1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
|
.. _hough_lines:
Hough Line Transform
*********************
Goal
=====
In this tutorial you will learn how to:
* Use the OpenCV functions :hough_lines:`HoughLines <>` and :hough_lines_p:`HoughLinesP <>` to detect lines in an image.
Theory
=======
.. note::
The explanation below belongs to the book **Learning OpenCV** by Bradski and Kaehler.
Hough Line Transform
---------------------
#. The Hough Line Transform is a transform used to detect straight lines.
#. To apply the Transform, first an edge detection pre-processing is desirable.
How does it work?
^^^^^^^^^^^^^^^^^^
#. As you know, a line in the image space can be expressed with two variables. For example:
a. In the **Cartesian coordinate system:** Parameters: :math:`(m,b)`.
b. In the **Polar coordinate system:** Parameters: :math:`(r,\theta)`
.. image:: images/Hough_Lines_Tutorial_Theory_0.jpg
:alt: Line variables
:align: center
For Hough Transforms, we will express lines in the *Polar system*. Hence, a line equation can be written as:
.. math::
y = \left ( -\dfrac{\cos \theta}{\sin \theta} \right ) x + \left ( \dfrac{r}{\sin \theta} \right )
Arranging the terms: :math:`r = x \cos \theta + y \sin \theta`
#. In general for each point :math:`(x_{0}, y_{0})`, we can define the family of lines that goes through that point as:
.. math::
r_{\theta} = x_{0} \cdot \cos \theta + y_{0} \cdot \sin \theta
Meaning that each pair :math:`(r_{\theta},\theta)` represents each line that passes by :math:`(x_{0}, y_{0})`.
#. If for a given :math:`(x_{0}, y_{0})` we plot the family of lines that goes through it, we get a sinusoid. For instance, for :math:`x_{0} = 8` and :math:`y_{0} = 6` we get the following plot (in a plane :math:`\theta` - :math:`r`):
.. image:: images/Hough_Lines_Tutorial_Theory_1.jpg
:alt: Polar plot of a the family of lines of a point
:align: center
We consider only points such that :math:`r > 0` and :math:`0< \theta < 2 \pi`.
#. We can do the same operation above for all the points in an image. If the curves of two different points intersect in the plane :math:`\theta` - :math:`r`, that means that both points belong to a same line. For instance, following with the example above and drawing the plot for two more points: :math:`x_{1} = 9`, :math:`y_{1} = 4` and :math:`x_{2} = 12`, :math:`y_{2} = 3`, we get:
.. image:: images/Hough_Lines_Tutorial_Theory_2.jpg
:alt: Polar plot of the family of lines for three points
:align: center
The three plots intersect in one single point :math:`(0.925, 9.6)`, these coordinates are the parameters (:math:`\theta, r`) or the line in which :math:`(x_{0}, y_{0})`, :math:`(x_{1}, y_{1})` and :math:`(x_{2}, y_{2})` lay.
#. What does all the stuff above mean? It means that in general, a line can be *detected* by finding the number of intersections between curves.The more curves intersecting means that the line represented by that intersection have more points. In general, we can define a *threshold* of the minimum number of intersections needed to *detect* a line.
#. This is what the Hough Line Transform does. It keeps track of the intersection between curves of every point in the image. If the number of intersections is above some *threshold*, then it declares it as a line with the parameters :math:`(\theta, r_{\theta})` of the intersection point.
Standard and Probabilistic Hough Line Transform
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
OpenCV implements two kind of Hough Line Transforms:
a. **The Standard Hough Transform**
* It consists in pretty much what we just explained in the previous section. It gives you as result a vector of couples :math:`(\theta, r_{\theta})`
* In OpenCV it is implemented with the function :hough_lines:`HoughLines <>`
b. **The Probabilistic Hough Line Transform**
* A more efficient implementation of the Hough Line Transform. It gives as output the extremes of the detected lines :math:`(x_{0}, y_{0}, x_{1}, y_{1})`
* In OpenCV it is implemented with the function :hough_lines_p:`HoughLinesP <>`
Code
======
.. |TutorialHoughLinesSimpleDownload| replace:: here
.. _TutorialHoughLinesSimpleDownload: https://github.com/Itseez/opencv/tree/master/samples/cpp/houghlines.cpp
.. |TutorialHoughLinesFancyDownload| replace:: here
.. _TutorialHoughLinesFancyDownload: https://github.com/Itseez/opencv/tree/master/samples/cpp/tutorial_code/ImgTrans/HoughLines_Demo.cpp
#. **What does this program do?**
* Loads an image
* Applies either a *Standard Hough Line Transform* or a *Probabilistic Line Transform*.
* Display the original image and the detected line in two windows.
#. The sample code that we will explain can be downloaded from |TutorialHoughLinesSimpleDownload|_. A slightly fancier version (which shows both Hough standard and probabilistic with trackbars for changing the threshold values) can be found |TutorialHoughLinesFancyDownload|_.
.. code-block:: cpp
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
using namespace cv;
using namespace std;
void help()
{
cout << "\nThis program demonstrates line finding with the Hough transform.\n"
"Usage:\n"
"./houghlines <image_name>, Default is pic1.jpg\n" << endl;
}
int main(int argc, char** argv)
{
const char* filename = argc >= 2 ? argv[1] : "pic1.jpg";
Mat src = imread(filename, 0);
if(src.empty())
{
help();
cout << "can not open " << filename << endl;
return -1;
}
Mat dst, cdst;
Canny(src, dst, 50, 200, 3);
cvtColor(dst, cdst, CV_GRAY2BGR);
#if 0
vector<Vec2f> lines;
HoughLines(dst, lines, 1, CV_PI/180, 100, 0, 0 );
for( size_t i = 0; i < lines.size(); i++ )
{
float rho = lines[i][0], theta = lines[i][1];
Point pt1, pt2;
double a = cos(theta), b = sin(theta);
double x0 = a*rho, y0 = b*rho;
pt1.x = cvRound(x0 + 1000*(-b));
pt1.y = cvRound(y0 + 1000*(a));
pt2.x = cvRound(x0 - 1000*(-b));
pt2.y = cvRound(y0 - 1000*(a));
line( cdst, pt1, pt2, Scalar(0,0,255), 3, CV_AA);
}
#else
vector<Vec4i> lines;
HoughLinesP(dst, lines, 1, CV_PI/180, 50, 50, 10 );
for( size_t i = 0; i < lines.size(); i++ )
{
Vec4i l = lines[i];
line( cdst, Point(l[0], l[1]), Point(l[2], l[3]), Scalar(0,0,255), 3, CV_AA);
}
#endif
imshow("source", src);
imshow("detected lines", cdst);
waitKey();
return 0;
}
Explanation
=============
#. Load an image
.. code-block:: cpp
Mat src = imread(filename, 0);
if(src.empty())
{
help();
cout << "can not open " << filename << endl;
return -1;
}
#. Detect the edges of the image by using a Canny detector
.. code-block:: cpp
Canny(src, dst, 50, 200, 3);
Now we will apply the Hough Line Transform. We will explain how to use both OpenCV functions available for this purpose:
#. **Standard Hough Line Transform**
a. First, you apply the Transform:
.. code-block:: cpp
vector<Vec2f> lines;
HoughLines(dst, lines, 1, CV_PI/180, 100, 0, 0 );
with the following arguments:
* *dst*: Output of the edge detector. It should be a grayscale image (although in fact it is a binary one)
* *lines*: A vector that will store the parameters :math:`(r,\theta)` of the detected lines
* *rho* : The resolution of the parameter :math:`r` in pixels. We use **1** pixel.
* *theta*: The resolution of the parameter :math:`\theta` in radians. We use **1 degree** (CV_PI/180)
* *threshold*: The minimum number of intersections to "*detect*" a line
* *srn* and *stn*: Default parameters to zero. Check OpenCV reference for more info.
b. And then you display the result by drawing the lines.
.. code-block:: cpp
for( size_t i = 0; i < lines.size(); i++ )
{
float rho = lines[i][0], theta = lines[i][1];
Point pt1, pt2;
double a = cos(theta), b = sin(theta);
double x0 = a*rho, y0 = b*rho;
pt1.x = cvRound(x0 + 1000*(-b));
pt1.y = cvRound(y0 + 1000*(a));
pt2.x = cvRound(x0 - 1000*(-b));
pt2.y = cvRound(y0 - 1000*(a));
line( cdst, pt1, pt2, Scalar(0,0,255), 3, CV_AA);
}
#. **Probabilistic Hough Line Transform**
a. First you apply the transform:
.. code-block:: cpp
vector<Vec4i> lines;
HoughLinesP(dst, lines, 1, CV_PI/180, 50, 50, 10 );
with the arguments:
* *dst*: Output of the edge detector. It should be a grayscale image (although in fact it is a binary one)
* *lines*: A vector that will store the parameters :math:`(x_{start}, y_{start}, x_{end}, y_{end})` of the detected lines
* *rho* : The resolution of the parameter :math:`r` in pixels. We use **1** pixel.
* *theta*: The resolution of the parameter :math:`\theta` in radians. We use **1 degree** (CV_PI/180)
* *threshold*: The minimum number of intersections to "*detect*" a line
* *minLinLength*: The minimum number of points that can form a line. Lines with less than this number of points are disregarded.
* *maxLineGap*: The maximum gap between two points to be considered in the same line.
b. And then you display the result by drawing the lines.
.. code-block:: cpp
for( size_t i = 0; i < lines.size(); i++ )
{
Vec4i l = lines[i];
line( cdst, Point(l[0], l[1]), Point(l[2], l[3]), Scalar(0,0,255), 3, CV_AA);
}
#. Display the original image and the detected lines:
.. code-block:: cpp
imshow("source", src);
imshow("detected lines", cdst);
#. Wait until the user exits the program
.. code-block:: cpp
waitKey();
Result
=======
.. note::
The results below are obtained using the slightly fancier version we mentioned in the *Code* section. It still implements the same stuff as above, only adding the Trackbar for the Threshold.
Using an input image such as:
.. image:: images/Hough_Lines_Tutorial_Original_Image.jpg
:alt: Result of detecting lines with Hough Transform
:align: center
We get the following result by using the Probabilistic Hough Line Transform:
.. image:: images/Hough_Lines_Tutorial_Result.jpg
:alt: Result of detecting lines with Hough Transform
:align: center
You may observe that the number of lines detected vary while you change the *threshold*. The explanation is sort of evident: If you establish a higher threshold, fewer lines will be detected (since you will need more points to declare a line detected).
|