File: pyramids.rst

package info (click to toggle)
opencv 2.4.9.1%2Bdfsg-1%2Bdeb8u1
  • links: PTS, VCS
  • area: main
  • in suites: jessie
  • size: 126,800 kB
  • ctags: 62,729
  • sloc: xml: 509,055; cpp: 490,794; lisp: 23,208; python: 21,174; java: 19,317; ansic: 1,038; sh: 128; makefile: 72
file content (261 lines) | stat: -rw-r--r-- 8,737 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
.. _Pyramids:

Image Pyramids
***************

Goal
=====

In this tutorial you will learn how to:

.. container:: enumeratevisibleitemswithsquare

   * Use the OpenCV functions :pyr_up:`pyrUp <>` and :pyr_down:`pyrDown <>` to downsample  or upsample a given image.

Theory
=======

.. note::
   The explanation below belongs to the book **Learning OpenCV** by Bradski and Kaehler.

.. container:: enumeratevisibleitemswithsquare

   * Usually we need to convert an image to a size different than its original. For this, there are two possible options:

     #. *Upsize* the image (zoom in) or
     #. *Downsize* it (zoom out).

   * Although there is a *geometric transformation* function in OpenCV that -literally- resize an image (:resize:`resize <>`, which we will show in a future tutorial), in this section we analyze first the use of **Image Pyramids**, which are widely applied in a huge range of vision applications.


Image Pyramid
--------------

.. container:: enumeratevisibleitemswithsquare

   * An image pyramid is a collection of images - all arising from a single original image - that are successively downsampled until some desired stopping point is reached.

   * There are two common kinds of image pyramids:

     * **Gaussian pyramid:** Used to downsample images

     * **Laplacian pyramid:** Used to  reconstruct an upsampled image from an image lower in the pyramid (with less resolution)

   * In this tutorial we'll use the *Gaussian pyramid*.

Gaussian Pyramid
^^^^^^^^^^^^^^^^^

* Imagine the pyramid as a set of layers in which the higher the layer, the smaller the size.

  .. image:: images/Pyramids_Tutorial_Pyramid_Theory.png
     :alt: Pyramid figure
     :align: center

* Every layer is numbered from bottom to top, so layer :math:`(i+1)` (denoted as :math:`G_{i+1}` is smaller than layer :math:`i` (:math:`G_{i}`).

* To produce layer :math:`(i+1)` in the Gaussian pyramid, we do the following:

  * Convolve :math:`G_{i}` with a Gaussian kernel:

    .. math::

       \frac{1}{16} \begin{bmatrix} 1 & 4 & 6 & 4 & 1  \\ 4 & 16 & 24 & 16 & 4  \\ 6 & 24 & 36 & 24 & 6  \\ 4 & 16 & 24 & 16 & 4  \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix}

  * Remove every even-numbered row and column.

* You can easily notice that the resulting image will be exactly one-quarter the area of its predecessor. Iterating this process on the input image :math:`G_{0}` (original image) produces the entire pyramid.

* The procedure above was useful to downsample an image. What if we want to make it bigger?:

  * First, upsize the image to twice the original in each dimension, wit the new even rows and columns filled with zeros (:math:`0`)

  * Perform a convolution with the same kernel shown above (multiplied by 4) to approximate the values of the "missing pixels"

* These two procedures (downsampling and upsampling as explained above) are implemented by the OpenCV functions :pyr_up:`pyrUp <>` and :pyr_down:`pyrDown <>`, as we will see in an example with the code below:

.. note::
   When we reduce the size of an image, we are actually *losing* information of the image.

Code
======

This tutorial code's is shown lines below. You can also download it from `here <https://github.com/Itseez/opencv/tree/master/samples/cpp/tutorial_code/ImgProc/Pyramids.cpp>`_

.. code-block:: cpp

   #include "opencv2/imgproc/imgproc.hpp"
   #include "opencv2/highgui/highgui.hpp"
   #include <math.h>
   #include <stdlib.h>
   #include <stdio.h>

   using namespace cv;

   /// Global variables
   Mat src, dst, tmp;
   char* window_name = "Pyramids Demo";


   /**
    * @function main
    */
   int main( int argc, char** argv )
   {
     /// General instructions
     printf( "\n Zoom In-Out demo  \n " );
     printf( "------------------ \n" );
     printf( " * [u] -> Zoom in  \n" );
     printf( " * [d] -> Zoom out \n" );
     printf( " * [ESC] -> Close program \n \n" );

     /// Test image - Make sure it s divisible by 2^{n}
     src = imread( "../images/chicky_512.jpg" );
     if( !src.data )
       { printf(" No data! -- Exiting the program \n");
         return -1; }

     tmp = src;
     dst = tmp;

     /// Create window
     namedWindow( window_name, CV_WINDOW_AUTOSIZE );
     imshow( window_name, dst );

     /// Loop
     while( true )
     {
       int c;
       c = waitKey(10);

       if( (char)c == 27 )
       	 { break; }
       if( (char)c == 'u' )
         { pyrUp( tmp, dst, Size( tmp.cols*2, tmp.rows*2 ) );
           printf( "** Zoom In: Image x 2 \n" );
         }
       else if( (char)c == 'd' )
        { pyrDown( tmp, dst, Size( tmp.cols/2, tmp.rows/2 ) );
          printf( "** Zoom Out: Image / 2 \n" );
        }

       imshow( window_name, dst );
       tmp = dst;
     }
     return 0;
   }

Explanation
=============

#. Let's check the general structure of the program:

   * Load an image (in this case it is defined in the program, the user does not have to enter it as an argument)

     .. code-block:: cpp

        /// Test image - Make sure it s divisible by 2^{n}
        src = imread( "../images/chicky_512.jpg" );
        if( !src.data )
          { printf(" No data! -- Exiting the program \n");
            return -1; }

   * Create a Mat object to store the result of the operations (*dst*) and one to save temporal results (*tmp*).

     .. code-block:: cpp

        Mat src, dst, tmp;
        /* ... */
        tmp = src;
        dst = tmp;



   * Create a window to display the result

     .. code-block:: cpp

        namedWindow( window_name, CV_WINDOW_AUTOSIZE );
        imshow( window_name, dst );

   * Perform an infinite loop waiting for user input.

     .. code-block:: cpp

        while( true )
        {
          int c;
          c = waitKey(10);

          if( (char)c == 27 )
       	    { break; }
          if( (char)c == 'u' )
            { pyrUp( tmp, dst, Size( tmp.cols*2, tmp.rows*2 ) );
              printf( "** Zoom In: Image x 2 \n" );
            }
          else if( (char)c == 'd' )
           { pyrDown( tmp, dst, Size( tmp.cols/2, tmp.rows/2 ) );
             printf( "** Zoom Out: Image / 2 \n" );
           }

          imshow( window_name, dst );
          tmp = dst;
        }


     Our program exits if the user presses *ESC*. Besides, it has two options:

     * **Perform upsampling (after pressing 'u')**

       .. code-block:: cpp

          pyrUp( tmp, dst, Size( tmp.cols*2, tmp.rows*2 )

       We use the function :pyr_up:`pyrUp <>` with 03 arguments:

       * *tmp*: The current image, it is initialized with the *src* original image.
       * *dst*: The destination image (to be shown on screen, supposedly the double of the input image)
       * *Size( tmp.cols*2, tmp.rows*2 )* : The destination size. Since we are upsampling, :pyr_up:`pyrUp <>` expects a size double than the input image (in this case *tmp*).

     * **Perform downsampling (after pressing 'd')**

       .. code-block:: cpp

          pyrDown( tmp, dst, Size( tmp.cols/2, tmp.rows/2 )

       Similarly as with :pyr_up:`pyrUp <>`, we use the function :pyr_down:`pyrDown <>` with 03 arguments:

       * *tmp*: The current image, it is initialized with the *src* original image.
       * *dst*: The destination image (to be shown on screen, supposedly half the input image)
       * *Size( tmp.cols/2, tmp.rows/2 )* : The destination size. Since we are upsampling, :pyr_down:`pyrDown <>` expects half the size the input image (in this case *tmp*).

     * Notice that it is important that the input image can be divided by a factor of two (in both dimensions). Otherwise, an error will be shown.

     * Finally, we update the input image **tmp** with the current image displayed, so the subsequent operations are performed on it.

       .. code-block:: cpp

          tmp = dst;



Results
========

* After compiling the code above we can test it. The program calls an image **chicky_512.jpg** that comes in the *tutorial_code/image* folder. Notice that this image is :math:`512 \times 512`, hence a downsample won't generate any error (:math:`512 = 2^{9}`). The original image is shown below:

  .. image:: images/Pyramids_Tutorial_Original_Image.jpg
     :alt: Pyramids: Original image
     :align: center

* First we apply two successive :pyr_down:`pyrDown <>` operations by pressing 'd'. Our output is:

  .. image:: images/Pyramids_Tutorial_PyrDown_Result.jpg
     :alt: Pyramids: PyrDown Result
     :align: center

* Note that we should have lost some resolution due to the fact that we are diminishing the size of the image. This is evident after we apply :pyr_up:`pyrUp <>` twice (by pressing 'u'). Our output is now:

  .. image:: images/Pyramids_Tutorial_PyrUp_Result.jpg
     :alt: Pyramids: PyrUp Result
     :align: center