1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
|
//-----------------------------------------------------------------------------
// Product: OpenCTM tools
// File: mesh.cpp
// Description: Implementation of the 3D triangle mesh class.
//-----------------------------------------------------------------------------
// Copyright (c) 2009-2010 Marcus Geelnard
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
//
// 2. Altered source versions must be plainly marked as such, and must not
// be misrepresented as being the original software.
//
// 3. This notice may not be removed or altered from any source
// distribution.
//-----------------------------------------------------------------------------
#include <stdexcept>
#include <openctm.h>
#include <cmath>
#include "mesh.h"
#include "convoptions.h"
using namespace std;
/// Compute the cross product of two vectors
Vector3 Cross(Vector3 &v1, Vector3 &v2)
{
return Vector3(
v1.y * v2.z - v1.z * v2.y,
v1.z * v2.x - v1.x * v2.z,
v1.x * v2.y - v1.y * v2.x
);
}
/// Normalize a vector
Vector3 Normalize(Vector3 v)
{
float len = sqrtf(v.x * v.x + v.y * v.y + v.z * v.z);
if(len > 1e-20f)
len = 1.0f / len;
else
len = 1.0f;
return Vector3(v.x * len, v.y * len, v.z * len);
}
/// Clear the mesh
void Mesh::Clear()
{
mComment = string("");
mTexFileName = string("");
mIndices.clear();
mVertices.clear();
mNormals.clear();
mColors.clear();
mTexCoords.clear();
mOriginalNormals = true;
}
/// Automatic detection of the optimal normal calculation method
Mesh::NormalCalcAlgo Mesh::DetectNormalCalculationMethod()
{
unsigned int triCount = mIndices.size() / 3;
unsigned int vertexCount = mVertices.size();
// Calculate the mean edge length
double meanEdgeLen = 0;
for(unsigned int i = 0; i < triCount; ++ i)
{
meanEdgeLen += (mVertices[mIndices[i * 3 + 1]] - mVertices[mIndices[i * 3]]).Abs();
meanEdgeLen += (mVertices[mIndices[i * 3 + 2]] - mVertices[mIndices[i * 3 + 1]]).Abs();
meanEdgeLen += (mVertices[mIndices[i * 3]] - mVertices[mIndices[i * 3 + 2]]).Abs();
}
if(triCount > 0)
meanEdgeLen = meanEdgeLen / (3 * triCount);
// Calculate the standard deviation of the edge length
double stdDevEdgeLen = 0;
for(unsigned int i = 0; i < triCount; ++ i)
{
double len = (mVertices[mIndices[i * 3 + 1]] - mVertices[mIndices[i * 3]]).Abs();
stdDevEdgeLen += (len - meanEdgeLen) * (len - meanEdgeLen);
len = (mVertices[mIndices[i * 3 + 2]] - mVertices[mIndices[i * 3 + 1]]).Abs();
stdDevEdgeLen += (len - meanEdgeLen) * (len - meanEdgeLen);
len = (mVertices[mIndices[i * 3]] - mVertices[mIndices[i * 3 + 2]]).Abs();
stdDevEdgeLen += (len - meanEdgeLen) * (len - meanEdgeLen);
}
if(triCount > 0)
stdDevEdgeLen = sqrt(stdDevEdgeLen / (3 * triCount));
// Calculate the number of triangles that connect to each vertex
vector<int> connectCount;
connectCount.resize(vertexCount);
for(unsigned int i = 0; i < vertexCount; ++ i)
connectCount[i] = 0;
for(unsigned int i = 0; i < mIndices.size(); ++ i)
{
unsigned int idx = mIndices[i];
if(idx < vertexCount)
++ connectCount[idx];
}
// First analysis: how much variation is there in the triangle edge lengths?
double edgeVariation = 0.0;
if(meanEdgeLen > 0.0)
edgeVariation = stdDevEdgeLen / meanEdgeLen;
// Calculate the mean number of triangle connections
double meanConnectCount = 0;
for(unsigned int i = 0; i < vertexCount; ++ i)
meanConnectCount += connectCount[i];
if(vertexCount > 0)
meanConnectCount = meanConnectCount / vertexCount;
// Calculate the standard deviation of the number of triangle connections
double stdDevConnectCount = 0;
for(unsigned int i = 0; i < vertexCount; ++ i)
stdDevConnectCount += (connectCount[i] - meanConnectCount) * (connectCount[i] - meanConnectCount);
if(vertexCount > 0)
stdDevConnectCount = sqrt(stdDevConnectCount / vertexCount);
// Second analysis: how much variation is there in the number of connections
// per vertex?
double connectVariation = 0.0;
if(meanConnectCount > 0.0)
connectVariation = stdDevConnectCount / meanConnectCount;
// Normalize the different measures to their respective threshold values
edgeVariation /= 0.7;
connectVariation /= 0.3;
// Is this a CAD-like object or a organic-like object?
NormalCalcAlgo algo = ncaOrganic;
if(edgeVariation * connectVariation > 1.0)
algo = ncaCAD;
return algo;
}
/// Calculate smooth per-vertex normals
void Mesh::CalculateNormals(NormalCalcAlgo aAlgo)
{
// Determine which normal calculation algorithm to use
NormalCalcAlgo algo;
if(aAlgo == ncaAuto)
algo = DetectNormalCalculationMethod();
else
algo = aAlgo;
// The original normals are no longer preserved
mOriginalNormals = false;
// Clear the smooth normals
mNormals.resize(mVertices.size());
for(unsigned int i = 0; i < mNormals.size(); ++ i)
mNormals[i] = Vector3(0.0f, 0.0f, 0.0f);
// Calculate sum of the flat normals of the neighbouring triangles
unsigned int triCount = mIndices.size() / 3;
for(unsigned int i = 0; i < triCount; ++ i)
{
// Calculate the weighted flat normal for this triangle
Vector3 v1 = mVertices[mIndices[i * 3 + 1]] - mVertices[mIndices[i * 3]];
Vector3 v2 = mVertices[mIndices[i * 3 + 2]] - mVertices[mIndices[i * 3]];
Vector3 flatNormal = Cross(v1, v2);
if(algo == ncaOrganic)
flatNormal = Normalize(flatNormal);
// ...and add it to all three triangle vertices' smooth normals
for(unsigned int j = 0; j < 3; ++ j)
mNormals[mIndices[i * 3 + j]] += flatNormal;
}
// Normalize all the smooth normals
for(unsigned int i = 0; i < mNormals.size(); ++ i)
mNormals[i] = Normalize(mNormals[i]);
}
/// Calculate the bounding box for the mesh
void Mesh::BoundingBox(Vector3 &aMin, Vector3 &aMax)
{
if(mVertices.size() < 1)
aMin = aMax = Vector3(0.0f, 0.0f, 0.0f);
else
aMin = aMax = mVertices[0];
for(unsigned int i = 1; i < mVertices.size(); ++ i)
{
if(mVertices[i].x < aMin.x)
aMin.x = mVertices[i].x;
else if(mVertices[i].x > aMax.x)
aMax.x = mVertices[i].x;
if(mVertices[i].y < aMin.y)
aMin.y = mVertices[i].y;
else if(mVertices[i].y > aMax.y)
aMax.y = mVertices[i].y;
if(mVertices[i].z < aMin.z)
aMin.z = mVertices[i].z;
else if(mVertices[i].z > aMax.z)
aMax.z = mVertices[i].z;
}
}
|