File: hough_lines.rst

package info (click to toggle)
opencv 2.4.9.1%2Bdfsg-1%2Bdeb8u1
  • links: PTS, VCS
  • area: main
  • in suites: jessie
  • size: 126,800 kB
  • ctags: 62,729
  • sloc: xml: 509,055; cpp: 490,794; lisp: 23,208; python: 21,174; java: 19,317; ansic: 1,038; sh: 128; makefile: 72
file content (292 lines) | stat: -rw-r--r-- 10,816 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
.. _hough_lines:

Hough Line Transform
*********************

Goal
=====

In this tutorial you will learn how to:

* Use the OpenCV functions :hough_lines:`HoughLines <>` and :hough_lines_p:`HoughLinesP <>` to detect lines in an image.

Theory
=======

.. note::
   The explanation below belongs to the book **Learning OpenCV** by Bradski and Kaehler.

Hough Line Transform
---------------------
#. The Hough Line Transform is a transform used to detect straight lines.
#. To apply the Transform, first an edge detection pre-processing is desirable.

How does it work?
^^^^^^^^^^^^^^^^^^

#. As you know, a line in the image space can be expressed with two variables. For example:

   a. In the **Cartesian coordinate system:**  Parameters: :math:`(m,b)`.
   b. In the **Polar coordinate system:** Parameters: :math:`(r,\theta)`

   .. image:: images/Hough_Lines_Tutorial_Theory_0.jpg
      :alt: Line variables
      :align: center

   For Hough Transforms, we will express lines in the *Polar system*. Hence, a line equation can be written as:

   .. math::

      y = \left ( -\dfrac{\cos \theta}{\sin \theta} \right ) x + \left ( \dfrac{r}{\sin \theta} \right )

  Arranging the terms: :math:`r = x \cos \theta + y \sin \theta`

#. In general for each point :math:`(x_{0}, y_{0})`, we can define the family of lines that goes through that point as:

   .. math::

      r_{\theta} = x_{0} \cdot \cos \theta  + y_{0} \cdot \sin \theta

   Meaning that each pair :math:`(r_{\theta},\theta)` represents each line that passes by :math:`(x_{0}, y_{0})`.

#. If for a given :math:`(x_{0}, y_{0})` we plot the family of lines that goes through it, we get a sinusoid. For instance, for :math:`x_{0} = 8` and :math:`y_{0} = 6` we get the following plot (in a plane :math:`\theta` - :math:`r`):

   .. image:: images/Hough_Lines_Tutorial_Theory_1.jpg
      :alt: Polar plot of a the family of lines of a point
      :align: center

   We consider only points such that :math:`r > 0` and :math:`0< \theta < 2 \pi`.

#. We can do the same operation above for all the points in an image. If the curves of two different points intersect in the plane :math:`\theta` - :math:`r`, that means that both points belong to a same line. For instance, following with the example above and drawing the plot for two more points: :math:`x_{1} = 9`, :math:`y_{1} = 4` and :math:`x_{2} = 12`, :math:`y_{2} = 3`, we get:

   .. image:: images/Hough_Lines_Tutorial_Theory_2.jpg
      :alt: Polar plot of the family of lines for three points
      :align: center

   The three plots intersect in one single point :math:`(0.925, 9.6)`, these coordinates are the parameters (:math:`\theta, r`) or the line in which :math:`(x_{0}, y_{0})`, :math:`(x_{1}, y_{1})` and :math:`(x_{2}, y_{2})` lay.

#. What does all the stuff above mean? It means that in general, a line can be *detected* by finding the number of intersections between curves.The more curves intersecting means that the line represented by that intersection have more points. In general, we can define a *threshold* of the minimum number of intersections needed to *detect* a line.

#. This is what the Hough Line Transform does. It keeps track of the intersection between curves of every point in the image. If the number of intersections is above some *threshold*, then it declares it as a line with the parameters :math:`(\theta, r_{\theta})` of the intersection point.

Standard and Probabilistic Hough Line Transform
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
OpenCV implements two kind of Hough Line Transforms:

a. **The Standard Hough Transform**

  * It consists in pretty much what we just explained in the previous section. It gives you as result a vector of couples :math:`(\theta, r_{\theta})`

  * In OpenCV it is implemented with the function :hough_lines:`HoughLines <>`

b. **The Probabilistic Hough Line Transform**

  * A more efficient implementation of the Hough Line Transform. It gives as output the extremes of the detected lines :math:`(x_{0}, y_{0}, x_{1}, y_{1})`

  * In OpenCV it is implemented with the function :hough_lines_p:`HoughLinesP <>`

Code
======

.. |TutorialHoughLinesSimpleDownload| replace:: here
.. _TutorialHoughLinesSimpleDownload: https://github.com/Itseez/opencv/tree/master/samples/cpp/houghlines.cpp
.. |TutorialHoughLinesFancyDownload| replace:: here
.. _TutorialHoughLinesFancyDownload: https://github.com/Itseez/opencv/tree/master/samples/cpp/tutorial_code/ImgTrans/HoughLines_Demo.cpp


#. **What does this program do?**

   * Loads an image
   * Applies either a *Standard Hough Line Transform* or a *Probabilistic Line Transform*.
   * Display the original image and the detected line in two windows.

#. The sample code that we will explain can be downloaded from  |TutorialHoughLinesSimpleDownload|_. A slightly fancier version (which shows both Hough standard and probabilistic with trackbars for changing the threshold values) can be found  |TutorialHoughLinesFancyDownload|_.

.. code-block:: cpp

   #include "opencv2/highgui/highgui.hpp"
   #include "opencv2/imgproc/imgproc.hpp"

   #include <iostream>

   using namespace cv;
   using namespace std;

   void help()
   {
    cout << "\nThis program demonstrates line finding with the Hough transform.\n"
            "Usage:\n"
            "./houghlines <image_name>, Default is pic1.jpg\n" << endl;
   }

   int main(int argc, char** argv)
   {
    const char* filename = argc >= 2 ? argv[1] : "pic1.jpg";

    Mat src = imread(filename, 0);
    if(src.empty())
    {
        help();
        cout << "can not open " << filename << endl;
        return -1;
    }

    Mat dst, cdst;
    Canny(src, dst, 50, 200, 3);
    cvtColor(dst, cdst, CV_GRAY2BGR);

    #if 0
     vector<Vec2f> lines;
     HoughLines(dst, lines, 1, CV_PI/180, 100, 0, 0 );

     for( size_t i = 0; i < lines.size(); i++ )
     {
        float rho = lines[i][0], theta = lines[i][1];
        Point pt1, pt2;
        double a = cos(theta), b = sin(theta);
        double x0 = a*rho, y0 = b*rho;
        pt1.x = cvRound(x0 + 1000*(-b));
        pt1.y = cvRound(y0 + 1000*(a));
        pt2.x = cvRound(x0 - 1000*(-b));
        pt2.y = cvRound(y0 - 1000*(a));
        line( cdst, pt1, pt2, Scalar(0,0,255), 3, CV_AA);
     }
    #else
     vector<Vec4i> lines;
     HoughLinesP(dst, lines, 1, CV_PI/180, 50, 50, 10 );
     for( size_t i = 0; i < lines.size(); i++ )
     {
       Vec4i l = lines[i];
       line( cdst, Point(l[0], l[1]), Point(l[2], l[3]), Scalar(0,0,255), 3, CV_AA);
     }
    #endif
    imshow("source", src);
    imshow("detected lines", cdst);

    waitKey();

    return 0;
   }

Explanation
=============

#. Load an image

   .. code-block:: cpp

      Mat src = imread(filename, 0);
      if(src.empty())
      {
        help();
        cout << "can not open " << filename << endl;
        return -1;
      }

#. Detect the edges of the image by using a Canny detector

   .. code-block:: cpp

      Canny(src, dst, 50, 200, 3);

   Now we will apply the Hough Line Transform. We will explain how to use both OpenCV functions available for this purpose:

#. **Standard Hough Line Transform**

   a. First, you apply the Transform:

      .. code-block:: cpp

         vector<Vec2f> lines;
         HoughLines(dst, lines, 1, CV_PI/180, 100, 0, 0 );

      with the following arguments:

      * *dst*: Output of the edge detector. It should be a grayscale image (although in fact it is a binary one)
      * *lines*: A vector that will store the parameters :math:`(r,\theta)` of the detected lines
      * *rho* : The resolution of the parameter :math:`r` in pixels. We use **1** pixel.
      * *theta*: The resolution of the parameter :math:`\theta` in radians. We use **1 degree** (CV_PI/180)
      * *threshold*: The minimum number of intersections to "*detect*" a line
      * *srn* and *stn*: Default parameters to zero. Check OpenCV reference for more info.

   b. And then you display the result by drawing the lines.

      .. code-block:: cpp

         for( size_t i = 0; i < lines.size(); i++ )
         {
           float rho = lines[i][0], theta = lines[i][1];
           Point pt1, pt2;
           double a = cos(theta), b = sin(theta);
           double x0 = a*rho, y0 = b*rho;
           pt1.x = cvRound(x0 + 1000*(-b));
           pt1.y = cvRound(y0 + 1000*(a));
           pt2.x = cvRound(x0 - 1000*(-b));
           pt2.y = cvRound(y0 - 1000*(a));
           line( cdst, pt1, pt2, Scalar(0,0,255), 3, CV_AA);
         }

#. **Probabilistic Hough Line Transform**

   a. First you apply the transform:

      .. code-block:: cpp

         vector<Vec4i> lines;
         HoughLinesP(dst, lines, 1, CV_PI/180, 50, 50, 10 );

      with the arguments:

      * *dst*: Output of the edge detector. It should be a grayscale image (although in fact it is a binary one)
      * *lines*: A vector that will store the parameters :math:`(x_{start}, y_{start}, x_{end}, y_{end})` of the detected lines
      * *rho* : The resolution of the parameter :math:`r` in pixels. We use **1** pixel.
      * *theta*: The resolution of the parameter :math:`\theta` in radians. We use **1 degree** (CV_PI/180)
      * *threshold*: The minimum number of intersections to "*detect*" a line
      * *minLinLength*: The minimum number of points that can form a line. Lines with less than this number of points are disregarded.
      * *maxLineGap*: The maximum gap between two points to be considered in the same line.

   b. And then you display the result by drawing the lines.

      .. code-block:: cpp

         for( size_t i = 0; i < lines.size(); i++ )
         {
           Vec4i l = lines[i];
           line( cdst, Point(l[0], l[1]), Point(l[2], l[3]), Scalar(0,0,255), 3, CV_AA);
         }


#. Display the original image and the detected lines:

   .. code-block:: cpp

      imshow("source", src);
      imshow("detected lines", cdst);

#. Wait until the user exits the program

   .. code-block:: cpp

      waitKey();


Result
=======

.. note::

   The results below are obtained using the slightly fancier version we mentioned in the *Code* section. It still implements the same stuff as above, only adding the Trackbar for the Threshold.

Using an input image such as:

.. image:: images/Hough_Lines_Tutorial_Original_Image.jpg
   :alt: Result of detecting lines with Hough Transform
   :align: center

We get the following result by using the Probabilistic Hough Line Transform:

.. image:: images/Hough_Lines_Tutorial_Result.jpg
   :alt: Result of detecting lines with Hough Transform
   :align: center

You may observe that the number of lines detected vary while you change the *threshold*. The explanation is sort of evident: If you establish a higher threshold, fewer lines will be detected (since you will need more points to declare a line detected).