File: template_matching.rst

package info (click to toggle)
opencv 2.4.9.1%2Bdfsg-1%2Bdeb8u1
  • links: PTS, VCS
  • area: main
  • in suites: jessie
  • size: 126,800 kB
  • ctags: 62,729
  • sloc: xml: 509,055; cpp: 490,794; lisp: 23,208; python: 21,174; java: 19,317; ansic: 1,038; sh: 128; makefile: 72
file content (371 lines) | stat: -rw-r--r-- 12,625 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
.. _template_matching:

Template Matching
*****************

Goal
====

In this tutorial you will learn how to:

.. container:: enumeratevisibleitemswithsquare

   * Use the OpenCV function :match_template:`matchTemplate <>` to search for matches between an image patch and an input image
   * Use the OpenCV function :min_max_loc:`minMaxLoc <>` to find the maximum and minimum values (as well as their positions) in a given array.

Theory
======

What is template matching?
--------------------------

.. container:: enumeratevisibleitemswithsquare

   Template matching is a technique for finding areas of an image that match (are similar) to a template image (patch).


How does it work?
------------------

.. container:: enumeratevisibleitemswithsquare

   * We need two primary components:

     a. **Source image (I):** The image in which we expect to find a match to the template image
     b. **Template image (T):** The patch image which will be compared to the template image

     our goal is to detect the highest matching area:

     .. image:: images/Template_Matching_Template_Theory_Summary.jpg
              :align: center

   * To identify the matching area, we have to *compare* the template image against the source image by sliding it:

     .. image:: images/Template_Matching_Template_Theory_Sliding.jpg
              :align: center

   *  By **sliding**, we mean moving the patch one pixel at a time (left to right, up to down). At each location, a metric is calculated so it represents how "good" or "bad" the match at that location is (or how similar the patch is to that particular area of the source image).

   *  For each location of **T** over **I**, you *store* the metric in the *result matrix* **(R)**. Each location :math:`(x,y)` in **R** contains the match metric:

      .. image:: images/Template_Matching_Template_Theory_Result.jpg
               :align: center

      the image above is the result **R** of sliding the patch with a metric **TM_CCORR_NORMED**. The brightest locations indicate the highest matches. As you can see, the location marked by the red circle is probably the one with the highest value, so that location (the rectangle formed by that point as a corner and width and height equal to the patch image) is considered the match.

   * In practice, we use the function :min_max_loc:`minMaxLoc <>` to locate the highest value (or lower, depending of the type of matching method) in the *R* matrix.

Which are the matching methods available in OpenCV?
----------------------------------------------------

Good question. OpenCV implements Template matching in the function :match_template:`matchTemplate <>`. The available methods are 6:

a. **method=CV\_TM\_SQDIFF**

   .. math::

      R(x,y)= \sum _{x',y'} (T(x',y')-I(x+x',y+y'))^2


b. **method=CV\_TM\_SQDIFF\_NORMED**

   .. math::

      R(x,y)= \frac{\sum_{x',y'} (T(x',y')-I(x+x',y+y'))^2}{\sqrt{\sum_{x',y'}T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}


c. **method=CV\_TM\_CCORR**

   .. math::

      R(x,y)= \sum _{x',y'} (T(x',y')  \cdot I(x+x',y+y'))


d. **method=CV\_TM\_CCORR\_NORMED**

   .. math::

      R(x,y)= \frac{\sum_{x',y'} (T(x',y') \cdot I(x+x',y+y'))}{\sqrt{\sum_{x',y'}T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}


e. **method=CV\_TM\_CCOEFF**

   .. math::

      R(x,y)= \sum _{x',y'} (T'(x',y')  \cdot I(x+x',y+y'))

   where

   .. math::

      \begin{array}{l} T'(x',y')=T(x',y') - 1/(w  \cdot h)  \cdot \sum _{x'',y''} T(x'',y'') \\ I'(x+x',y+y')=I(x+x',y+y') - 1/(w  \cdot h)  \cdot \sum _{x'',y''} I(x+x'',y+y'') \end{array}


f. **method=CV\_TM\_CCOEFF\_NORMED**

   .. math::

      R(x,y)= \frac{ \sum_{x',y'} (T'(x',y') \cdot I'(x+x',y+y')) }{ \sqrt{\sum_{x',y'}T'(x',y')^2 \cdot \sum_{x',y'} I'(x+x',y+y')^2} }


Code
====


.. container:: enumeratevisibleitemswithsquare

   * **What does this program do?**

     .. container:: enumeratevisibleitemswithsquare

        * Loads an input image and a image patch (*template*)
        * Perform a template matching procedure by using the OpenCV function :match_template:`matchTemplate <>` with any of the 6 matching methods described before. The user can choose the method by entering its selection in the Trackbar.
        * Normalize the output of the matching procedure
        * Localize the location with higher matching probability
        * Draw a rectangle around the area corresponding to the highest match

   * **Downloadable code**:
     Click `here <https://github.com/Itseez/opencv/tree/master/samples/cpp/tutorial_code/Histograms_Matching/MatchTemplate_Demo.cpp>`_

   * **Code at glance:**

.. code-block:: cpp

   #include "opencv2/highgui/highgui.hpp"
   #include "opencv2/imgproc/imgproc.hpp"
   #include <iostream>
   #include <stdio.h>

   using namespace std;
   using namespace cv;

   /// Global Variables
   Mat img; Mat templ; Mat result;
   char* image_window = "Source Image";
   char* result_window = "Result window";

   int match_method;
   int max_Trackbar = 5;

   /// Function Headers
   void MatchingMethod( int, void* );

   /** @function main */
   int main( int argc, char** argv )
   {
     /// Load image and template
     img = imread( argv[1], 1 );
     templ = imread( argv[2], 1 );

     /// Create windows
     namedWindow( image_window, CV_WINDOW_AUTOSIZE );
     namedWindow( result_window, CV_WINDOW_AUTOSIZE );

     /// Create Trackbar
     char* trackbar_label = "Method: \n 0: SQDIFF \n 1: SQDIFF NORMED \n 2: TM CCORR \n 3: TM CCORR NORMED \n 4: TM COEFF \n 5: TM COEFF NORMED";
     createTrackbar( trackbar_label, image_window, &match_method, max_Trackbar, MatchingMethod );

     MatchingMethod( 0, 0 );

     waitKey(0);
     return 0;
   }

   /**
    * @function MatchingMethod
    * @brief Trackbar callback
    */
   void MatchingMethod( int, void* )
   {
     /// Source image to display
     Mat img_display;
     img.copyTo( img_display );

     /// Create the result matrix
     int result_cols =  img.cols - templ.cols + 1;
     int result_rows = img.rows - templ.rows + 1;

     result.create( result_cols, result_rows, CV_32FC1 );

     /// Do the Matching and Normalize
     matchTemplate( img, templ, result, match_method );
     normalize( result, result, 0, 1, NORM_MINMAX, -1, Mat() );

     /// Localizing the best match with minMaxLoc
     double minVal; double maxVal; Point minLoc; Point maxLoc;
     Point matchLoc;

     minMaxLoc( result, &minVal, &maxVal, &minLoc, &maxLoc, Mat() );

     /// For SQDIFF and SQDIFF_NORMED, the best matches are lower values. For all the other methods, the higher the better
     if( match_method  == CV_TM_SQDIFF || match_method == CV_TM_SQDIFF_NORMED )
       { matchLoc = minLoc; }
     else
       { matchLoc = maxLoc; }

     /// Show me what you got
     rectangle( img_display, matchLoc, Point( matchLoc.x + templ.cols , matchLoc.y + templ.rows ), Scalar::all(0), 2, 8, 0 );
     rectangle( result, matchLoc, Point( matchLoc.x + templ.cols , matchLoc.y + templ.rows ), Scalar::all(0), 2, 8, 0 );

     imshow( image_window, img_display );
     imshow( result_window, result );

     return;
   }

Explanation
===========

#. Declare some global variables, such as the image, template and result matrices, as well as the match method and the window names:

   .. code-block:: cpp

      Mat img; Mat templ; Mat result;
      char* image_window = "Source Image";
      char* result_window = "Result window";

      int match_method;
      int max_Trackbar = 5;


#. Load the source image and template:

   .. code-block:: cpp

      img = imread( argv[1], 1 );
      templ = imread( argv[2], 1 );

#. Create the windows to show the results:

   .. code-block:: cpp

      namedWindow( image_window, CV_WINDOW_AUTOSIZE );
      namedWindow( result_window, CV_WINDOW_AUTOSIZE );

#. Create the Trackbar to enter the kind of matching method to be used. When a change is detected the callback function **MatchingMethod** is called.

   .. code-block:: cpp

      char* trackbar_label = "Method: \n 0: SQDIFF \n 1: SQDIFF NORMED \n 2: TM CCORR \n 3: TM CCORR NORMED \n 4: TM COEFF \n 5: TM COEFF NORMED";
      createTrackbar( trackbar_label, image_window, &match_method, max_Trackbar, MatchingMethod );

#. Wait until user exits the program.

   .. code-block:: cpp

      waitKey(0);
      return 0;

#. Let's check out the callback function. First, it makes a copy of the source image:

   .. code-block:: cpp

     Mat img_display;
     img.copyTo( img_display );


#. Next, it creates the result matrix that will store the matching results for each template location. Observe in detail the size of the result matrix (which matches all possible locations for it)

   .. code-block:: cpp

      int result_cols =  img.cols - templ.cols + 1;
      int result_rows = img.rows - templ.rows + 1;

      result.create( result_cols, result_rows, CV_32FC1 );

#. Perform the template matching operation:

   .. code-block:: cpp

     matchTemplate( img, templ, result, match_method );

   the arguments are naturally the input image **I**, the template **T**, the result **R** and the match_method (given by the Trackbar)

#. We normalize the results:

   .. code-block:: cpp

      normalize( result, result, 0, 1, NORM_MINMAX, -1, Mat() );

#. We localize the minimum and maximum values in the result matrix **R** by using :min_max_loc:`minMaxLoc <>`.

   .. code-block:: cpp

      double minVal; double maxVal; Point minLoc; Point maxLoc;
      Point matchLoc;

      minMaxLoc( result, &minVal, &maxVal, &minLoc, &maxLoc, Mat() );

   the function calls as arguments:

   .. container:: enumeratevisibleitemswithsquare

      + **result:** The source array
      + **&minVal** and **&maxVal:** Variables to save the minimum and maximum values in **result**
      + **&minLoc** and **&maxLoc:** The Point locations of the minimum and maximum values in the array.
      + **Mat():** Optional mask


#. For the first two methods ( CV\_SQDIFF and CV\_SQDIFF\_NORMED ) the best match are the lowest values. For all the others, higher values represent better matches. So, we save the corresponding value in the **matchLoc** variable:

   .. code-block:: cpp

     if( match_method  == CV_TM_SQDIFF || match_method == CV_TM_SQDIFF_NORMED )
       { matchLoc = minLoc; }
     else
       { matchLoc = maxLoc; }

#. Display the source image and the result matrix. Draw a rectangle around the highest possible matching area:

   .. code-block:: cpp

      rectangle( img_display, matchLoc, Point( matchLoc.x + templ.cols , matchLoc.y + templ.rows ), Scalar::all(0), 2, 8, 0 );
      rectangle( result, matchLoc, Point( matchLoc.x + templ.cols , matchLoc.y + templ.rows ), Scalar::all(0), 2, 8, 0 );

      imshow( image_window, img_display );
      imshow( result_window, result );


Results
=======

#. Testing our program with an input image such as:

   .. image:: images/Template_Matching_Original_Image.jpg
            :align: center

   and a template image:

   .. image:: images/Template_Matching_Template_Image.jpg
            :align: center

#. Generate the following result matrices (first row are the standard methods SQDIFF, CCORR and CCOEFF, second row are the same methods in its normalized version). In the first column, the darkest is the better match, for the other two columns, the brighter a location, the higher the match.

   ============  ============  ============
    |Result_0|    |Result_2|    |Result_4|
   ============  ============  ============
    |Result_1|    |Result_3|    |Result_5|
   ============  ============  ============

   .. |Result_0| image:: images/Template_Matching_Correl_Result_0.jpg
                      :align: middle

   .. |Result_1| image:: images/Template_Matching_Correl_Result_1.jpg
                      :align: middle

   .. |Result_2| image:: images/Template_Matching_Correl_Result_2.jpg
                      :align: middle

   .. |Result_3| image:: images/Template_Matching_Correl_Result_3.jpg
                      :align: middle

   .. |Result_4| image:: images/Template_Matching_Correl_Result_4.jpg
                      :align: middle

   .. |Result_5| image:: images/Template_Matching_Correl_Result_5.jpg
                      :align: middle

#. The right match is shown below (black rectangle around the face of the guy at the right). Notice that CCORR and CCDEFF gave erroneous best matches, however their normalized version did it right, this may be due to the fact that we are only considering the "highest match" and not the other possible high matches.

   .. image:: images/Template_Matching_Image_Result.jpg
            :align: center