File: remap.rst

package info (click to toggle)
opencv 2.4.9.1%2Bdfsg-1%2Bdeb8u1
  • links: PTS, VCS
  • area: main
  • in suites: jessie
  • size: 126,800 kB
  • ctags: 62,729
  • sloc: xml: 509,055; cpp: 490,794; lisp: 23,208; python: 21,174; java: 19,317; ansic: 1,038; sh: 128; makefile: 72
file content (313 lines) | stat: -rw-r--r-- 9,246 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
.. _remap:

Remapping
*********

Goal
====

In this tutorial you will learn how to:

a. Use the OpenCV function :remap:`remap <>` to implement simple remapping routines.

Theory
======

What is remapping?
------------------

* It is the process of taking pixels from one place in the image and locating them in  another position in a new image.

* To accomplish the mapping process, it might be necessary to do some interpolation for non-integer pixel locations, since there will not always be a one-to-one-pixel correspondence between source and destination images.

* We can express the remap for every pixel location :math:`(x,y)` as:

  .. math::

     g(x,y) = f ( h(x,y) )

  where :math:`g()` is the remapped image, :math:`f()` the source image and :math:`h(x,y)` is the mapping function that operates on :math:`(x,y)`.

* Let's think in a quick example. Imagine that we have an image :math:`I` and, say, we want to do  a remap such that:

  .. math::

     h(x,y) = (I.cols - x, y )

  What would happen? It is easily seen that the image would flip in the :math:`x` direction. For instance,  consider the input image:

  .. image:: images/Remap_Tutorial_Theory_0.jpg
           :alt: Original test image
           :width: 120pt
           :align: center

  observe how the red circle changes positions with respect to x (considering :math:`x` the horizontal direction):

  .. image:: images/Remap_Tutorial_Theory_1.jpg
           :alt: Original test image
           :width: 120pt
           :align: center

* In OpenCV, the function :remap:`remap <>` offers a simple remapping implementation.

Code
====

#. **What does this program do?**

   * Loads an image
   * Each second, apply 1 of 4 different remapping processes to the image and display them indefinitely in a window.
   * Wait for the user to exit the program

#. The tutorial code's is shown lines below. You can also download it from `here <https://github.com/Itseez/opencv/tree/master/samples/cpp/tutorial_code/ImgTrans/Remap_Demo.cpp>`_

.. code-block:: cpp

   #include "opencv2/highgui/highgui.hpp"
   #include "opencv2/imgproc/imgproc.hpp"
   #include <iostream>
   #include <stdio.h>

   using namespace cv;

   /// Global variables
   Mat src, dst;
   Mat map_x, map_y;
   char* remap_window = "Remap demo";
   int ind = 0;

   /// Function Headers
   void update_map( void );

   /**
   * @function main
   */
   int main( int argc, char** argv )
   {
     /// Load the image
     src = imread( argv[1], 1 );

    /// Create dst, map_x and map_y with the same size as src:
    dst.create( src.size(), src.type() );
    map_x.create( src.size(), CV_32FC1 );
    map_y.create( src.size(), CV_32FC1 );

    /// Create window
    namedWindow( remap_window, CV_WINDOW_AUTOSIZE );

    /// Loop
    while( true )
    {
      /// Each 1 sec. Press ESC to exit the program
      int c = waitKey( 1000 );

      if( (char)c == 27 )
        { break; }

      /// Update map_x & map_y. Then apply remap
      update_map();
      remap( src, dst, map_x, map_y, CV_INTER_LINEAR, BORDER_CONSTANT, Scalar(0,0, 0) );

      /// Display results
      imshow( remap_window, dst );
    }
    return 0;
   }

   /**
   * @function update_map
   * @brief Fill the map_x and map_y matrices with 4 types of mappings
   */
   void update_map( void )
   {
     ind = ind%4;

     for( int j = 0; j < src.rows; j++ )
     { for( int i = 0; i < src.cols; i++ )
         {
           switch( ind )
           {
             case 0:
               if( i > src.cols*0.25 && i < src.cols*0.75 && j > src.rows*0.25 && j < src.rows*0.75 )
                 {
                   map_x.at<float>(j,i) = 2*( i - src.cols*0.25 ) + 0.5 ;
                   map_y.at<float>(j,i) = 2*( j - src.rows*0.25 ) + 0.5 ;
                  }
               else
                 { map_x.at<float>(j,i) = 0 ;
                   map_y.at<float>(j,i) = 0 ;
                 }
                   break;
             case 1:
                   map_x.at<float>(j,i) = i ;
                   map_y.at<float>(j,i) = src.rows - j ;
                   break;
             case 2:
                   map_x.at<float>(j,i) = src.cols - i ;
                   map_y.at<float>(j,i) = j ;
                   break;
             case 3:
                   map_x.at<float>(j,i) = src.cols - i ;
                   map_y.at<float>(j,i) = src.rows - j ;
                   break;
           } // end of switch
         }
      }
    ind++;
  }

Explanation
===========

#. Create some variables we will use:

   .. code-block:: cpp

      Mat src, dst;
      Mat map_x, map_y;
      char* remap_window = "Remap demo";
      int ind = 0;

#. Load an image:

   .. code-block:: cpp

      src = imread( argv[1], 1 );

#. Create the destination image and the two mapping matrices (for x and y )

   .. code-block:: cpp

      dst.create( src.size(), src.type() );
      map_x.create( src.size(), CV_32FC1 );
      map_y.create( src.size(), CV_32FC1 );

#. Create a window to  display results

   .. code-block:: cpp

      namedWindow( remap_window, CV_WINDOW_AUTOSIZE );

#. Establish a loop. Each 1000 ms we update our mapping matrices (*mat_x* and *mat_y*) and apply them to our source image:

   .. code-block:: cpp

      while( true )
      {
        /// Each 1 sec. Press ESC to exit the program
        int c = waitKey( 1000 );

        if( (char)c == 27 )
          { break; }

        /// Update map_x & map_y. Then apply remap
        update_map();
        remap( src, dst, map_x, map_y, CV_INTER_LINEAR, BORDER_CONSTANT, Scalar(0,0, 0) );

        /// Display results
        imshow( remap_window, dst );
      }

   The function that applies the remapping is :remap:`remap <>`. We give the following arguments:

   * **src**: Source image
   * **dst**: Destination image of same size as *src*
   * **map_x**: The mapping function in the x direction. It is equivalent to the first component of :math:`h(i,j)`
   * **map_y**: Same as above, but in y direction. Note that *map_y* and *map_x* are both of the same size as *src*
   * **CV_INTER_LINEAR**: The type of interpolation to use for non-integer pixels. This is by default.
   * **BORDER_CONSTANT**: Default

   How do we update our mapping matrices *mat_x* and *mat_y*? Go on reading:

#. **Updating the mapping matrices:**  We are going to perform 4 different mappings:

   a. Reduce the picture to half its size and will display it in the middle:

      .. math::

         h(i,j) = ( 2*i - src.cols/2  + 0.5, 2*j - src.rows/2  + 0.5)

      for all pairs :math:`(i,j)` such that: :math:`\dfrac{src.cols}{4}<i<\dfrac{3 \cdot src.cols}{4}`  and  :math:`\dfrac{src.rows}{4}<j<\dfrac{3 \cdot src.rows}{4}`

   b. Turn the image upside down: :math:`h( i, j ) = (i, src.rows - j)`

   c. Reflect the image from left to right: :math:`h(i,j) = ( src.cols - i, j )`

   d. Combination of b and c: :math:`h(i,j) = ( src.cols - i, src.rows - j )`

  This is expressed in the following snippet. Here, *map_x* represents the first coordinate of *h(i,j)* and *map_y* the second coordinate.

  .. code-block:: cpp

     for( int j = 0; j < src.rows; j++ )
     { for( int i = 0; i < src.cols; i++ )
         {
           switch( ind )
           {
             case 0:
               if( i > src.cols*0.25 && i < src.cols*0.75 && j > src.rows*0.25 && j < src.rows*0.75 )
                 {
                   map_x.at<float>(j,i) = 2*( i - src.cols*0.25 ) + 0.5 ;
                   map_y.at<float>(j,i) = 2*( j - src.rows*0.25 ) + 0.5 ;
                  }
               else
                 { map_x.at<float>(j,i) = 0 ;
                   map_y.at<float>(j,i) = 0 ;
                 }
                   break;
             case 1:
                   map_x.at<float>(j,i) = i ;
                   map_y.at<float>(j,i) = src.rows - j ;
                   break;
             case 2:
                   map_x.at<float>(j,i) = src.cols - i ;
                   map_y.at<float>(j,i) = j ;
                   break;
             case 3:
                   map_x.at<float>(j,i) = src.cols - i ;
                   map_y.at<float>(j,i) = src.rows - j ;
                   break;
           } // end of switch
         }
       }
      ind++;
     }


Result
======

#. After compiling the code above, you can execute it giving as argument an image path. For instance, by using the following image:

   .. image:: images/Remap_Tutorial_Original_Image.jpg
            :alt: Original test image
            :width: 250pt
            :align: center

#. This is the result of reducing it to half the size and centering it:

   .. image:: images/Remap_Tutorial_Result_0.jpg
            :alt: Result 0 for remapping
            :width: 250pt
            :align: center

#. Turning it upside down:

   .. image:: images/Remap_Tutorial_Result_1.jpg
            :alt: Result 0 for remapping
            :width: 250pt
            :align: center

#. Reflecting it in the x direction:

   .. image:: images/Remap_Tutorial_Result_2.jpg
            :alt: Result 0 for remapping
            :width: 250pt
            :align: center

#. Reflecting it in both directions:

.. image:: images/Remap_Tutorial_Result_3.jpg
         :alt: Result 0 for remapping
         :width: 250pt
         :align: center