1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
|
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
/*
* _cvhaartraining.h
*
* training of cascade of boosted classifiers based on haar features
*/
#ifndef __CVHAARTRAINING_H_
#define __CVHAARTRAINING_H_
#include "_cvcommon.h"
#include "cvclassifier.h"
#include <cstring>
#include <cstdio>
/* parameters for tree cascade classifier training */
/* max number of clusters */
#define CV_MAX_CLUSTERS 3
/* term criteria for K-Means */
#define CV_TERM_CRITERIA() cvTermCriteria( CV_TERMCRIT_EPS, 1000, 1E-5 )
/* print statistic info */
#define CV_VERBOSE 1
#define CV_STAGE_CART_FILE_NAME "AdaBoostCARTHaarClassifier.txt"
#define CV_HAAR_FEATURE_MAX 3
#define CV_HAAR_FEATURE_DESC_MAX 20
typedef int sum_type;
typedef double sqsum_type;
typedef short idx_type;
#define CV_SUM_MAT_TYPE CV_32SC1
#define CV_SQSUM_MAT_TYPE CV_64FC1
#define CV_IDX_MAT_TYPE CV_16SC1
#define CV_STUMP_TRAIN_PORTION 100
#define CV_THRESHOLD_EPS (0.00001F)
typedef struct CvTHaarFeature
{
char desc[CV_HAAR_FEATURE_DESC_MAX];
int tilted;
struct
{
CvRect r;
float weight;
} rect[CV_HAAR_FEATURE_MAX];
} CvTHaarFeature;
typedef struct CvFastHaarFeature
{
int tilted;
struct
{
int p0, p1, p2, p3;
float weight;
} rect[CV_HAAR_FEATURE_MAX];
} CvFastHaarFeature;
typedef struct CvIntHaarFeatures
{
CvSize winsize;
int count;
CvTHaarFeature* feature;
CvFastHaarFeature* fastfeature;
} CvIntHaarFeatures;
CV_INLINE CvTHaarFeature cvHaarFeature( const char* desc,
int x0, int y0, int w0, int h0, float wt0,
int x1, int y1, int w1, int h1, float wt1,
int x2 CV_DEFAULT( 0 ), int y2 CV_DEFAULT( 0 ),
int w2 CV_DEFAULT( 0 ), int h2 CV_DEFAULT( 0 ),
float wt2 CV_DEFAULT( 0.0F ) );
CV_INLINE CvTHaarFeature cvHaarFeature( const char* desc,
int x0, int y0, int w0, int h0, float wt0,
int x1, int y1, int w1, int h1, float wt1,
int x2, int y2, int w2, int h2, float wt2 )
{
CvTHaarFeature hf;
assert( CV_HAAR_FEATURE_MAX >= 3 );
assert( strlen( desc ) < CV_HAAR_FEATURE_DESC_MAX );
strcpy( &(hf.desc[0]), desc );
hf.tilted = ( hf.desc[0] == 't' );
hf.rect[0].r.x = x0;
hf.rect[0].r.y = y0;
hf.rect[0].r.width = w0;
hf.rect[0].r.height = h0;
hf.rect[0].weight = wt0;
hf.rect[1].r.x = x1;
hf.rect[1].r.y = y1;
hf.rect[1].r.width = w1;
hf.rect[1].r.height = h1;
hf.rect[1].weight = wt1;
hf.rect[2].r.x = x2;
hf.rect[2].r.y = y2;
hf.rect[2].r.width = w2;
hf.rect[2].r.height = h2;
hf.rect[2].weight = wt2;
return hf;
}
/* Prepared for training samples */
typedef struct CvHaarTrainingData
{
CvSize winsize; /* training image size */
int maxnum; /* maximum number of samples */
CvMat sum; /* sum images (each row represents image) */
CvMat tilted; /* tilted sum images (each row represents image) */
CvMat normfactor; /* normalization factor */
CvMat cls; /* classes. 1.0 - object, 0.0 - background */
CvMat weights; /* weights */
CvMat* valcache; /* precalculated feature values (CV_32FC1) */
CvMat* idxcache; /* presorted indices (CV_IDX_MAT_TYPE) */
} CvHaarTrainigData;
/* Passed to callback functions */
typedef struct CvUserdata
{
CvHaarTrainingData* trainingData;
CvIntHaarFeatures* haarFeatures;
} CvUserdata;
CV_INLINE
CvUserdata cvUserdata( CvHaarTrainingData* trainingData,
CvIntHaarFeatures* haarFeatures );
CV_INLINE
CvUserdata cvUserdata( CvHaarTrainingData* trainingData,
CvIntHaarFeatures* haarFeatures )
{
CvUserdata userdata;
userdata.trainingData = trainingData;
userdata.haarFeatures = haarFeatures;
return userdata;
}
#define CV_INT_HAAR_CLASSIFIER_FIELDS() \
float (*eval)( CvIntHaarClassifier*, sum_type*, sum_type*, float ); \
void (*save)( CvIntHaarClassifier*, FILE* file ); \
void (*release)( CvIntHaarClassifier** );
/* internal weak classifier*/
typedef struct CvIntHaarClassifier
{
CV_INT_HAAR_CLASSIFIER_FIELDS()
} CvIntHaarClassifier;
/*
* CART classifier
*/
typedef struct CvCARTHaarClassifier
{
CV_INT_HAAR_CLASSIFIER_FIELDS()
int count;
int* compidx;
CvTHaarFeature* feature;
CvFastHaarFeature* fastfeature;
float* threshold;
int* left;
int* right;
float* val;
} CvCARTHaarClassifier;
/* internal stage classifier */
typedef struct CvStageHaarClassifier
{
CV_INT_HAAR_CLASSIFIER_FIELDS()
int count;
float threshold;
CvIntHaarClassifier** classifier;
} CvStageHaarClassifier;
/* internal cascade classifier */
typedef struct CvCascadeHaarClassifier
{
CV_INT_HAAR_CLASSIFIER_FIELDS()
int count;
CvIntHaarClassifier** classifier;
} CvCascadeHaarClassifier;
/* internal tree cascade classifier node */
typedef struct CvTreeCascadeNode
{
CvStageHaarClassifier* stage;
struct CvTreeCascadeNode* next;
struct CvTreeCascadeNode* child;
struct CvTreeCascadeNode* parent;
struct CvTreeCascadeNode* next_same_level;
struct CvTreeCascadeNode* child_eval;
int idx;
int leaf;
} CvTreeCascadeNode;
/* internal tree cascade classifier */
typedef struct CvTreeCascadeClassifier
{
CV_INT_HAAR_CLASSIFIER_FIELDS()
CvTreeCascadeNode* root; /* root of the tree */
CvTreeCascadeNode* root_eval; /* root node for the filtering */
int next_idx;
} CvTreeCascadeClassifier;
CV_INLINE float cvEvalFastHaarFeature( const CvFastHaarFeature* feature,
const sum_type* sum, const sum_type* tilted )
{
const sum_type* img = feature->tilted ? tilted : sum;
float ret = feature->rect[0].weight*
(img[feature->rect[0].p0] - img[feature->rect[0].p1] -
img[feature->rect[0].p2] + img[feature->rect[0].p3]) +
feature->rect[1].weight*
(img[feature->rect[1].p0] - img[feature->rect[1].p1] -
img[feature->rect[1].p2] + img[feature->rect[1].p3]);
if( feature->rect[2].weight != 0.0f )
ret += feature->rect[2].weight *
( img[feature->rect[2].p0] - img[feature->rect[2].p1] -
img[feature->rect[2].p2] + img[feature->rect[2].p3] );
return ret;
}
typedef struct CvSampleDistortionData
{
IplImage* src;
IplImage* erode;
IplImage* dilate;
IplImage* mask;
IplImage* img;
IplImage* maskimg;
int dx;
int dy;
int bgcolor;
} CvSampleDistortionData;
/*
* icvConvertToFastHaarFeature
*
* Convert to fast representation of haar features
*
* haarFeature - input array
* fastHaarFeature - output array
* size - size of arrays
* step - row step for the integral image
*/
void icvConvertToFastHaarFeature( CvTHaarFeature* haarFeature,
CvFastHaarFeature* fastHaarFeature,
int size, int step );
void icvWriteVecHeader( FILE* file, int count, int width, int height );
void icvWriteVecSample( FILE* file, CvArr* sample );
void icvPlaceDistortedSample( CvArr* background,
int inverse, int maxintensitydev,
double maxxangle, double maxyangle, double maxzangle,
int inscribe, double maxshiftf, double maxscalef,
CvSampleDistortionData* data );
void icvEndSampleDistortion( CvSampleDistortionData* data );
int icvStartSampleDistortion( const char* imgfilename, int bgcolor, int bgthreshold,
CvSampleDistortionData* data );
typedef int (*CvGetHaarTrainingDataCallback)( CvMat* img, void* userdata );
typedef struct CvVecFile
{
FILE* input;
int count;
int vecsize;
int last;
short* vector;
} CvVecFile;
int icvGetHaarTraininDataFromVecCallback( CvMat* img, void* userdata );
/*
* icvGetHaarTrainingDataFromVec
*
* Fill <data> with samples from .vec file, passed <cascade>
int icvGetHaarTrainingDataFromVec( CvHaarTrainingData* data, int first, int count,
CvIntHaarClassifier* cascade,
const char* filename,
int* consumed );
*/
CvIntHaarClassifier* icvCreateCARTHaarClassifier( int count );
void icvReleaseHaarClassifier( CvIntHaarClassifier** classifier );
void icvInitCARTHaarClassifier( CvCARTHaarClassifier* carthaar, CvCARTClassifier* cart,
CvIntHaarFeatures* intHaarFeatures );
float icvEvalCARTHaarClassifier( CvIntHaarClassifier* classifier,
sum_type* sum, sum_type* tilted, float normfactor );
CvIntHaarClassifier* icvCreateStageHaarClassifier( int count, float threshold );
void icvReleaseStageHaarClassifier( CvIntHaarClassifier** classifier );
float icvEvalStageHaarClassifier( CvIntHaarClassifier* classifier,
sum_type* sum, sum_type* tilted, float normfactor );
CvIntHaarClassifier* icvCreateCascadeHaarClassifier( int count );
void icvReleaseCascadeHaarClassifier( CvIntHaarClassifier** classifier );
float icvEvalCascadeHaarClassifier( CvIntHaarClassifier* classifier,
sum_type* sum, sum_type* tilted, float normfactor );
void icvSaveHaarFeature( CvTHaarFeature* feature, FILE* file );
void icvLoadHaarFeature( CvTHaarFeature* feature, FILE* file );
void icvSaveCARTHaarClassifier( CvIntHaarClassifier* classifier, FILE* file );
CvIntHaarClassifier* icvLoadCARTHaarClassifier( FILE* file, int step );
void icvSaveStageHaarClassifier( CvIntHaarClassifier* classifier, FILE* file );
CvIntHaarClassifier* icvLoadCARTStageHaarClassifier( const char* filename, int step );
/* tree cascade classifier */
float icvEvalTreeCascadeClassifier( CvIntHaarClassifier* classifier,
sum_type* sum, sum_type* tilted, float normfactor );
void icvSetLeafNode( CvTreeCascadeClassifier* tree, CvTreeCascadeNode* leaf );
float icvEvalTreeCascadeClassifierFilter( CvIntHaarClassifier* classifier, sum_type* sum,
sum_type* tilted, float normfactor );
CvTreeCascadeNode* icvCreateTreeCascadeNode();
void icvReleaseTreeCascadeNodes( CvTreeCascadeNode** node );
void icvReleaseTreeCascadeClassifier( CvIntHaarClassifier** classifier );
/* Prints out current tree structure to <stdout> */
void icvPrintTreeCascade( CvTreeCascadeNode* root );
/* Loads tree cascade classifier */
CvIntHaarClassifier* icvLoadTreeCascadeClassifier( const char* filename, int step,
int* splits );
/* Finds leaves belonging to maximal level and connects them via leaf->next_same_level */
CvTreeCascadeNode* icvFindDeepestLeaves( CvTreeCascadeClassifier* tree );
#endif /* __CVHAARTRAINING_H_ */
|