1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
|
.. _canny_detector:
Canny Edge Detector
********************
Goal
=====
In this tutorial you will learn how to:
.. container:: enumeratevisibleitemswithsquare
* Use the OpenCV function :canny:`Canny <>` to implement the Canny Edge Detector.
Theory
=======
#. The *Canny Edge detector* was developed by John F. Canny in 1986. Also known to many as the *optimal detector*, Canny algorithm aims to satisfy three main criteria:
* **Low error rate:** Meaning a good detection of only existent edges.
* **Good localization:** The distance between edge pixels detected and real edge pixels have to be minimized.
* **Minimal response:** Only one detector response per edge.
Steps
------
#. Filter out any noise. The Gaussian filter is used for this purpose. An example of a Gaussian kernel of :math:`size = 5` that might be used is shown below:
.. math::
K = \dfrac{1}{159}\begin{bmatrix}
2 & 4 & 5 & 4 & 2 \\
4 & 9 & 12 & 9 & 4 \\
5 & 12 & 15 & 12 & 5 \\
4 & 9 & 12 & 9 & 4 \\
2 & 4 & 5 & 4 & 2
\end{bmatrix}
#. Find the intensity gradient of the image. For this, we follow a procedure analogous to Sobel:
a. Apply a pair of convolution masks (in :math:`x` and :math:`y` directions:
.. math::
G_{x} = \begin{bmatrix}
-1 & 0 & +1 \\
-2 & 0 & +2 \\
-1 & 0 & +1
\end{bmatrix}
G_{y} = \begin{bmatrix}
-1 & -2 & -1 \\
0 & 0 & 0 \\
+1 & +2 & +1
\end{bmatrix}
b. Find the gradient strength and direction with:
.. math::
\begin{array}{l}
G = \sqrt{ G_{x}^{2} + G_{y}^{2} } \\
\theta = \arctan(\dfrac{ G_{y} }{ G_{x} })
\end{array}
The direction is rounded to one of four possible angles (namely 0, 45, 90 or 135)
#. *Non-maximum* suppression is applied. This removes pixels that are not considered to be part of an edge. Hence, only thin lines (candidate edges) will remain.
#. *Hysteresis*: The final step. Canny does use two thresholds (upper and lower):
a. If a pixel gradient is higher than the *upper* threshold, the pixel is accepted as an edge
b. If a pixel gradient value is below the *lower* threshold, then it is rejected.
c. If the pixel gradient is between the two thresholds, then it will be accepted only if it is connected to a pixel that is above the *upper* threshold.
Canny recommended a *upper*:*lower* ratio between 2:1 and 3:1.
#. For more details, you can always consult your favorite Computer Vision book.
Code
=====
#. **What does this program do?**
* Asks the user to enter a numerical value to set the lower threshold for our *Canny Edge Detector* (by means of a Trackbar)
* Applies the *Canny Detector* and generates a **mask** (bright lines representing the edges on a black background).
* Applies the mask obtained on the original image and display it in a window.
#. The tutorial code's is shown lines below. You can also download it from `here <https://github.com/Itseez/opencv/tree/master/samples/cpp/tutorial_code/ImgTrans/CannyDetector_Demo.cpp>`_
.. code-block:: cpp
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <stdlib.h>
#include <stdio.h>
using namespace cv;
/// Global variables
Mat src, src_gray;
Mat dst, detected_edges;
int edgeThresh = 1;
int lowThreshold;
int const max_lowThreshold = 100;
int ratio = 3;
int kernel_size = 3;
char* window_name = "Edge Map";
/**
* @function CannyThreshold
* @brief Trackbar callback - Canny thresholds input with a ratio 1:3
*/
void CannyThreshold(int, void*)
{
/// Reduce noise with a kernel 3x3
blur( src_gray, detected_edges, Size(3,3) );
/// Canny detector
Canny( detected_edges, detected_edges, lowThreshold, lowThreshold*ratio, kernel_size );
/// Using Canny's output as a mask, we display our result
dst = Scalar::all(0);
src.copyTo( dst, detected_edges);
imshow( window_name, dst );
}
/** @function main */
int main( int argc, char** argv )
{
/// Load an image
src = imread( argv[1] );
if( !src.data )
{ return -1; }
/// Create a matrix of the same type and size as src (for dst)
dst.create( src.size(), src.type() );
/// Convert the image to grayscale
cvtColor( src, src_gray, CV_BGR2GRAY );
/// Create a window
namedWindow( window_name, CV_WINDOW_AUTOSIZE );
/// Create a Trackbar for user to enter threshold
createTrackbar( "Min Threshold:", window_name, &lowThreshold, max_lowThreshold, CannyThreshold );
/// Show the image
CannyThreshold(0, 0);
/// Wait until user exit program by pressing a key
waitKey(0);
return 0;
}
Explanation
============
#. Create some needed variables:
.. code-block:: cpp
Mat src, src_gray;
Mat dst, detected_edges;
int edgeThresh = 1;
int lowThreshold;
int const max_lowThreshold = 100;
int ratio = 3;
int kernel_size = 3;
char* window_name = "Edge Map";
Note the following:
a. We establish a ratio of lower:upper threshold of 3:1 (with the variable *ratio*)
b. We set the kernel size of :math:`3` (for the Sobel operations to be performed internally by the Canny function)
c. We set a maximum value for the lower Threshold of :math:`100`.
#. Loads the source image:
.. code-block:: cpp
/// Load an image
src = imread( argv[1] );
if( !src.data )
{ return -1; }
#. Create a matrix of the same type and size of *src* (to be *dst*)
.. code-block:: cpp
dst.create( src.size(), src.type() );
#. Convert the image to grayscale (using the function :cvt_color:`cvtColor <>`:
.. code-block:: cpp
cvtColor( src, src_gray, CV_BGR2GRAY );
#. Create a window to display the results
.. code-block:: cpp
namedWindow( window_name, CV_WINDOW_AUTOSIZE );
#. Create a Trackbar for the user to enter the lower threshold for our Canny detector:
.. code-block:: cpp
createTrackbar( "Min Threshold:", window_name, &lowThreshold, max_lowThreshold, CannyThreshold );
Observe the following:
a. The variable to be controlled by the Trackbar is *lowThreshold* with a limit of *max_lowThreshold* (which we set to 100 previously)
b. Each time the Trackbar registers an action, the callback function *CannyThreshold* will be invoked.
#. Let's check the *CannyThreshold* function, step by step:
a. First, we blur the image with a filter of kernel size 3:
.. code-block:: cpp
blur( src_gray, detected_edges, Size(3,3) );
b. Second, we apply the OpenCV function :canny:`Canny <>`:
.. code-block:: cpp
Canny( detected_edges, detected_edges, lowThreshold, lowThreshold*ratio, kernel_size );
where the arguments are:
* *detected_edges*: Source image, grayscale
* *detected_edges*: Output of the detector (can be the same as the input)
* *lowThreshold*: The value entered by the user moving the Trackbar
* *highThreshold*: Set in the program as three times the lower threshold (following Canny's recommendation)
* *kernel_size*: We defined it to be 3 (the size of the Sobel kernel to be used internally)
#. We fill a *dst* image with zeros (meaning the image is completely black).
.. code-block:: cpp
dst = Scalar::all(0);
#. Finally, we will use the function :copy_to:`copyTo <>` to map only the areas of the image that are identified as edges (on a black background).
.. code-block:: cpp
src.copyTo( dst, detected_edges);
:copy_to:`copyTo <>` copy the *src* image onto *dst*. However, it will only copy the pixels in the locations where they have non-zero values. Since the output of the Canny detector is the edge contours on a black background, the resulting *dst* will be black in all the area but the detected edges.
#. We display our result:
.. code-block:: cpp
imshow( window_name, dst );
Result
=======
* After compiling the code above, we can run it giving as argument the path to an image. For example, using as an input the following image:
.. image:: images/Canny_Detector_Tutorial_Original_Image.jpg
:alt: Original test image
:width: 200pt
:align: center
* Moving the slider, trying different threshold, we obtain the following result:
.. image:: images/Canny_Detector_Tutorial_Result.jpg
:alt: Result after running Canny
:width: 200pt
:align: center
* Notice how the image is superposed to the black background on the edge regions.
|