File: sobel_derivatives.rst

package info (click to toggle)
opencv 2.4.9.1%2Bdfsg-1%2Bdeb8u1
  • links: PTS, VCS
  • area: main
  • in suites: jessie
  • size: 126,800 kB
  • ctags: 62,729
  • sloc: xml: 509,055; cpp: 490,794; lisp: 23,208; python: 21,174; java: 19,317; ansic: 1,038; sh: 128; makefile: 72
file content (276 lines) | stat: -rw-r--r-- 8,815 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
.. _sobel_derivatives:

Sobel Derivatives
******************


Goal
=====

In this tutorial you will learn how to:

.. container:: enumeratevisibleitemswithsquare

   * Use the OpenCV function :sobel:`Sobel <>` to calculate the derivatives from an image.
   * Use the OpenCV function :scharr:`Scharr <>` to calculate a more accurate derivative for a kernel of size :math:`3 \cdot 3`

Theory
========

.. note::
   The explanation below belongs to the book **Learning OpenCV** by Bradski and Kaehler.


#. In the last two tutorials we have seen applicative examples of convolutions. One of the most important convolutions is the computation of derivatives in an image (or an approximation to them).

#. Why may be important the calculus of the derivatives in an image? Let's imagine we want to detect the *edges* present in the image. For instance:


   .. image:: images/Sobel_Derivatives_Tutorial_Theory_0.jpg
           :alt: How intensity changes in an edge
           :align: center

   You can easily notice that in an *edge*, the pixel intensity *changes* in a notorious way. A good way to express *changes* is by using *derivatives*. A high change in gradient indicates a major change in the image.

#. To be more graphical, let's assume we have a 1D-image. An edge is shown by the "jump" in intensity in the plot below:

   .. image:: images/Sobel_Derivatives_Tutorial_Theory_Intensity_Function.jpg
           :alt:  Intensity Plot for an edge
           :align: center

#. The edge "jump" can be seen more easily if we take the first derivative (actually, here appears as a maximum)

   .. image:: images/Sobel_Derivatives_Tutorial_Theory_dIntensity_Function.jpg
           :alt:  First derivative of Intensity - Plot for an edge
           :align: center

#. So, from the explanation above, we can deduce that a method to detect edges in an image can be performed by locating pixel locations where the gradient is higher than its neighbors (or to generalize, higher than a threshold).

#. More detailed explanation, please refer to **Learning OpenCV** by Bradski and Kaehler

Sobel Operator
---------------

#. The Sobel Operator is a discrete differentiation operator. It computes an approximation of the gradient of an image intensity function.

#. The Sobel Operator combines Gaussian smoothing and differentiation.

Formulation
^^^^^^^^^^^^
Assuming that the image to  be operated is :math:`I`:

#. We calculate two derivatives:

   a. **Horizontal changes**: This is computed by convolving :math:`I` with a kernel :math:`G_{x}` with odd size. For example for a kernel size of 3, :math:`G_{x}` would be computed as:

      .. math::

         G_{x} = \begin{bmatrix}
         -1 & 0 & +1  \\
         -2 & 0 & +2  \\
         -1 & 0 & +1
         \end{bmatrix} * I

   b. **Vertical changes**: This is computed by convolving :math:`I` with a kernel :math:`G_{y}` with odd size. For example for a kernel size of 3, :math:`G_{y}` would be computed as:

      .. math::

         G_{y} = \begin{bmatrix}
         -1 & -2 & -1  \\
         0 & 0 & 0  \\
         +1 & +2 & +1
         \end{bmatrix} * I

#. At each point of the image we calculate an approximation of the *gradient* in that point by combining both results above:

    .. math::

       G = \sqrt{ G_{x}^{2} + G_{y}^{2} }

   Although sometimes the following simpler equation is used:

   .. math::

      G = |G_{x}| + |G_{y}|


.. note::

   When the size of the kernel is :math:`3`, the Sobel kernel shown above may produce noticeable inaccuracies (after all, Sobel is only an approximation of the derivative). OpenCV addresses this inaccuracy for kernels of size 3 by using the :scharr:`Scharr <>` function. This is as fast but more accurate than the standar Sobel function. It implements the following kernels:

      .. math::

         G_{x} = \begin{bmatrix}
         -3 & 0 & +3  \\
         -10 & 0 & +10  \\
         -3 & 0 & +3
         \end{bmatrix}

         G_{y} = \begin{bmatrix}
         -3 & -10 & -3  \\
         0 & 0 & 0  \\
         +3 & +10 & +3
         \end{bmatrix}

  You can check out more information of this function in the OpenCV reference (:scharr:`Scharr <>`). Also, in the sample code below, you will notice that above the code for :sobel:`Sobel <>` function there is also code for the :scharr:`Scharr <>` function commented. Uncommenting it (and obviously commenting the Sobel stuff) should give you an idea of how this function works.

Code
=====

#. **What does this program do?**

   * Applies the *Sobel Operator* and generates as output an image with the detected *edges* bright on a darker background.

#. The tutorial code's is shown lines below. You can also download it from `here <https://github.com/Itseez/opencv/tree/master/samples/cpp/tutorial_code/ImgTrans/Sobel_Demo.cpp>`_

.. code-block:: cpp

   #include "opencv2/imgproc/imgproc.hpp"
   #include "opencv2/highgui/highgui.hpp"
   #include <stdlib.h>
   #include <stdio.h>

   using namespace cv;

   /** @function main */
   int main( int argc, char** argv )
   {

     Mat src, src_gray;
     Mat grad;
     char* window_name = "Sobel Demo - Simple Edge Detector";
     int scale = 1;
     int delta = 0;
     int ddepth = CV_16S;

     int c;

     /// Load an image
     src = imread( argv[1] );

     if( !src.data )
     { return -1; }

     GaussianBlur( src, src, Size(3,3), 0, 0, BORDER_DEFAULT );

     /// Convert it to gray
     cvtColor( src, src_gray, CV_RGB2GRAY );

     /// Create window
     namedWindow( window_name, CV_WINDOW_AUTOSIZE );

     /// Generate grad_x and grad_y
     Mat grad_x, grad_y;
     Mat abs_grad_x, abs_grad_y;

     /// Gradient X
     //Scharr( src_gray, grad_x, ddepth, 1, 0, scale, delta, BORDER_DEFAULT );
     Sobel( src_gray, grad_x, ddepth, 1, 0, 3, scale, delta, BORDER_DEFAULT );
     convertScaleAbs( grad_x, abs_grad_x );

     /// Gradient Y
     //Scharr( src_gray, grad_y, ddepth, 0, 1, scale, delta, BORDER_DEFAULT );
     Sobel( src_gray, grad_y, ddepth, 0, 1, 3, scale, delta, BORDER_DEFAULT );
     convertScaleAbs( grad_y, abs_grad_y );

     /// Total Gradient (approximate)
     addWeighted( abs_grad_x, 0.5, abs_grad_y, 0.5, 0, grad );

     imshow( window_name, grad );

     waitKey(0);

     return 0;
     }


Explanation
=============

#. First we declare the variables we are going to use:

   ..  code-block:: cpp

       Mat src, src_gray;
       Mat grad;
       char* window_name = "Sobel Demo - Simple Edge Detector";
       int scale = 1;
       int delta = 0;
       int ddepth = CV_16S;

#. As usual we load our source image *src*:

   .. code-block:: cpp

     src = imread( argv[1] );

     if( !src.data )
     { return -1; }

#. First, we apply a :gaussian_blur:`GaussianBlur <>` to our image to reduce the noise ( kernel size = 3 )

   .. code-block:: cpp

      GaussianBlur( src, src, Size(3,3), 0, 0, BORDER_DEFAULT );

#. Now we convert our filtered image to grayscale:

   .. code-block:: cpp

      cvtColor( src, src_gray, CV_RGB2GRAY );

#. Second, we calculate the "*derivatives*" in *x* and *y* directions. For this, we use the function :sobel:`Sobel <>` as shown below:

   .. code-block:: cpp

      Mat grad_x, grad_y;
      Mat abs_grad_x, abs_grad_y;

      /// Gradient X
      Sobel( src_gray, grad_x, ddepth, 1, 0, 3, scale, delta, BORDER_DEFAULT );
      /// Gradient Y
      Sobel( src_gray, grad_y, ddepth, 0, 1, 3, scale, delta, BORDER_DEFAULT );

   The function takes the following arguments:

   * *src_gray*: In our example, the input image. Here it is *CV_8U*
   * *grad_x*/*grad_y*: The output image.
   * *ddepth*: The depth of the output image. We set it to *CV_16S* to avoid overflow.
   * *x_order*: The order of the derivative in **x** direction.
   * *y_order*: The order of the derivative in **y** direction.
   * *scale*, *delta* and *BORDER_DEFAULT*: We use default values.

   Notice that to calculate the gradient in *x* direction we use: :math:`x_{order}= 1` and :math:`y_{order} = 0`. We do analogously for the *y* direction.

#. We convert our partial results back to *CV_8U*:

   .. code-block:: cpp

      convertScaleAbs( grad_x, abs_grad_x );
      convertScaleAbs( grad_y, abs_grad_y );


#. Finally, we try to approximate the *gradient* by adding both directional gradients (note that this is not an exact calculation at all! but it is good for our purposes).

   .. code-block:: cpp

     addWeighted( abs_grad_x, 0.5, abs_grad_y, 0.5, 0, grad );

#. Finally, we show our result:

   .. code-block:: cpp

      imshow( window_name, grad );



Results
========

#. Here is the output of applying our basic detector to *lena.jpg*:


   .. image:: images/Sobel_Derivatives_Tutorial_Result.jpg
           :alt: Result of applying Sobel operator to lena.jpg
           :width: 300pt
           :align: center