
{
CTMint i;
for(i = self->mTriangleCount - 1; i >= 0; -- i)
{
// Step 1: Calculate delta from second triangle index to the previous
// second triangle index, if the previous triangle shares the same first
// index, otherwise calculate the delta to the first triangle index
if((i >= 1) && (aIndices[i * 3] == aIndices[(i - 1) * 3]))
aIndices[i * 3 + 1] -= aIndices[(i - 1) * 3 + 1];
else
aIndices[i * 3 + 1] -= aIndices[i * 3];
// Step 2: Calculate delta from third triangle index to the first triangle
// index
aIndices[i * 3 + 2] -= aIndices[i * 3];
// Step 3: Calculate derivative of the first triangle index
if(i >= 1)
aIndices[i * 3] -= aIndices[(i - 1) * 3];
}
}
//-----------------------------------------------------------------------------
// _ctmRestoreIndices() - Restore original indices (inverse derivative
// operation).
//-----------------------------------------------------------------------------
static void _ctmRestoreIndices(_CTMcontext * self, CTMuint * aIndices)
{
CTMuint i;
for(i = 0; i < self->mTriangleCount; ++ i)
{
// Step 1: Reverse derivative of the first triangle index
if(i >= 1)
aIndices[i * 3] += aIndices[(i - 1) * 3];
// Step 2: Reverse delta from third triangle index to the first triangle
// index
aIndices[i * 3 + 2] += aIndices[i * 3];
// Step 3: Reverse delta from second triangle index to the previous
// second triangle index, if the previous triangle shares the same first
// index, otherwise reverse the delta to the first triangle index
if((i >= 1) && (aIndices[i * 3] == aIndices[(i - 1) * 3]))
aIndices[i * 3 + 1] += aIndices[(i - 1) * 3 + 1];
else
aIndices[i * 3 + 1] += aIndices[i * 3];
}
}
//-----------------------------------------------------------------------------
// _ctmCompressMesh_MG1() - Compress the mesh that is stored in the CTM
// context, and write it the the output stream in the CTM context.
//-----------------------------------------------------------------------------
int _ctmCompressMesh_MG1(_CTMcontext * self)
{
CTMuint * indices;
_CTMfloatmap * map;
CTMuint i;
#ifdef __DEBUG_
printf("COMPRESSION METHOD: MG1\n");
#endif
// Perpare (sort) indices
indices = (CTMuint *) malloc(sizeof(CTMuint) * self->mTriangleCount * 3);
if(!indices)
{
self->mError = CTM_OUT_OF_MEMORY;
return CTM_FALSE;
}
for(i = 0; i < self->mTriangleCount * 3; ++ i)
indices[i] = self->mIndices[i];
_ctmReArrangeTriangles(self, indices);
// Calculate index deltas (entropy-reduction)
_ctmMakeIndexDeltas(self, indices);
// Write triangle indices
#ifdef __DEBUG_
printf("Inidices: ");
#endif
_ctmStreamWrite(self, (void *) "INDX", 4);
if(!_ctmStreamWritePackedInts(self, (CTMint *) indices, self->mTriangleCount, 3, CTM_FALSE))
{
free((void *) indices);
return CTM_FALSE;
}
// Free temporary resources
free((void *) indices);
// Write vertices
#ifdef __DEBUG_
printf("Vertices: ");
#endif
_ctmStreamWrite(self, (void *) "VERT", 4);
if(!_ctmStreamWritePackedFloats(self, self->mVertices, self->mVertexCount * 3, 1))
{
free((void *) indices);
return CTM_FALSE;
}
// Write normals
if(self->mNormals)
{
#ifdef __DEBUG_
printf("Normals: ");
#endif
_ctmStreamWrite(self, (void *) "NORM", 4);
if(!_ctmStreamWritePackedFloats(self, self->mNormals, self->mVertexCount, 3))
return CTM_FALSE;
}
// Write UV maps
map = self->mUVMaps;
while(map)
{
#ifdef __DEBUG_
printf("UV coordinates (%s): ", map->mName ? map->mName : "no name");
#endif
_ctmStreamWrite(self, (void *) "TEXC", 4);
_ctmStreamWriteSTRING(self, map->mName);
_ctmStreamWriteSTRING(self, map->mFileName);
if(!_ctmStreamWritePackedFloats(self, map->mValues, self->mVertexCount, 2))
return CTM_FALSE;
map = map->mNext;
}
// Write attribute maps
map = self->mAttribMaps;
while(map)
{
#ifdef __DEBUG_
printf("Vertex attributes (%s): ", map->mName ? map->mName : "no name");
#endif
_ctmStreamWrite(self, (void *) "ATTR", 4);
_ctmStreamWriteSTRING(self, map->mName);
if(!_ctmStreamWritePackedFloats(self, map->mValues, self->mVertexCount, 4))
return CTM_FALSE;
map = map->mNext;
}
return CTM_TRUE;
}
//-----------------------------------------------------------------------------
// _ctmUncompressMesh_MG1() - Uncmpress the mesh from the input stream in the
// CTM context, and store the resulting mesh in the CTM context.
//-----------------------------------------------------------------------------
int _ctmUncompressMesh_MG1(_CTMcontext * self)
{
CTMuint * indices;
_CTMfloatmap * map;
CTMuint i;
// Allocate memory for the indices
indices = (CTMuint *) malloc(sizeof(CTMuint) * self->mTriangleCount * 3);
if(!indices)
{
self->mError = CTM_OUT_OF_MEMORY;
return CTM_FALSE;
}
// Read triangle indices
if(_ctmStreamReadUINT(self) != FOURCC("INDX"))
{
self->mError = CTM_BAD_FORMAT;
free(indices);
return CTM_FALSE;
}
if(!_ctmStreamReadPackedInts(self, (CTMint *) indices, self->mTriangleCount, 3, CTM_FALSE))
return CTM_FALSE;
// Restore indices
_ctmRestoreIndices(self, indices);
for(i = 0; i < self->mTriangleCount * 3; ++ i)
self->mIndices[i] = indices[i];
// Free temporary resources
free(indices);
// Read vertices
if(_ctmStreamReadUINT(self) != FOURCC("VERT"))
{
self->mError = CTM_BAD_FORMAT;
return CTM_FALSE;
}
if(!_ctmStreamReadPackedFloats(self, self->mVertices, self->mVertexCount * 3, 1))
return CTM_FALSE;
// Read normals
if(self->mNormals)
{
if(_ctmStreamReadUINT(self) != FOURCC("NORM"))
{
self->mError = CTM_BAD_FORMAT;
return CTM_FALSE;
}
if(!_ctmStreamReadPackedFloats(self, self->mNormals, self->mVertexCount, 3))
return CTM_FALSE;
}
// Read UV maps
map = self->mUVMaps;
while(map)
{
if(_ctmStreamReadUINT(self) != FOURCC("TEXC"))
{
self->mError = CTM_BAD_FORMAT;
return 0;
}
_ctmStreamReadSTRING(self, &map->mName);
_ctmStreamReadSTRING(self, &map->mFileName);
if(!_ctmStreamReadPackedFloats(self, map->mValues, self->mVertexCount, 2))
return CTM_FALSE;
map = map->mNext;
}
// Read vertex attribute maps
map = self->mAttribMaps;
while(map)
{
if(_ctmStreamReadUINT(self) != FOURCC("ATTR"))
{
self->mError = CTM_BAD_FORMAT;
return 0;
}
_ctmStreamReadSTRING(self, &map->mName);
if(!_ctmStreamReadPackedFloats(self, map->mValues, self->mVertexCount, 4))
return CTM_FALSE;
map = map->mNext;
}
return CTM_TRUE;
}
|