1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
|
.. _remap:
Remapping
*********
Goal
====
In this tutorial you will learn how to:
a. Use the OpenCV function :remap:`remap <>` to implement simple remapping routines.
Theory
======
What is remapping?
------------------
* It is the process of taking pixels from one place in the image and locating them in another position in a new image.
* To accomplish the mapping process, it might be necessary to do some interpolation for non-integer pixel locations, since there will not always be a one-to-one-pixel correspondence between source and destination images.
* We can express the remap for every pixel location :math:`(x,y)` as:
.. math::
g(x,y) = f ( h(x,y) )
where :math:`g()` is the remapped image, :math:`f()` the source image and :math:`h(x,y)` is the mapping function that operates on :math:`(x,y)`.
* Let's think in a quick example. Imagine that we have an image :math:`I` and, say, we want to do a remap such that:
.. math::
h(x,y) = (I.cols - x, y )
What would happen? It is easily seen that the image would flip in the :math:`x` direction. For instance, consider the input image:
.. image:: images/Remap_Tutorial_Theory_0.jpg
:alt: Original test image
:width: 120pt
:align: center
observe how the red circle changes positions with respect to x (considering :math:`x` the horizontal direction):
.. image:: images/Remap_Tutorial_Theory_1.jpg
:alt: Original test image
:width: 120pt
:align: center
* In OpenCV, the function :remap:`remap <>` offers a simple remapping implementation.
Code
====
#. **What does this program do?**
* Loads an image
* Each second, apply 1 of 4 different remapping processes to the image and display them indefinitely in a window.
* Wait for the user to exit the program
#. The tutorial code's is shown lines below. You can also download it from `here <https://github.com/Itseez/opencv/tree/master/samples/cpp/tutorial_code/ImgTrans/Remap_Demo.cpp>`_
.. code-block:: cpp
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
using namespace cv;
/// Global variables
Mat src, dst;
Mat map_x, map_y;
char* remap_window = "Remap demo";
int ind = 0;
/// Function Headers
void update_map( void );
/**
* @function main
*/
int main( int argc, char** argv )
{
/// Load the image
src = imread( argv[1], 1 );
/// Create dst, map_x and map_y with the same size as src:
dst.create( src.size(), src.type() );
map_x.create( src.size(), CV_32FC1 );
map_y.create( src.size(), CV_32FC1 );
/// Create window
namedWindow( remap_window, CV_WINDOW_AUTOSIZE );
/// Loop
while( true )
{
/// Each 1 sec. Press ESC to exit the program
int c = waitKey( 1000 );
if( (char)c == 27 )
{ break; }
/// Update map_x & map_y. Then apply remap
update_map();
remap( src, dst, map_x, map_y, CV_INTER_LINEAR, BORDER_CONSTANT, Scalar(0,0, 0) );
/// Display results
imshow( remap_window, dst );
}
return 0;
}
/**
* @function update_map
* @brief Fill the map_x and map_y matrices with 4 types of mappings
*/
void update_map( void )
{
ind = ind%4;
for( int j = 0; j < src.rows; j++ )
{ for( int i = 0; i < src.cols; i++ )
{
switch( ind )
{
case 0:
if( i > src.cols*0.25 && i < src.cols*0.75 && j > src.rows*0.25 && j < src.rows*0.75 )
{
map_x.at<float>(j,i) = 2*( i - src.cols*0.25 ) + 0.5 ;
map_y.at<float>(j,i) = 2*( j - src.rows*0.25 ) + 0.5 ;
}
else
{ map_x.at<float>(j,i) = 0 ;
map_y.at<float>(j,i) = 0 ;
}
break;
case 1:
map_x.at<float>(j,i) = i ;
map_y.at<float>(j,i) = src.rows - j ;
break;
case 2:
map_x.at<float>(j,i) = src.cols - i ;
map_y.at<float>(j,i) = j ;
break;
case 3:
map_x.at<float>(j,i) = src.cols - i ;
map_y.at<float>(j,i) = src.rows - j ;
break;
} // end of switch
}
}
ind++;
}
Explanation
===========
#. Create some variables we will use:
.. code-block:: cpp
Mat src, dst;
Mat map_x, map_y;
char* remap_window = "Remap demo";
int ind = 0;
#. Load an image:
.. code-block:: cpp
src = imread( argv[1], 1 );
#. Create the destination image and the two mapping matrices (for x and y )
.. code-block:: cpp
dst.create( src.size(), src.type() );
map_x.create( src.size(), CV_32FC1 );
map_y.create( src.size(), CV_32FC1 );
#. Create a window to display results
.. code-block:: cpp
namedWindow( remap_window, CV_WINDOW_AUTOSIZE );
#. Establish a loop. Each 1000 ms we update our mapping matrices (*mat_x* and *mat_y*) and apply them to our source image:
.. code-block:: cpp
while( true )
{
/// Each 1 sec. Press ESC to exit the program
int c = waitKey( 1000 );
if( (char)c == 27 )
{ break; }
/// Update map_x & map_y. Then apply remap
update_map();
remap( src, dst, map_x, map_y, CV_INTER_LINEAR, BORDER_CONSTANT, Scalar(0,0, 0) );
/// Display results
imshow( remap_window, dst );
}
The function that applies the remapping is :remap:`remap <>`. We give the following arguments:
* **src**: Source image
* **dst**: Destination image of same size as *src*
* **map_x**: The mapping function in the x direction. It is equivalent to the first component of :math:`h(i,j)`
* **map_y**: Same as above, but in y direction. Note that *map_y* and *map_x* are both of the same size as *src*
* **CV_INTER_LINEAR**: The type of interpolation to use for non-integer pixels. This is by default.
* **BORDER_CONSTANT**: Default
How do we update our mapping matrices *mat_x* and *mat_y*? Go on reading:
#. **Updating the mapping matrices:** We are going to perform 4 different mappings:
a. Reduce the picture to half its size and will display it in the middle:
.. math::
h(i,j) = ( 2*i - src.cols/2 + 0.5, 2*j - src.rows/2 + 0.5)
for all pairs :math:`(i,j)` such that: :math:`\dfrac{src.cols}{4}<i<\dfrac{3 \cdot src.cols}{4}` and :math:`\dfrac{src.rows}{4}<j<\dfrac{3 \cdot src.rows}{4}`
b. Turn the image upside down: :math:`h( i, j ) = (i, src.rows - j)`
c. Reflect the image from left to right: :math:`h(i,j) = ( src.cols - i, j )`
d. Combination of b and c: :math:`h(i,j) = ( src.cols - i, src.rows - j )`
This is expressed in the following snippet. Here, *map_x* represents the first coordinate of *h(i,j)* and *map_y* the second coordinate.
.. code-block:: cpp
for( int j = 0; j < src.rows; j++ )
{ for( int i = 0; i < src.cols; i++ )
{
switch( ind )
{
case 0:
if( i > src.cols*0.25 && i < src.cols*0.75 && j > src.rows*0.25 && j < src.rows*0.75 )
{
map_x.at<float>(j,i) = 2*( i - src.cols*0.25 ) + 0.5 ;
map_y.at<float>(j,i) = 2*( j - src.rows*0.25 ) + 0.5 ;
}
else
{ map_x.at<float>(j,i) = 0 ;
map_y.at<float>(j,i) = 0 ;
}
break;
case 1:
map_x.at<float>(j,i) = i ;
map_y.at<float>(j,i) = src.rows - j ;
break;
case 2:
map_x.at<float>(j,i) = src.cols - i ;
map_y.at<float>(j,i) = j ;
break;
case 3:
map_x.at<float>(j,i) = src.cols - i ;
map_y.at<float>(j,i) = src.rows - j ;
break;
} // end of switch
}
}
ind++;
}
Result
======
#. After compiling the code above, you can execute it giving as argument an image path. For instance, by using the following image:
.. image:: images/Remap_Tutorial_Original_Image.jpg
:alt: Original test image
:width: 250pt
:align: center
#. This is the result of reducing it to half the size and centering it:
.. image:: images/Remap_Tutorial_Result_0.jpg
:alt: Result 0 for remapping
:width: 250pt
:align: center
#. Turning it upside down:
.. image:: images/Remap_Tutorial_Result_1.jpg
:alt: Result 0 for remapping
:width: 250pt
:align: center
#. Reflecting it in the x direction:
.. image:: images/Remap_Tutorial_Result_2.jpg
:alt: Result 0 for remapping
:width: 250pt
:align: center
#. Reflecting it in both directions:
.. image:: images/Remap_Tutorial_Result_3.jpg
:alt: Result 0 for remapping
:width: 250pt
:align: center
|