File: feature_homography.rst

package info (click to toggle)
opencv 2.4.9.1%2Bdfsg-1%2Bdeb8u1
  • links: PTS, VCS
  • area: main
  • in suites: jessie
  • size: 126,800 kB
  • ctags: 62,729
  • sloc: xml: 509,055; cpp: 490,794; lisp: 23,208; python: 21,174; java: 19,317; ansic: 1,038; sh: 128; makefile: 72
file content (148 lines) | stat: -rw-r--r-- 5,098 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
.. _feature_homography:

Features2D + Homography to find a known object
**********************************************

Goal
=====

In this tutorial you will learn how to:

.. container:: enumeratevisibleitemswithsquare

   * Use the function :find_homography:`findHomography<>` to find the transform between matched keypoints.
   * Use the function :perspective_transform:`perspectiveTransform<>` to map the points.


Theory
======

Code
====

This tutorial code's is shown lines below. You can also download it from `here <http://code.opencv.org/projects/opencv/repository/revisions/master/raw/samples/cpp/tutorial_code/features2D/SURF_Homography.cpp>`_

.. code-block:: cpp

   #include <stdio.h>
   #include <iostream>
   #include "opencv2/core/core.hpp"
   #include "opencv2/features2d/features2d.hpp"
   #include "opencv2/highgui/highgui.hpp"
   #include "opencv2/calib3d/calib3d.hpp"
   #include "opencv2/nonfree/nonfree.hpp"

   using namespace cv;

   void readme();

   /** @function main */
   int main( int argc, char** argv )
   {
     if( argc != 3 )
     { readme(); return -1; }

     Mat img_object = imread( argv[1], CV_LOAD_IMAGE_GRAYSCALE );
     Mat img_scene = imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE );

     if( !img_object.data || !img_scene.data )
     { std::cout<< " --(!) Error reading images " << std::endl; return -1; }

     //-- Step 1: Detect the keypoints using SURF Detector
     int minHessian = 400;

     SurfFeatureDetector detector( minHessian );

     std::vector<KeyPoint> keypoints_object, keypoints_scene;

     detector.detect( img_object, keypoints_object );
     detector.detect( img_scene, keypoints_scene );

     //-- Step 2: Calculate descriptors (feature vectors)
     SurfDescriptorExtractor extractor;

     Mat descriptors_object, descriptors_scene;

     extractor.compute( img_object, keypoints_object, descriptors_object );
     extractor.compute( img_scene, keypoints_scene, descriptors_scene );

     //-- Step 3: Matching descriptor vectors using FLANN matcher
     FlannBasedMatcher matcher;
     std::vector< DMatch > matches;
     matcher.match( descriptors_object, descriptors_scene, matches );

     double max_dist = 0; double min_dist = 100;

     //-- Quick calculation of max and min distances between keypoints
     for( int i = 0; i < descriptors_object.rows; i++ )
     { double dist = matches[i].distance;
       if( dist < min_dist ) min_dist = dist;
       if( dist > max_dist ) max_dist = dist;
     }

     printf("-- Max dist : %f \n", max_dist );
     printf("-- Min dist : %f \n", min_dist );

     //-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist )
     std::vector< DMatch > good_matches;

     for( int i = 0; i < descriptors_object.rows; i++ )
     { if( matches[i].distance < 3*min_dist )
        { good_matches.push_back( matches[i]); }
     }

     Mat img_matches;
     drawMatches( img_object, keypoints_object, img_scene, keypoints_scene,
                  good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
                  vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );

     //-- Localize the object
     std::vector<Point2f> obj;
     std::vector<Point2f> scene;

     for( int i = 0; i < good_matches.size(); i++ )
     {
       //-- Get the keypoints from the good matches
       obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt );
       scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt );
     }

     Mat H = findHomography( obj, scene, CV_RANSAC );

     //-- Get the corners from the image_1 ( the object to be "detected" )
     std::vector<Point2f> obj_corners(4);
     obj_corners[0] = cvPoint(0,0); obj_corners[1] = cvPoint( img_object.cols, 0 );
     obj_corners[2] = cvPoint( img_object.cols, img_object.rows ); obj_corners[3] = cvPoint( 0, img_object.rows );
     std::vector<Point2f> scene_corners(4);

     perspectiveTransform( obj_corners, scene_corners, H);

     //-- Draw lines between the corners (the mapped object in the scene - image_2 )
     line( img_matches, scene_corners[0] + Point2f( img_object.cols, 0), scene_corners[1] + Point2f( img_object.cols, 0), Scalar(0, 255, 0), 4 );
     line( img_matches, scene_corners[1] + Point2f( img_object.cols, 0), scene_corners[2] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 );
     line( img_matches, scene_corners[2] + Point2f( img_object.cols, 0), scene_corners[3] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 );
     line( img_matches, scene_corners[3] + Point2f( img_object.cols, 0), scene_corners[0] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 );

     //-- Show detected matches
     imshow( "Good Matches & Object detection", img_matches );

     waitKey(0);
     return 0;
     }

     /** @function readme */
     void readme()
     { std::cout << " Usage: ./SURF_descriptor <img1> <img2>" << std::endl; }

Explanation
============

Result
======


#. And here is the result for the detected object (highlighted in green)

   .. image:: images/Feature_Homography_Result.jpg
      :align: center
      :height: 200pt