File: operations_on_arrays.rst

package info (click to toggle)
opencv 2.4.9.1%2Bdfsg-1%2Bdeb8u1
  • links: PTS, VCS
  • area: main
  • in suites: jessie
  • size: 126,800 kB
  • ctags: 62,729
  • sloc: xml: 509,055; cpp: 490,794; lisp: 23,208; python: 21,174; java: 19,317; ansic: 1,038; sh: 128; makefile: 72
file content (3510 lines) | stat: -rw-r--r-- 146,027 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
Operations on Arrays
====================

.. highlight:: cpp

abs
---
Calculates an absolute value of each matrix element.

.. ocv:function:: MatExpr abs( const Mat& m )
.. ocv:function:: MatExpr abs( const MatExpr& e )

    :param m: matrix.
    :param e: matrix expression.

``abs`` is a meta-function that is expanded to one of :ocv:func:`absdiff` or :ocv:func:`convertScaleAbs` forms:

    * ``C = abs(A-B)``     is equivalent to ``absdiff(A, B, C)``

    * ``C = abs(A)``     is equivalent to ``absdiff(A, Scalar::all(0), C)``

    * ``C = Mat_<Vec<uchar,n> >(abs(A*alpha + beta))``     is equivalent to  ``convertScaleAbs(A, C, alpha, beta)``

The output matrix has the same size and the same type as the input one except for the last case, where ``C`` is ``depth=CV_8U`` .

    .. seealso:: :ref:`MatrixExpressions`, :ocv:func:`absdiff`, :ocv:func:`convertScaleAbs`


absdiff
-------
Calculates the per-element absolute difference between two arrays or between an array and a scalar.

.. ocv:function:: void absdiff(InputArray src1, InputArray src2, OutputArray dst)

.. ocv:pyfunction:: cv2.absdiff(src1, src2[, dst]) -> dst

.. ocv:cfunction:: void cvAbsDiff(const CvArr* src1, const CvArr* src2, CvArr* dst)
.. ocv:cfunction:: void cvAbsDiffS(const CvArr* src, CvArr* dst, CvScalar value)
.. ocv:pyoldfunction:: cv.AbsDiff(src1, src2, dst)-> None
.. ocv:pyoldfunction:: cv.AbsDiffS(src, dst, value)-> None

    :param src1: first input array or a scalar.

    :param src2: second input array or a scalar.

    :param src: single input array.

    :param value: scalar value.

    :param dst: output array that has the same size and type as input arrays.

The function ``absdiff`` calculates:

 *
    Absolute difference between two arrays when they have the same size and type:

    .. math::

        \texttt{dst}(I) =  \texttt{saturate} (| \texttt{src1}(I) -  \texttt{src2}(I)|)

 *
    Absolute difference between an array and a scalar when the second array is constructed from ``Scalar`` or has as many elements as the number of channels in ``src1``:

    .. math::

        \texttt{dst}(I) =  \texttt{saturate} (| \texttt{src1}(I) -  \texttt{src2} |)

 *
    Absolute difference between a scalar and an array when the first array is constructed from ``Scalar`` or has as many elements as the number of channels in ``src2``:

    .. math::

        \texttt{dst}(I) =  \texttt{saturate} (| \texttt{src1} -  \texttt{src2}(I) |)

    where  ``I`` is a multi-dimensional index of array elements. In case of multi-channel arrays, each channel is processed independently.

.. note:: Saturation is not applied when the arrays have the depth ``CV_32S``. You may even get a negative value in the case of overflow.

.. seealso:: :ocv:func:`abs`


add
---

Calculates the per-element sum of two arrays or an array and a scalar.

.. ocv:function:: void add(InputArray src1, InputArray src2, OutputArray dst, InputArray mask=noArray(), int dtype=-1)

.. ocv:pyfunction:: cv2.add(src1, src2[, dst[, mask[, dtype]]]) -> dst

.. ocv:cfunction:: void cvAdd(const CvArr* src1, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL)
.. ocv:cfunction:: void cvAddS(const CvArr* src, CvScalar value, CvArr* dst, const CvArr* mask=NULL)
.. ocv:pyoldfunction:: cv.Add(src1, src2, dst, mask=None)-> None
.. ocv:pyoldfunction:: cv.AddS(src, value, dst, mask=None)-> None

    :param src1: first input array or a scalar.

    :param src2: second input array or a scalar.

    :param src: single input array.

    :param value: scalar value.

    :param dst: output array that has the same size and number of channels as the input array(s); the depth is defined by ``dtype`` or ``src1``/``src2``.

    :param mask: optional operation mask - 8-bit single channel array, that specifies elements of the output array to be changed.

    :param dtype: optional depth of the output array (see the discussion below).

The function ``add`` calculates:

 *
    Sum of two arrays when both input arrays have the same size and the same number of channels:

    .. math::

        \texttt{dst}(I) =  \texttt{saturate} ( \texttt{src1}(I) +  \texttt{src2}(I)) \quad \texttt{if mask}(I) \ne0

 *
    Sum of an array and a scalar when ``src2`` is constructed from ``Scalar`` or has the same number of elements as ``src1.channels()``:

    .. math::

        \texttt{dst}(I) =  \texttt{saturate} ( \texttt{src1}(I) +  \texttt{src2} ) \quad \texttt{if mask}(I) \ne0

 *
    Sum of a scalar and an array when ``src1`` is constructed from ``Scalar`` or has the same number of elements as ``src2.channels()``:

    .. math::

        \texttt{dst}(I) =  \texttt{saturate} ( \texttt{src1} +  \texttt{src2}(I) ) \quad \texttt{if mask}(I) \ne0

    where ``I`` is a multi-dimensional index of array elements. In case of multi-channel arrays, each channel is processed independently.

The first function in the list above can be replaced with matrix expressions: ::

    dst = src1 + src2;
    dst += src1; // equivalent to add(dst, src1, dst);

The input arrays and the output array can all have the same or different depths. For example, you can add a 16-bit unsigned array to a 8-bit signed array and store the sum as a 32-bit floating-point array. Depth of the output array is determined by the ``dtype`` parameter. In the second and third cases above, as well as in the first case, when ``src1.depth() == src2.depth()``, ``dtype`` can be set to the default ``-1``. In this case, the output array will have the same depth as the input array, be it ``src1``, ``src2`` or both.

.. note:: Saturation is not applied when the output array has the depth ``CV_32S``. You may even get result of an incorrect sign in the case of overflow.

.. seealso::

    :ocv:func:`subtract`,
    :ocv:func:`addWeighted`,
    :ocv:func:`scaleAdd`,
    :ocv:func:`Mat::convertTo`,
    :ref:`MatrixExpressions`



addWeighted
-----------
Calculates the weighted sum of two arrays.

.. ocv:function:: void addWeighted(InputArray src1, double alpha, InputArray src2, double beta, double gamma, OutputArray dst, int dtype=-1)

.. ocv:pyfunction:: cv2.addWeighted(src1, alpha, src2, beta, gamma[, dst[, dtype]]) -> dst

.. ocv:cfunction:: void cvAddWeighted(const CvArr* src1, double alpha, const CvArr* src2, double beta, double gamma, CvArr* dst)
.. ocv:pyoldfunction:: cv.AddWeighted(src1, alpha, src2, beta, gamma, dst)-> None

    :param src1: first input array.

    :param alpha: weight of the first array elements.

    :param src2: second input array of the same size and channel number as  ``src1``.

    :param beta: weight of the second array elements.

    :param dst: output array that has the same size and number of channels as the input arrays.

    :param gamma: scalar added to each sum.

    :param dtype: optional depth of the output array; when both input arrays have the same depth, ``dtype`` can be set to ``-1``, which will be equivalent to ``src1.depth()``.

The function ``addWeighted`` calculates the weighted sum of two arrays as follows:

.. math::

    \texttt{dst} (I)= \texttt{saturate} ( \texttt{src1} (I)* \texttt{alpha} +  \texttt{src2} (I)* \texttt{beta} +  \texttt{gamma} )

where ``I`` is a multi-dimensional index of array elements. In case of multi-channel arrays, each channel is processed independently.

The function can be replaced with a matrix expression: ::

    dst = src1*alpha + src2*beta + gamma;

.. note:: Saturation is not applied when the output array has the depth ``CV_32S``. You may even get result of an incorrect sign in the case of overflow.

.. seealso::

    :ocv:func:`add`,
    :ocv:func:`subtract`,
    :ocv:func:`scaleAdd`,
    :ocv:func:`Mat::convertTo`,
    :ref:`MatrixExpressions`



bitwise_and
-----------
Calculates the per-element bit-wise conjunction of two arrays or an array and a scalar.

.. ocv:function:: void bitwise_and(InputArray src1, InputArray src2, OutputArray dst, InputArray mask=noArray())

.. ocv:pyfunction:: cv2.bitwise_and(src1, src2[, dst[, mask]]) -> dst

.. ocv:cfunction:: void cvAnd(const CvArr* src1, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL)
.. ocv:cfunction:: void cvAndS(const CvArr* src, CvScalar value, CvArr* dst, const CvArr* mask=NULL)
.. ocv:pyoldfunction:: cv.And(src1, src2, dst, mask=None)-> None
.. ocv:pyoldfunction:: cv.AndS(src, value, dst, mask=None)-> None

    :param src1: first input array or a scalar.

    :param src2: second input array or a scalar.

    :param src: single input array.

    :param value: scalar value.

    :param dst: output array that has the same size and type as the input arrays.

    :param mask: optional operation mask, 8-bit single channel array, that specifies elements of the output array to be changed.

The function calculates the per-element bit-wise logical conjunction for:

 *
    Two arrays when ``src1`` and ``src2`` have the same size:

    .. math::

        \texttt{dst} (I) =  \texttt{src1} (I)  \wedge \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0

 *
    An array and a scalar when ``src2`` is constructed from ``Scalar`` or has the same number of elements as ``src1.channels()``:

    .. math::

        \texttt{dst} (I) =  \texttt{src1} (I)  \wedge \texttt{src2} \quad \texttt{if mask} (I) \ne0

 *
    A scalar and an array when ``src1`` is constructed from ``Scalar`` or has the same number of elements as ``src2.channels()``:

    .. math::

        \texttt{dst} (I) =  \texttt{src1}  \wedge \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0


In case of floating-point arrays, their machine-specific bit representations (usually IEEE754-compliant) are used for the operation. In case of multi-channel arrays, each channel is processed independently. In the second and third cases above, the scalar is first converted to the array type.



bitwise_not
-----------
Inverts every bit of an array.

.. ocv:function:: void bitwise_not(InputArray src, OutputArray dst, InputArray mask=noArray())

.. ocv:pyfunction:: cv2.bitwise_not(src[, dst[, mask]]) -> dst

.. ocv:cfunction:: void cvNot(const CvArr* src, CvArr* dst)
.. ocv:pyoldfunction:: cv.Not(src, dst)-> None

    :param src: input array.

    :param dst: output array that has the same size and type as the input array.

    :param mask: optional operation mask, 8-bit single channel array, that specifies elements of the output array to be changed.

The function calculates per-element bit-wise inversion of the input array:

.. math::

    \texttt{dst} (I) =  \neg \texttt{src} (I)

In case of a floating-point input array, its machine-specific bit representation (usually IEEE754-compliant) is used for the operation. In case of multi-channel arrays, each channel is processed independently.



bitwise_or
----------
Calculates the per-element bit-wise disjunction of two arrays or an array and a scalar.

.. ocv:function:: void bitwise_or(InputArray src1, InputArray src2, OutputArray dst, InputArray mask=noArray())

.. ocv:pyfunction:: cv2.bitwise_or(src1, src2[, dst[, mask]]) -> dst

.. ocv:cfunction:: void cvOr(const CvArr* src1, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL)
.. ocv:cfunction:: void cvOrS(const CvArr* src, CvScalar value, CvArr* dst, const CvArr* mask=NULL)
.. ocv:pyoldfunction:: cv.Or(src1, src2, dst, mask=None)-> None
.. ocv:pyoldfunction:: cv.OrS(src, value, dst, mask=None)-> None

    :param src1: first input array or a scalar.

    :param src2: second input array or a scalar.

    :param src: single input array.

    :param value: scalar value.

    :param dst: output array that has the same size and type as the input arrays.

    :param mask: optional operation mask, 8-bit single channel array, that specifies elements of the output array to be changed.

The function calculates the per-element bit-wise logical disjunction for:

 *
    Two arrays when ``src1`` and ``src2`` have the same size:

        .. math::

            \texttt{dst} (I) =  \texttt{src1} (I)  \vee \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0

 *
    An array and a scalar when ``src2`` is constructed from ``Scalar`` or has the same number of elements as ``src1.channels()``:

        .. math::

            \texttt{dst} (I) =  \texttt{src1} (I)  \vee \texttt{src2} \quad \texttt{if mask} (I) \ne0

 *
    A scalar and an array when ``src1`` is constructed from ``Scalar`` or has the same number of elements as ``src2.channels()``:

        .. math::

            \texttt{dst} (I) =  \texttt{src1}  \vee \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0


In case of floating-point arrays, their machine-specific bit representations (usually IEEE754-compliant) are used for the operation. In case of multi-channel arrays, each channel is processed independently. In the second and third cases above, the scalar is first converted to the array type.


bitwise_xor
-----------
Calculates the per-element bit-wise "exclusive or" operation on two arrays or an array and a scalar.

.. ocv:function:: void bitwise_xor(InputArray src1, InputArray src2, OutputArray dst, InputArray mask=noArray())

.. ocv:pyfunction:: cv2.bitwise_xor(src1, src2[, dst[, mask]]) -> dst

.. ocv:cfunction:: void cvXor(const CvArr* src1, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL)
.. ocv:cfunction:: void cvXorS(const CvArr* src, CvScalar value, CvArr* dst, const CvArr* mask=NULL)
.. ocv:pyoldfunction:: cv.Xor(src1, src2, dst, mask=None)-> None
.. ocv:pyoldfunction:: cv.XorS(src, value, dst, mask=None)-> None

    :param src1: first input array or a scalar.

    :param src2: second input array or a scalar.

    :param src: single input array.

    :param value: scalar value.

    :param dst: output array that has the same size and type as the input arrays.

    :param mask: optional operation mask, 8-bit single channel array, that specifies elements of the output array to be changed.

The function calculates the per-element bit-wise logical "exclusive-or" operation for:

 *
    Two arrays when ``src1`` and ``src2`` have the same size:

        .. math::

            \texttt{dst} (I) =  \texttt{src1} (I)  \oplus \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0

 *
    An array and a scalar when ``src2`` is constructed from ``Scalar`` or has the same number of elements as ``src1.channels()``:

        .. math::

            \texttt{dst} (I) =  \texttt{src1} (I)  \oplus \texttt{src2} \quad \texttt{if mask} (I) \ne0

 *
    A scalar and an array when ``src1`` is constructed from ``Scalar`` or has the same number of elements as ``src2.channels()``:

        .. math::

            \texttt{dst} (I) =  \texttt{src1}  \oplus \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0


In case of floating-point arrays, their machine-specific bit representations (usually IEEE754-compliant) are used for the operation. In case of multi-channel arrays, each channel is processed independently. In the 2nd and 3rd cases above, the scalar is first converted to the array type.


calcCovarMatrix
---------------
Calculates the covariance matrix of a set of vectors.

.. ocv:function:: void calcCovarMatrix( const Mat* samples, int nsamples, Mat& covar, Mat& mean, int flags, int ctype=CV_64F)

.. ocv:function:: void calcCovarMatrix( InputArray samples, OutputArray covar, OutputArray mean, int flags, int ctype=CV_64F)

.. ocv:pyfunction:: cv2.calcCovarMatrix(samples, flags[, covar[, mean[, ctype]]]) -> covar, mean

.. ocv:cfunction:: void cvCalcCovarMatrix( const CvArr** vects, int count, CvArr* cov_mat, CvArr* avg, int flags )

.. ocv:pyoldfunction:: cv.CalcCovarMatrix(vects, covMat, avg, flags)-> None

    :param samples: samples stored either as separate matrices or as rows/columns of a single matrix.

    :param nsamples: number of samples when they are stored separately.

    :param covar: output covariance matrix of the type ``ctype`` and square size.

    :param ctype: type of the matrixl; it equals 'CV_64F' by default.

    :param mean: input or output (depending on the flags) array as the average value of the input vectors.

    :param vects: a set of vectors.

    :param flags: operation flags as a combination of the following values:

            * **CV_COVAR_SCRAMBLED** The output covariance matrix is calculated as:

                .. math::

                      \texttt{scale}   \cdot  [  \texttt{vects}  [0]-  \texttt{mean}  , \texttt{vects}  [1]-  \texttt{mean}  ,...]^T  \cdot  [ \texttt{vects}  [0]- \texttt{mean}  , \texttt{vects}  [1]- \texttt{mean}  ,...],

                The covariance matrix will be  ``nsamples x nsamples``. Such an unusual covariance matrix is used for fast PCA of a set of very large vectors (see, for example, the EigenFaces technique for face recognition). Eigenvalues of this "scrambled" matrix match the eigenvalues of the true covariance matrix. The "true" eigenvectors can be easily calculated from the eigenvectors of the "scrambled" covariance matrix.

            * **CV_COVAR_NORMAL** The output covariance matrix is calculated as:

                .. math::

                      \texttt{scale}   \cdot  [  \texttt{vects}  [0]-  \texttt{mean}  , \texttt{vects}  [1]-  \texttt{mean}  ,...]  \cdot  [ \texttt{vects}  [0]- \texttt{mean}  , \texttt{vects}  [1]- \texttt{mean}  ,...]^T,

                ``covar``  will be a square matrix of the same size as the total number of elements in each input vector. One and only one of  ``CV_COVAR_SCRAMBLED``  and ``CV_COVAR_NORMAL``  must be specified.

            * **CV_COVAR_USE_AVG** If the flag is specified, the function does not calculate  ``mean``  from the input vectors but, instead, uses the passed  ``mean``  vector. This is useful if  ``mean``  has been pre-calculated or known in advance, or if the covariance matrix is calculated by parts. In this case, ``mean``  is not a mean vector of the input sub-set of vectors but rather the mean vector of the whole set.

            * **CV_COVAR_SCALE** If the flag is specified, the covariance matrix is scaled. In the "normal" mode,  ``scale``  is  ``1./nsamples`` . In the "scrambled" mode,  ``scale``  is the reciprocal of the total number of elements in each input vector. By default (if the flag is not specified), the covariance matrix is not scaled (  ``scale=1`` ).

            * **CV_COVAR_ROWS** [Only useful in the second variant of the function] If the flag is specified, all the input vectors are stored as rows of the  ``samples``  matrix.  ``mean``  should be a single-row vector in this case.

            * **CV_COVAR_COLS** [Only useful in the second variant of the function] If the flag is specified, all the input vectors are stored as columns of the  ``samples``  matrix.  ``mean``  should be a single-column vector in this case.

The functions ``calcCovarMatrix`` calculate the covariance matrix and, optionally, the mean vector of the set of input vectors.

.. seealso::

    :ocv:class:`PCA`,
    :ocv:func:`mulTransposed`,
    :ocv:func:`Mahalanobis`



cartToPolar
-----------
Calculates the magnitude and angle of 2D vectors.

.. ocv:function:: void cartToPolar(InputArray x, InputArray y, OutputArray magnitude, OutputArray angle, bool angleInDegrees=false)

.. ocv:pyfunction:: cv2.cartToPolar(x, y[, magnitude[, angle[, angleInDegrees]]]) -> magnitude, angle

.. ocv:cfunction:: void cvCartToPolar( const CvArr* x, const CvArr* y, CvArr* magnitude, CvArr* angle=NULL, int angle_in_degrees=0 )

.. ocv:pyoldfunction:: cv.CartToPolar(x, y, magnitude, angle=None, angleInDegrees=0)-> None

    :param x: array of x-coordinates; this must be a single-precision or double-precision floating-point array.

    :param y: array of y-coordinates, that must have the same size and same type as ``x``.

    :param magnitude: output array of magnitudes of the same size and type as ``x``.

    :param angle: output array of angles that has the same size and type as ``x``; the angles are measured in radians (from 0 to 2*Pi) or in degrees (0 to 360 degrees).

    :param angleInDegrees: a flag, indicating whether the angles are measured in radians (which is by default), or in degrees.

    :param angle_in_degrees: a flag, indicating whether the angles are measured in radians, or in degrees (specific to C syntax).

The function ``cartToPolar`` calculates either the magnitude, angle, or both for every 2D vector (x(I),y(I)):

.. math::

    \begin{array}{l} \texttt{magnitude} (I)= \sqrt{\texttt{x}(I)^2+\texttt{y}(I)^2} , \\ \texttt{angle} (I)= \texttt{atan2} ( \texttt{y} (I), \texttt{x} (I))[ \cdot180 / \pi ] \end{array}

The angles are calculated with accuracy about 0.3 degrees. For the point (0,0), the angle is set to 0.

.. seealso::

    :ocv:func:`Sobel`,
    :ocv:func:`Scharr`

checkRange
----------
Checks every element of an input array for invalid values.

.. ocv:function:: bool checkRange( InputArray a, bool quiet=true, Point* pos=0, double minVal=-DBL_MAX, double maxVal=DBL_MAX )

.. ocv:pyfunction:: cv2.checkRange(a[, quiet[, minVal[, maxVal]]]) -> retval, pos

    :param a: input array.

    :param quiet: a flag, indicating whether the functions quietly return false when the array elements are out of range or they throw an exception.

    :param pos: optional output parameter, where the position of the first outlier is stored; in the second function ``pos``, when not NULL, must be a pointer to array of ``src.dims`` elements.

    :param minVal: inclusive lower boundary of valid values range.

    :param maxVal: exclusive upper boundary of valid values range.

The functions ``checkRange`` check that every array element is neither NaN nor
infinite. When ``minVal < -DBL_MAX`` and ``maxVal < DBL_MAX``, the functions also check that each value is between ``minVal`` and ``maxVal``. In case of multi-channel arrays, each channel is processed independently.
If some values are out of range, position of the first outlier is stored in ``pos`` (when
``pos != NULL``). Then, the functions either return false (when ``quiet=true``) or throw an exception.



compare
-------
Performs the per-element comparison of two arrays or an array and scalar value.

.. ocv:function:: void compare(InputArray src1, InputArray src2, OutputArray dst, int cmpop)

.. ocv:pyfunction:: cv2.compare(src1, src2, cmpop[, dst]) -> dst

.. ocv:cfunction:: void cvCmp( const CvArr* src1, const CvArr* src2, CvArr* dst, int cmp_op )

.. ocv:pyoldfunction:: cv.Cmp(src1, src2, dst, cmpOp)-> None

.. ocv:cfunction:: void cvCmpS( const CvArr* src, double value, CvArr* dst, int cmp_op )

.. ocv:pyoldfunction:: cv.CmpS(src, value, dst, cmpOp)-> None

    :param src1: first input array or a scalar (in the case of ``cvCmp``, ``cv.Cmp``, ``cvCmpS``, ``cv.CmpS`` it is always an array); when it is an array, it must have a single channel.

    :param src2: second input array or a scalar (in the case of ``cvCmp`` and ``cv.Cmp`` it is always an array; in the case of ``cvCmpS``, ``cv.CmpS`` it is always a scalar); when it is an array, it must have a single channel.

    :param src: single input array.

    :param value: scalar value.

    :param dst: output array that has the same size and type as the input arrays.

    :param cmpop: a flag, that specifies correspondence between the arrays:

            * **CMP_EQ** ``src1`` is equal to ``src2``.
            * **CMP_GT** ``src1`` is greater than ``src2``.
            * **CMP_GE** ``src1`` is greater than or equal to ``src2``.
            * **CMP_LT** ``src1`` is less than ``src2``.
            * **CMP_LE** ``src1`` is less than or equal to ``src2``.
            * **CMP_NE** ``src1`` is unequal to ``src2``.

The function compares:


 *
   Elements of two arrays when ``src1`` and ``src2`` have the same size:

   .. math::

       \texttt{dst} (I) =  \texttt{src1} (I)  \,\texttt{cmpop}\, \texttt{src2} (I)

 *
   Elements of ``src1`` with a scalar ``src2`` when ``src2`` is constructed from ``Scalar`` or has a single element:

   .. math::

       \texttt{dst} (I) =  \texttt{src1}(I) \,\texttt{cmpop}\,  \texttt{src2}

 *
   ``src1`` with elements of ``src2`` when ``src1`` is constructed from ``Scalar`` or has a single element:

   .. math::

       \texttt{dst} (I) =  \texttt{src1}  \,\texttt{cmpop}\, \texttt{src2} (I)


When the comparison result is true, the corresponding element of output array is set to 255.
The comparison operations can be replaced with the equivalent matrix expressions: ::

    Mat dst1 = src1 >= src2;
    Mat dst2 = src1 < 8;
    ...


.. seealso::

    :ocv:func:`checkRange`,
    :ocv:func:`min`,
    :ocv:func:`max`,
    :ocv:func:`threshold`,
    :ref:`MatrixExpressions`



completeSymm
------------
Copies the lower or the upper half of a square matrix to another half.

.. ocv:function:: void completeSymm(InputOutputArray mtx, bool lowerToUpper=false)

.. ocv:pyfunction:: cv2.completeSymm(mtx[, lowerToUpper]) -> None

    :param mtx: input-output floating-point square matrix.

    :param lowerToUpper: operation flag; if true, the lower half is copied to the upper half. Otherwise, the upper half is copied to the lower half.

The function ``completeSymm`` copies the lower half of a square matrix to its another half. The matrix diagonal remains unchanged:

 *
    :math:`\texttt{mtx}_{ij}=\texttt{mtx}_{ji}`     for
    :math:`i > j`     if ``lowerToUpper=false``

 *
    :math:`\texttt{mtx}_{ij}=\texttt{mtx}_{ji}`     for
    :math:`i < j`     if ``lowerToUpper=true``

.. seealso::

    :ocv:func:`flip`,
    :ocv:func:`transpose`



convertScaleAbs
---------------
Scales, calculates absolute values, and converts the result to 8-bit.

.. ocv:function:: void convertScaleAbs(InputArray src, OutputArray dst, double alpha=1, double beta=0)

.. ocv:pyfunction:: cv2.convertScaleAbs(src[, dst[, alpha[, beta]]]) -> dst

.. ocv:cfunction:: void cvConvertScaleAbs(const CvArr* src, CvArr* dst, double scale=1, double shift=0)
.. ocv:pyoldfunction:: cv.ConvertScaleAbs(src, dst, scale=1.0, shift=0.0)-> None

    :param src: input array.

    :param dst: output array.

    :param alpha: optional scale factor.

    :param beta: optional delta added to the scaled values.

On each element of the input array, the function ``convertScaleAbs`` performs three operations sequentially: scaling, taking an absolute value, conversion to an unsigned 8-bit type:


.. math::

    \texttt{dst} (I)= \texttt{saturate\_cast<uchar>} (| \texttt{src} (I)* \texttt{alpha} +  \texttt{beta} |)

In case of multi-channel arrays, the function processes each channel independently. When the output is not 8-bit, the operation can be emulated by calling the ``Mat::convertTo`` method (or by using matrix expressions) and then by calculating an absolute value of the result. For example: ::

    Mat_<float> A(30,30);
    randu(A, Scalar(-100), Scalar(100));
    Mat_<float> B = A*5 + 3;
    B = abs(B);
    // Mat_<float> B = abs(A*5+3) will also do the job,
    // but it will allocate a temporary matrix


.. seealso::

    :ocv:func:`Mat::convertTo`,
    :ocv:func:`abs`



countNonZero
------------
Counts non-zero array elements.

.. ocv:function:: int countNonZero( InputArray src )

.. ocv:pyfunction:: cv2.countNonZero(src) -> retval

.. ocv:cfunction:: int cvCountNonZero(const CvArr* arr)

.. ocv:pyoldfunction:: cv.CountNonZero(arr)-> int

    :param src: single-channel array.

The function returns the number of non-zero elements in ``src`` :

.. math::

    \sum _{I: \; \texttt{src} (I) \ne0 } 1

.. seealso::

    :ocv:func:`mean`,
    :ocv:func:`meanStdDev`,
    :ocv:func:`norm`,
    :ocv:func:`minMaxLoc`,
    :ocv:func:`calcCovarMatrix`



cvarrToMat
----------
Converts ``CvMat``, ``IplImage`` , or ``CvMatND`` to ``Mat``.

.. ocv:function:: Mat cvarrToMat( const CvArr* arr, bool copyData=false, bool allowND=true, int coiMode=0 )

    :param arr: input ``CvMat``, ``IplImage`` , or  ``CvMatND``.

    :param copyData: when false (default value), no data is copied and only the new header is created, in this case, the original array should not be deallocated while the new matrix header is used; if the parameter is true, all the data is copied and you may deallocate the original array right after the conversion.

    :param allowND: when true (default value), ``CvMatND`` is converted to 2-dimensional ``Mat``, if it is possible (see the discussion below); if it is not possible, or when the parameter is false, the function will report an error.

    :param coiMode: parameter specifying how the IplImage COI (when set) is handled.

        *  If  ``coiMode=0`` and COI is set, the function reports an error.

        *  If  ``coiMode=1`` , the function never reports an error. Instead, it returns the header to the whole original image and you will have to check and process COI manually. See  :ocv:func:`extractImageCOI` .

The function ``cvarrToMat`` converts ``CvMat``, ``IplImage`` , or ``CvMatND`` header to
:ocv:class:`Mat` header, and optionally duplicates the underlying data. The constructed header is returned by the function.

When ``copyData=false`` , the conversion is done really fast (in O(1) time) and the newly created matrix header will have ``refcount=0`` , which means that no reference counting is done for the matrix data. In this case, you have to preserve the data until the new header is destructed. Otherwise, when ``copyData=true`` , the new buffer is allocated and managed as if you created a new matrix from scratch and copied the data there. That is, ``cvarrToMat(arr, true)`` is equivalent to ``cvarrToMat(arr, false).clone()`` (assuming that COI is not set). The function provides a uniform way of supporting
``CvArr`` paradigm in the code that is migrated to use new-style data structures internally. The reverse transformation, from
``Mat`` to
``CvMat`` or
``IplImage`` can be done by a simple assignment: ::

    CvMat* A = cvCreateMat(10, 10, CV_32F);
    cvSetIdentity(A);
    IplImage A1; cvGetImage(A, &A1);
    Mat B = cvarrToMat(A);
    Mat B1 = cvarrToMat(&A1);
    IplImage C = B;
    CvMat C1 = B1;
    // now A, A1, B, B1, C and C1 are different headers
    // for the same 10x10 floating-point array.
    // note that you will need to use "&"
    // to pass C & C1 to OpenCV functions, for example:
    printf("%g\n", cvNorm(&C1, 0, CV_L2));

Normally, the function is used to convert an old-style 2D array (
``CvMat`` or
``IplImage`` ) to ``Mat`` . However, the function can also take
``CvMatND`` as an input and create
:ocv:func:`Mat` for it, if it is possible. And, for ``CvMatND A`` , it is possible if and only if ``A.dim[i].size*A.dim.step[i] == A.dim.step[i-1]`` for all or for all but one ``i, 0 < i < A.dims`` . That is, the matrix data should be continuous or it should be representable as a sequence of continuous matrices. By using this function in this way, you can process
``CvMatND`` using an arbitrary element-wise function.

The last parameter, ``coiMode`` , specifies how to deal with an image with COI set. By default, it is 0 and the function reports an error when an image with COI comes in. And ``coiMode=1`` means that no error is signalled. You have to check COI presence and handle it manually. The modern structures, such as
:ocv:class:`Mat` and
``MatND`` do not support COI natively. To process an individual channel of a new-style array, you need either to organize a loop over the array (for example, using matrix iterators) where the channel of interest will be processed, or extract the COI using
:ocv:func:`mixChannels` (for new-style arrays) or
:ocv:func:`extractImageCOI` (for old-style arrays), process this individual channel, and insert it back to the output array if needed (using
:ocv:func:`mixChannels` or
:ocv:func:`insertImageCOI` , respectively).

.. seealso::

    :ocv:cfunc:`cvGetImage`,
    :ocv:cfunc:`cvGetMat`,
    :ocv:func:`extractImageCOI`,
    :ocv:func:`insertImageCOI`,
    :ocv:func:`mixChannels`

dct
---
Performs a forward or inverse discrete Cosine transform of 1D or 2D array.

.. ocv:function:: void dct(InputArray src, OutputArray dst, int flags=0)

.. ocv:pyfunction:: cv2.dct(src[, dst[, flags]]) -> dst

.. ocv:cfunction:: void cvDCT(const CvArr* src, CvArr* dst, int flags)
.. ocv:pyoldfunction:: cv.DCT(src, dst, flags)-> None

    :param src: input floating-point array.

    :param dst: output array of the same size and type as  ``src`` .

    :param flags: transformation flags as a combination of the following values:

            * **DCT_INVERSE** performs an inverse 1D or 2D transform instead of the default forward transform.

            * **DCT_ROWS** performs a forward or inverse transform of every individual row of the input matrix. This flag enables you to transform multiple vectors simultaneously and can be used to decrease the overhead (which is sometimes several times larger than the processing itself) to perform 3D and higher-dimensional transforms and so forth.

The function ``dct`` performs a forward or inverse discrete Cosine transform (DCT) of a 1D or 2D floating-point array:

*
    Forward Cosine transform of a 1D vector of ``N`` elements:

    .. math::

        Y = C^{(N)}  \cdot X

    where

    .. math::

        C^{(N)}_{jk}= \sqrt{\alpha_j/N} \cos \left ( \frac{\pi(2k+1)j}{2N} \right )

    and

    :math:`\alpha_0=1`, :math:`\alpha_j=2` for *j > 0*.

*
    Inverse Cosine transform of a 1D vector of ``N`` elements:

    .. math::

        X =  \left (C^{(N)} \right )^{-1}  \cdot Y =  \left (C^{(N)} \right )^T  \cdot Y

    (since
    :math:`C^{(N)}` is an orthogonal matrix,
    :math:`C^{(N)} \cdot \left(C^{(N)}\right)^T = I` )

*
    Forward 2D Cosine transform of ``M x N`` matrix:

    .. math::

        Y = C^{(N)}  \cdot X  \cdot \left (C^{(N)} \right )^T

*
    Inverse 2D Cosine transform of ``M x N`` matrix:

    .. math::

        X =  \left (C^{(N)} \right )^T  \cdot X  \cdot C^{(N)}


The function chooses the mode of operation by looking at the flags and size of the input array:

*
    If ``(flags & DCT_INVERSE) == 0`` , the function does a forward 1D or 2D transform. Otherwise, it is an inverse 1D or 2D transform.

*
    If ``(flags & DCT_ROWS) != 0`` , the function performs a 1D transform of each row.

*
    If the array is a single column or a single row, the function performs a 1D transform.

*
    If none of the above is true, the function performs a 2D transform.

.. note::

    Currently ``dct`` supports even-size arrays (2, 4, 6 ...). For data analysis and approximation, you can pad the array when necessary.

    Also, the function performance depends very much, and not monotonically, on the array size (see
    :ocv:func:`getOptimalDFTSize` ). In the current implementation DCT of a vector of size ``N`` is calculated via DFT of a vector of size ``N/2`` . Thus, the optimal DCT size ``N1 >= N`` can be calculated as: ::

        size_t getOptimalDCTSize(size_t N) { return 2*getOptimalDFTSize((N+1)/2); }
        N1 = getOptimalDCTSize(N);

.. seealso:: :ocv:func:`dft` , :ocv:func:`getOptimalDFTSize` , :ocv:func:`idct`



dft
---
Performs a forward or inverse Discrete Fourier transform of a 1D or 2D floating-point array.

.. ocv:function:: void dft(InputArray src, OutputArray dst, int flags=0, int nonzeroRows=0)

.. ocv:pyfunction:: cv2.dft(src[, dst[, flags[, nonzeroRows]]]) -> dst

.. ocv:cfunction:: void cvDFT( const CvArr* src, CvArr* dst, int flags, int nonzero_rows=0 )

.. ocv:pyoldfunction:: cv.DFT(src, dst, flags, nonzeroRows=0)-> None

    :param src: input array that could be real or complex.

    :param dst: output array whose size and type depends on the  ``flags`` .

    :param flags: transformation flags, representing a combination of the following values:

            * **DFT_INVERSE** performs an inverse 1D or 2D transform instead of the default forward transform.

            * **DFT_SCALE** scales the result: divide it by the number of array elements. Normally, it is combined with  ``DFT_INVERSE``.
            * **DFT_ROWS** performs a forward or inverse transform of every individual row of the input matrix; this flag enables you to transform multiple vectors simultaneously and can be used to decrease the overhead (which is sometimes several times larger than the processing itself) to perform 3D and higher-dimensional transformations and so forth.

            * **DFT_COMPLEX_OUTPUT** performs a forward transformation of 1D or 2D real array; the result, though being a complex array, has complex-conjugate symmetry (*CCS*, see the function description below for details), and such an array can be packed into a real array of the same size as input, which is the fastest option and which is what the function does by default; however, you may wish to get a full complex array (for simpler spectrum analysis, and so on) - pass the flag to enable the function to produce a full-size complex output array.

            * **DFT_REAL_OUTPUT** performs an inverse transformation of a 1D or 2D complex array; the result is normally a complex array of the same size, however, if the input array has conjugate-complex symmetry (for example, it is a result of forward transformation with  ``DFT_COMPLEX_OUTPUT``  flag), the output is a real array; while the function itself does not check whether the input is symmetrical or not, you can pass the flag and then the function will assume the symmetry and produce the real output array (note that when the input is packed into a real array and inverse transformation is executed, the function treats the input as a packed complex-conjugate symmetrical array, and the output will also be a real array).

    :param nonzeroRows: when the parameter is not zero, the function assumes that only the first ``nonzeroRows`` rows of the input array (``DFT_INVERSE`` is not set) or only the first ``nonzeroRows`` of the output array (``DFT_INVERSE`` is set) contain non-zeros, thus, the function can handle the rest of the rows more efficiently and save some time; this technique is very useful for calculating array cross-correlation or convolution using DFT.


The function performs one of the following:

*
    Forward the Fourier transform of a 1D vector of ``N`` elements:

    .. math::

        Y = F^{(N)}  \cdot X,

    where
    :math:`F^{(N)}_{jk}=\exp(-2\pi i j k/N)` and
    :math:`i=\sqrt{-1}`

*
    Inverse the Fourier transform of a 1D vector of ``N`` elements:

    .. math::

        \begin{array}{l} X'=  \left (F^{(N)} \right )^{-1}  \cdot Y =  \left (F^{(N)} \right )^*  \cdot y  \\ X = (1/N)  \cdot X, \end{array}

    where
    :math:`F^*=\left(\textrm{Re}(F^{(N)})-\textrm{Im}(F^{(N)})\right)^T`

*
    Forward the 2D Fourier transform of a ``M x N`` matrix:

    .. math::

        Y = F^{(M)}  \cdot X  \cdot F^{(N)}

*
    Inverse the 2D Fourier transform of a ``M x N`` matrix:

    .. math::

        \begin{array}{l} X'=  \left (F^{(M)} \right )^*  \cdot Y  \cdot \left (F^{(N)} \right )^* \\ X =  \frac{1}{M \cdot N} \cdot X' \end{array}


In case of real (single-channel) data, the output spectrum of the forward Fourier transform or input spectrum of the inverse Fourier transform can be represented in a packed format called *CCS* (complex-conjugate-symmetrical). It was borrowed from IPL (Intel* Image Processing Library). Here is how 2D *CCS* spectrum looks:

.. math::

    \begin{bmatrix} Re Y_{0,0} & Re Y_{0,1} & Im Y_{0,1} & Re Y_{0,2} & Im Y_{0,2} &  \cdots & Re Y_{0,N/2-1} & Im Y_{0,N/2-1} & Re Y_{0,N/2}  \\ Re Y_{1,0} & Re Y_{1,1} & Im Y_{1,1} & Re Y_{1,2} & Im Y_{1,2} &  \cdots & Re Y_{1,N/2-1} & Im Y_{1,N/2-1} & Re Y_{1,N/2}  \\ Im Y_{1,0} & Re Y_{2,1} & Im Y_{2,1} & Re Y_{2,2} & Im Y_{2,2} &  \cdots & Re Y_{2,N/2-1} & Im Y_{2,N/2-1} & Im Y_{1,N/2}  \\ \hdotsfor{9} \\ Re Y_{M/2-1,0} &  Re Y_{M-3,1}  & Im Y_{M-3,1} &  \hdotsfor{3} & Re Y_{M-3,N/2-1} & Im Y_{M-3,N/2-1}& Re Y_{M/2-1,N/2}  \\ Im Y_{M/2-1,0} &  Re Y_{M-2,1}  & Im Y_{M-2,1} &  \hdotsfor{3} & Re Y_{M-2,N/2-1} & Im Y_{M-2,N/2-1}& Im Y_{M/2-1,N/2}  \\ Re Y_{M/2,0}  &  Re Y_{M-1,1} &  Im Y_{M-1,1} &  \hdotsfor{3} & Re Y_{M-1,N/2-1} & Im Y_{M-1,N/2-1}& Re Y_{M/2,N/2} \end{bmatrix}

In case of 1D transform of a real vector, the output looks like the first row of the matrix above.

So, the function chooses an operation mode depending on the flags and size of the input array:

 * If ``DFT_ROWS`` is set or the input array has a single row or single column, the function performs a 1D forward or inverse transform of each row of a matrix when ``DFT_ROWS`` is set. Otherwise, it performs a 2D transform.

 * If the input array is real and ``DFT_INVERSE`` is not set, the function performs a forward 1D or 2D transform:

    * When ``DFT_COMPLEX_OUTPUT`` is set, the output is a complex matrix of the same size as input.

    * When ``DFT_COMPLEX_OUTPUT`` is not set, the output is a real matrix of the same size as input. In case of 2D transform, it uses the packed format as shown above. In case of a single 1D transform, it looks like the first row of the matrix above. In case of multiple 1D transforms (when using the ``DFT_ROWS``         flag), each row of the output matrix looks like the first row of the matrix above.

 * If the input array is complex and either ``DFT_INVERSE``     or ``DFT_REAL_OUTPUT``     are not set, the output is a complex array of the same size as input. The function performs a forward or inverse 1D or 2D transform of the whole input array or each row of the input array independently, depending on the flags ``DFT_INVERSE`` and ``DFT_ROWS``.

 * When ``DFT_INVERSE`` is set and the input array is real, or it is complex but ``DFT_REAL_OUTPUT``     is set, the output is a real array of the same size as input. The function performs a 1D or 2D inverse transformation of the whole input array or each individual row, depending on the flags ``DFT_INVERSE`` and ``DFT_ROWS``.

If ``DFT_SCALE`` is set, the scaling is done after the transformation.

Unlike :ocv:func:`dct` , the function supports arrays of arbitrary size. But only those arrays are processed efficiently, whose sizes can be factorized in a product of small prime numbers (2, 3, and 5 in the current implementation). Such an efficient DFT size can be calculated using the :ocv:func:`getOptimalDFTSize` method.

The sample below illustrates how to calculate a DFT-based convolution of two 2D real arrays: ::

    void convolveDFT(InputArray A, InputArray B, OutputArray C)
    {
        // reallocate the output array if needed
        C.create(abs(A.rows - B.rows)+1, abs(A.cols - B.cols)+1, A.type());
        Size dftSize;
        // calculate the size of DFT transform
        dftSize.width = getOptimalDFTSize(A.cols + B.cols - 1);
        dftSize.height = getOptimalDFTSize(A.rows + B.rows - 1);

        // allocate temporary buffers and initialize them with 0's
        Mat tempA(dftSize, A.type(), Scalar::all(0));
        Mat tempB(dftSize, B.type(), Scalar::all(0));

        // copy A and B to the top-left corners of tempA and tempB, respectively
        Mat roiA(tempA, Rect(0,0,A.cols,A.rows));
        A.copyTo(roiA);
        Mat roiB(tempB, Rect(0,0,B.cols,B.rows));
        B.copyTo(roiB);

        // now transform the padded A & B in-place;
        // use "nonzeroRows" hint for faster processing
        dft(tempA, tempA, 0, A.rows);
        dft(tempB, tempB, 0, B.rows);

        // multiply the spectrums;
        // the function handles packed spectrum representations well
        mulSpectrums(tempA, tempB, tempA);

        // transform the product back from the frequency domain.
        // Even though all the result rows will be non-zero,
        // you need only the first C.rows of them, and thus you
        // pass nonzeroRows == C.rows
        dft(tempA, tempA, DFT_INVERSE + DFT_SCALE, C.rows);

        // now copy the result back to C.
        tempA(Rect(0, 0, C.cols, C.rows)).copyTo(C);

        // all the temporary buffers will be deallocated automatically
    }


To optimize this sample, consider the following approaches:

*
    Since ``nonzeroRows != 0`` is passed to the forward transform calls and since  ``A`` and ``B`` are copied to the top-left corners of ``tempA`` and ``tempB``, respectively, it is not necessary to clear the whole ``tempA`` and ``tempB``. It is only necessary to clear the ``tempA.cols - A.cols`` ( ``tempB.cols - B.cols``) rightmost columns of the matrices.

*
   This DFT-based convolution does not have to be applied to the whole big arrays, especially if ``B``     is significantly smaller than ``A`` or vice versa. Instead, you can calculate convolution by parts. To do this, you need to split the output array ``C``     into multiple tiles. For each tile, estimate which parts of ``A``     and ``B``     are required to calculate convolution in this tile. If the tiles in ``C``     are too small, the speed will decrease a lot because of repeated work. In the ultimate case, when each tile in ``C``     is a single pixel, the algorithm becomes equivalent to the naive convolution algorithm. If the tiles are too big, the temporary arrays ``tempA``     and ``tempB``     become too big and there is also a slowdown because of bad cache locality. So, there is an optimal tile size somewhere in the middle.

*
    If different tiles in ``C``     can be calculated in parallel and, thus, the convolution is done by parts, the loop can be threaded.

All of the above improvements have been implemented in :ocv:func:`matchTemplate` and :ocv:func:`filter2D` . Therefore, by using them, you can get the performance even better than with the above theoretically optimal implementation. Though, those two functions actually calculate cross-correlation, not convolution, so you need to "flip" the second convolution operand ``B`` vertically and horizontally using :ocv:func:`flip` .

.. seealso:: :ocv:func:`dct` , :ocv:func:`getOptimalDFTSize` , :ocv:func:`mulSpectrums`, :ocv:func:`filter2D` , :ocv:func:`matchTemplate` , :ocv:func:`flip` , :ocv:func:`cartToPolar` , :ocv:func:`magnitude` , :ocv:func:`phase`

.. note::

   * An example using the discrete fourier transform can be found at opencv_source_code/samples/cpp/dft.cpp

   * (Python) An example using the dft functionality to perform Wiener deconvolution can be found at opencv_source/samples/python2/deconvolution.py
   * (Python) An example rearranging the quadrants of a Fourier image can be found at opencv_source/samples/python2/dft.py


divide
------
Performs per-element division of two arrays or a scalar by an array.

.. ocv:function:: void divide(InputArray src1, InputArray src2, OutputArray dst, double scale=1, int dtype=-1)

.. ocv:function:: void divide(double scale, InputArray src2, OutputArray dst, int dtype=-1)

.. ocv:pyfunction:: cv2.divide(src1, src2[, dst[, scale[, dtype]]]) -> dst
.. ocv:pyfunction:: cv2.divide(scale, src2[, dst[, dtype]]) -> dst

.. ocv:cfunction:: void cvDiv(const CvArr* src1, const CvArr* src2, CvArr* dst, double scale=1)
.. ocv:pyoldfunction:: cv.Div(src1, src2, dst, scale=1) -> None

    :param src1: first input array.

    :param src2: second input array of the same size and type as ``src1``.

    :param scale: scalar factor.

    :param dst: output array of the same size and type as ``src2``.

    :param dtype: optional depth of the output array; if ``-1``, ``dst`` will have depth ``src2.depth()``, but in case of an array-by-array division, you can only pass ``-1`` when ``src1.depth()==src2.depth()``.

The functions ``divide`` divide one array by another:

.. math::

    \texttt{dst(I) = saturate(src1(I)*scale/src2(I))}

or a scalar by an array when there is no ``src1`` :

.. math::

    \texttt{dst(I) = saturate(scale/src2(I))}

When ``src2(I)`` is zero, ``dst(I)`` will also be zero. Different channels of multi-channel arrays are processed independently.

.. note:: Saturation is not applied when the output array has the depth ``CV_32S``. You may even get result of an incorrect sign in the case of overflow.

.. seealso::

    :ocv:func:`multiply`,
    :ocv:func:`add`,
    :ocv:func:`subtract`,
    :ref:`MatrixExpressions`



determinant
-----------
Returns the determinant of a square floating-point matrix.

.. ocv:function:: double determinant(InputArray mtx)

.. ocv:pyfunction:: cv2.determinant(mtx) -> retval

.. ocv:cfunction:: double cvDet( const CvArr* mat )

.. ocv:pyoldfunction:: cv.Det(mat) -> float

    :param mtx: input matrix that must have ``CV_32FC1`` or ``CV_64FC1`` type and square size.

    :param mat: input matrix that must have ``CV_32FC1`` or ``CV_64FC1`` type and square size.

The function ``determinant`` calculates and returns the determinant of the specified matrix. For small matrices ( ``mtx.cols=mtx.rows<=3`` ),
the direct method is used. For larger matrices, the function uses LU factorization with partial pivoting.

For symmetric positively-determined matrices, it is also possible to use :ocv:func:`eigen` decomposition to calculate the determinant.

.. seealso::

    :ocv:func:`trace`,
    :ocv:func:`invert`,
    :ocv:func:`solve`,
    :ocv:func:`eigen`,
    :ref:`MatrixExpressions`



eigen
-----
Calculates eigenvalues and eigenvectors of a symmetric matrix.

.. ocv:function:: bool eigen(InputArray src, OutputArray eigenvalues, int lowindex=-1, int highindex=-1)

.. ocv:function:: bool eigen(InputArray src, OutputArray eigenvalues, OutputArray eigenvectors, int lowindex=-1,int highindex=-1)

.. ocv:pyfunction:: cv2.eigen(src, computeEigenvectors[, eigenvalues[, eigenvectors]]) -> retval, eigenvalues, eigenvectors

.. ocv:cfunction:: void cvEigenVV( CvArr* mat, CvArr* evects, CvArr* evals, double eps=0, int lowindex=-1, int highindex=-1 )

.. ocv:pyoldfunction:: cv.EigenVV(mat, evects, evals, eps, lowindex=-1, highindex=-1)-> None

    :param src: input matrix that must have ``CV_32FC1`` or ``CV_64FC1`` type, square size and be symmetrical (``src`` :sup:`T` == ``src``).

    :param eigenvalues: output vector of eigenvalues of the same type as ``src``; the eigenvalues are stored in the descending order.

    :param eigenvectors: output matrix of eigenvectors; it has the same size and type as ``src``; the eigenvectors are stored as subsequent matrix rows, in the same order as the corresponding eigenvalues.

    :param lowindex: optional index of largest eigenvalue/-vector to calculate; the parameter is ignored in the current implementation.

    :param highindex: optional index of smallest eigenvalue/-vector to calculate; the parameter is ignored in the current implementation.

The functions ``eigen`` calculate just eigenvalues, or eigenvalues and eigenvectors of the symmetric matrix ``src`` : ::

    src*eigenvectors.row(i).t() = eigenvalues.at<srcType>(i)*eigenvectors.row(i).t()

.. note:: in the new and the old interfaces different ordering of eigenvalues and eigenvectors parameters is used.

.. seealso:: :ocv:func:`completeSymm` , :ocv:class:`PCA`



exp
---
Calculates the exponent of every array element.

.. ocv:function:: void exp(InputArray src, OutputArray dst)

.. ocv:pyfunction:: cv2.exp(src[, dst]) -> dst

.. ocv:cfunction:: void cvExp(const CvArr* src, CvArr* dst)
.. ocv:pyoldfunction:: cv.Exp(src, dst)-> None

    :param src: input array.

    :param dst: output array of the same size and type as ``src``.

The function ``exp`` calculates the exponent of every element of the input array:

.. math::

    \texttt{dst} [I] = e^{ src(I) }

The maximum relative error is about ``7e-6`` for single-precision input and less than ``1e-10`` for double-precision input. Currently, the function converts denormalized values to zeros on output. Special values (NaN, Inf) are not handled.

.. seealso::  :ocv:func:`log` , :ocv:func:`cartToPolar` , :ocv:func:`polarToCart` , :ocv:func:`phase` , :ocv:func:`pow` , :ocv:func:`sqrt` , :ocv:func:`magnitude`



extractImageCOI
---------------
Extracts the selected image channel.

.. ocv:function:: void extractImageCOI( const CvArr* arr, OutputArray coiimg, int coi=-1 )

    :param arr: input array; it should be a pointer to ``CvMat`` or ``IplImage``.

    :param coiimg: output array with a single channel and the same size and depth as ``arr``.

    :param coi: if the parameter is ``>=0``, it specifies the channel to extract, if it is ``<0`` and ``arr`` is a pointer to ``IplImage`` with a valid COI set, the selected COI is extracted.

The function ``extractImageCOI`` is used to extract an image COI from an old-style array and put the result to the new-style C++ matrix. As usual, the output matrix is reallocated using ``Mat::create`` if needed.

To extract a channel from a new-style matrix, use
:ocv:func:`mixChannels` or
:ocv:func:`split` .

.. seealso::  :ocv:func:`mixChannels` , :ocv:func:`split` , :ocv:func:`merge` , :ocv:func:`cvarrToMat` , :ocv:cfunc:`cvSetImageCOI` , :ocv:cfunc:`cvGetImageCOI`


insertImageCOI
--------------
Copies the selected image channel from a new-style C++ matrix to the old-style C array.

.. ocv:function:: void insertImageCOI( InputArray coiimg, CvArr* arr, int coi=-1 )

    :param coiimg: input array with a single channel and the same size and depth as ``arr``.

    :param arr: output array, it should be a pointer to ``CvMat`` or ``IplImage``.

    :param coi: if the parameter is ``>=0``, it specifies the channel to insert, if it is ``<0`` and ``arr`` is a pointer to ``IplImage`` with a  valid COI set, the selected COI is extracted.

The function ``insertImageCOI`` is used to extract an image COI from a new-style C++ matrix and put the result to the old-style array.

The sample below illustrates how to use the function:
::

    Mat temp(240, 320, CV_8UC1, Scalar(255));
    IplImage* img = cvCreateImage(cvSize(320,240), IPL_DEPTH_8U, 3);
    insertImageCOI(temp, img, 1); //insert to the first channel
    cvNamedWindow("window",1);
    cvShowImage("window", img); //you should see green image, because channel number 1 is green (BGR)
    cvWaitKey(0);
    cvDestroyAllWindows();
    cvReleaseImage(&img);

To insert a channel to a new-style matrix, use
:ocv:func:`merge` .

.. seealso::  :ocv:func:`mixChannels` , :ocv:func:`split` , :ocv:func:`merge` , :ocv:func:`cvarrToMat` , :ocv:cfunc:`cvSetImageCOI` , :ocv:cfunc:`cvGetImageCOI`


flip
----
Flips a 2D array around vertical, horizontal, or both axes.

.. ocv:function:: void flip(InputArray src, OutputArray dst, int flipCode)

.. ocv:pyfunction:: cv2.flip(src, flipCode[, dst]) -> dst

.. ocv:cfunction:: void cvFlip( const CvArr* src, CvArr* dst=NULL, int flip_mode=0 )

.. ocv:pyoldfunction:: cv.Flip(src, dst=None, flipMode=0)-> None

    :param src: input array.

    :param dst: output array of the same size and type as ``src``.

    :param flipCode: a flag to specify how to flip the array; 0 means flipping around the x-axis and positive value (for example, 1) means flipping around y-axis. Negative value (for example, -1) means flipping around both axes (see the discussion below for the formulas).

The function ``flip`` flips the array in one of three different ways (row and column indices are 0-based):

.. math::

    \texttt{dst} _{ij} =
    \left\{
    \begin{array}{l l}
    \texttt{src} _{\texttt{src.rows}-i-1,j} & if\;  \texttt{flipCode} = 0 \\
    \texttt{src} _{i, \texttt{src.cols} -j-1} & if\;  \texttt{flipCode} > 0 \\
    \texttt{src} _{ \texttt{src.rows} -i-1, \texttt{src.cols} -j-1} & if\; \texttt{flipCode} < 0 \\
    \end{array}
    \right.

The example scenarios of using the function are the following:

 *
    Vertical flipping of the image (``flipCode == 0``) to switch between top-left and bottom-left image origin. This is a typical operation in video processing on Microsoft Windows* OS.

 *
    Horizontal flipping of the image with the subsequent horizontal shift and absolute difference calculation to check for a vertical-axis symmetry (``flipCode > 0``).

 *
    Simultaneous horizontal and vertical flipping of the image with the subsequent shift and absolute difference calculation to check for a central symmetry (``flipCode < 0``).

 *
    Reversing the order of point arrays (``flipCode > 0`` or ``flipCode == 0``).

.. seealso:: :ocv:func:`transpose` , :ocv:func:`repeat` , :ocv:func:`completeSymm`



gemm
----
Performs generalized matrix multiplication.

.. ocv:function:: void gemm( InputArray src1, InputArray src2, double alpha, InputArray src3, double gamma, OutputArray dst, int flags=0 )

.. ocv:pyfunction:: cv2.gemm(src1, src2, alpha, src3, gamma[, dst[, flags]]) -> dst

.. ocv:cfunction:: void cvGEMM( const CvArr* src1, const CvArr* src2, double alpha, const CvArr* src3, double beta, CvArr* dst, int tABC=0)
.. ocv:pyoldfunction:: cv.GEMM(src1, src2, alpha, src3, beta, dst, tABC=0)-> None

    :param src1: first multiplied input matrix that should have ``CV_32FC1``, ``CV_64FC1``, ``CV_32FC2``, or ``CV_64FC2`` type.

    :param src2: second multiplied input matrix of the same type as ``src1``.

    :param alpha: weight of the matrix product.

    :param src3: third optional delta matrix added to the matrix product; it should have the same type as ``src1`` and ``src2``.

    :param beta: weight of ``src3``.

    :param dst: output matrix; it has the proper size and the same type as input matrices.

    :param flags: operation flags:

            * **GEMM_1_T** transposes ``src1``.
            * **GEMM_2_T** transposes ``src2``.
            * **GEMM_3_T** transposes ``src3``.

The function performs generalized matrix multiplication similar to the ``gemm`` functions in BLAS level 3. For example, ``gemm(src1, src2, alpha, src3, beta, dst, GEMM_1_T + GEMM_3_T)`` corresponds to

.. math::

    \texttt{dst} =  \texttt{alpha} \cdot \texttt{src1} ^T  \cdot \texttt{src2} +  \texttt{beta} \cdot \texttt{src3} ^T

The function can be replaced with a matrix expression. For example, the above call can be replaced with: ::

    dst = alpha*src1.t()*src2 + beta*src3.t();


.. seealso::  :ocv:func:`mulTransposed` , :ocv:func:`transform` , :ref:`MatrixExpressions`



getConvertElem
--------------
Returns a conversion function for a single pixel.

.. ocv:function:: ConvertData getConvertElem(int fromType, int toType)

.. ocv:function:: ConvertScaleData getConvertScaleElem(int fromType, int toType)

    :param fromType: input pixel type.

    :param toType: output pixel type.

    :param from: callback parameter: pointer to the input pixel.

    :param to: callback parameter: pointer to the output pixel

    :param cn: callback parameter: the number of channels; it can be arbitrary, 1, 100, 100000, etc.

    :param alpha: ``ConvertScaleData`` callback optional parameter: the scale factor.

    :param beta: ``ConvertScaleData`` callback optional parameter: the delta or offset.

The functions ``getConvertElem`` and ``getConvertScaleElem`` return pointers to the functions for converting individual pixels from one type to another. While the main function purpose is to convert single pixels (actually, for converting sparse matrices from one type to another), you can use them to convert the whole row of a dense matrix or the whole matrix at once, by setting ``cn = matrix.cols*matrix.rows*matrix.channels()`` if the matrix data is continuous.

``ConvertData`` and ``ConvertScaleData`` are defined as: ::

    typedef void (*ConvertData)(const void* from, void* to, int cn)
    typedef void (*ConvertScaleData)(const void* from, void* to,
                                     int cn, double alpha, double beta)

.. seealso:: :ocv:func:`Mat::convertTo` , :ocv:func:`SparseMat::convertTo`



getOptimalDFTSize
-----------------
Returns the optimal DFT size for a given vector size.

.. ocv:function:: int getOptimalDFTSize(int vecsize)

.. ocv:pyfunction:: cv2.getOptimalDFTSize(vecsize) -> retval

.. ocv:cfunction:: int cvGetOptimalDFTSize(int size0)
.. ocv:pyoldfunction:: cv.GetOptimalDFTSize(size0)-> int

    :param vecsize: vector size.

DFT performance is not a monotonic function of a vector size. Therefore, when you calculate convolution of two arrays or perform the spectral analysis of an array, it usually makes sense to pad the input data with zeros to get a bit larger array that can be transformed much faster than the original one.
Arrays whose size is a power-of-two (2, 4, 8, 16, 32, ...) are the fastest to process. Though, the arrays whose size is a product of 2's, 3's, and 5's (for example, 300 = 5*5*3*2*2) are also processed quite efficiently.

The function ``getOptimalDFTSize`` returns the minimum number ``N`` that is greater than or equal to ``vecsize``  so that the DFT of a vector of size ``N`` can be processed efficiently. In the current implementation ``N`` = 2 :sup:`p` * 3 :sup:`q` * 5 :sup:`r` for some integer ``p``, ``q``, ``r``.

The function returns a negative number if ``vecsize`` is too large (very close to ``INT_MAX`` ).

While the function cannot be used directly to estimate the optimal vector size for DCT transform (since the current DCT implementation supports only even-size vectors), it can be easily processed as ``getOptimalDFTSize((vecsize+1)/2)*2``.

.. seealso:: :ocv:func:`dft` , :ocv:func:`dct` , :ocv:func:`idft` , :ocv:func:`idct` , :ocv:func:`mulSpectrums`



idct
----
Calculates the inverse Discrete Cosine Transform of a 1D or 2D array.

.. ocv:function:: void idct(InputArray src, OutputArray dst, int flags=0)

.. ocv:pyfunction:: cv2.idct(src[, dst[, flags]]) -> dst

    :param src: input floating-point single-channel array.

    :param dst: output array of the same size and type as ``src``.

    :param flags: operation flags.

``idct(src, dst, flags)`` is equivalent to ``dct(src, dst, flags | DCT_INVERSE)``.

.. seealso::

    :ocv:func:`dct`,
    :ocv:func:`dft`,
    :ocv:func:`idft`,
    :ocv:func:`getOptimalDFTSize`



idft
----
Calculates the inverse Discrete Fourier Transform of a 1D or 2D array.

.. ocv:function:: void idft(InputArray src, OutputArray dst, int flags=0, int nonzeroRows=0)

.. ocv:pyfunction:: cv2.idft(src[, dst[, flags[, nonzeroRows]]]) -> dst

    :param src: input floating-point real or complex array.

    :param dst: output array whose size and type depend on the ``flags``.

    :param flags: operation flags (see :ocv:func:`dft`).

    :param nonzeroRows: number of ``dst`` rows to process; the rest of the rows have undefined content (see the convolution sample in  :ocv:func:`dft` description.

``idft(src, dst, flags)`` is equivalent to ``dft(src, dst, flags | DFT_INVERSE)`` .

See :ocv:func:`dft` for details.

.. note:: None of ``dft`` and ``idft`` scales the result by default. So, you should pass ``DFT_SCALE`` to one of ``dft`` or ``idft`` explicitly to make these transforms mutually inverse.

.. seealso::

    :ocv:func:`dft`,
    :ocv:func:`dct`,
    :ocv:func:`idct`,
    :ocv:func:`mulSpectrums`,
    :ocv:func:`getOptimalDFTSize`



inRange
-------
Checks if array elements lie between the elements of two other arrays.

.. ocv:function:: void inRange(InputArray src, InputArray lowerb, InputArray upperb, OutputArray dst)

.. ocv:pyfunction:: cv2.inRange(src, lowerb, upperb[, dst]) -> dst

.. ocv:cfunction:: void cvInRange(const CvArr* src, const CvArr* lower, const CvArr* upper, CvArr* dst)
.. ocv:cfunction:: void cvInRangeS(const CvArr* src, CvScalar lower, CvScalar upper, CvArr* dst)
.. ocv:pyoldfunction:: cv.InRange(src, lower, upper, dst)-> None
.. ocv:pyoldfunction:: cv.InRangeS(src, lower, upper, dst)-> None

    :param src: first input array.

    :param lowerb: inclusive lower boundary array or a scalar.

    :param upperb: inclusive upper boundary array or a scalar.

    :param dst: output array of the same size as ``src`` and ``CV_8U`` type.

The function checks the range as follows:

 * For every element of a single-channel input array:

   .. math::

      \texttt{dst} (I)= \texttt{lowerb} (I)_0  \leq \texttt{src} (I)_0 \leq  \texttt{upperb} (I)_0

 * For two-channel arrays:

   .. math::

      \texttt{dst} (I)= \texttt{lowerb} (I)_0  \leq \texttt{src} (I)_0 \leq  \texttt{upperb} (I)_0  \land \texttt{lowerb} (I)_1  \leq \texttt{src} (I)_1 \leq  \texttt{upperb} (I)_1

 * and so forth.

That is, ``dst`` (I) is set to 255 (all ``1`` -bits) if ``src`` (I) is within the specified 1D, 2D, 3D, ... box and 0 otherwise.

When the lower and/or upper boundary parameters are scalars, the indexes ``(I)`` at ``lowerb`` and ``upperb`` in the above formulas should be omitted.


invert
------
Finds the inverse or pseudo-inverse of a matrix.

.. ocv:function:: double invert(InputArray src, OutputArray dst, int flags=DECOMP_LU)

.. ocv:pyfunction:: cv2.invert(src[, dst[, flags]]) -> retval, dst

.. ocv:cfunction:: double cvInvert( const CvArr* src, CvArr* dst, int method=CV_LU )

.. ocv:pyoldfunction:: cv.Invert(src, dst, method=CV_LU) -> float

    :param src: input floating-point ``M x N`` matrix.

    :param dst: output matrix of ``N x M`` size and the same type as ``src``.

    :param flags: inversion method :

            * **DECOMP_LU** Gaussian elimination with the optimal pivot element chosen.

            * **DECOMP_SVD** singular value decomposition (SVD) method.

            * **DECOMP_CHOLESKY** Cholesky decomposition; the matrix must be symmetrical and positively defined.

The function ``invert`` inverts the matrix ``src`` and stores the result in ``dst`` .
When the matrix ``src`` is singular or non-square, the function calculates the pseudo-inverse matrix (the ``dst`` matrix) so that ``norm(src*dst - I)`` is minimal, where I is an identity matrix.

In case of the ``DECOMP_LU`` method, the function returns non-zero value if the inverse has been successfully calculated and 0 if ``src`` is singular.

In case of the ``DECOMP_SVD`` method, the function returns the inverse condition number of ``src`` (the ratio of the smallest singular value to the largest singular value) and 0 if ``src`` is singular. The SVD method calculates a pseudo-inverse matrix if ``src`` is singular.

Similarly to ``DECOMP_LU`` , the method ``DECOMP_CHOLESKY`` works only with non-singular square matrices that should also be symmetrical and positively defined. In this case, the function stores the inverted matrix in ``dst`` and returns non-zero. Otherwise, it returns 0.

.. seealso::

    :ocv:func:`solve`,
    :ocv:class:`SVD`



log
---
Calculates the natural logarithm of every array element.

.. ocv:function:: void log(InputArray src, OutputArray dst)

.. ocv:pyfunction:: cv2.log(src[, dst]) -> dst

.. ocv:cfunction:: void cvLog(const CvArr* src, CvArr* dst)
.. ocv:pyoldfunction:: cv.Log(src, dst)-> None

    :param src: input array.

    :param dst: output array of the same size and type as  ``src`` .

The function ``log`` calculates the natural logarithm of the absolute value of every element of the input array:

.. math::

    \texttt{dst} (I) =  \fork{\log |\texttt{src}(I)|}{if $\texttt{src}(I) \ne 0$ }{\texttt{C}}{otherwise}

where ``C`` is a large negative number (about -700 in the current implementation).
The maximum relative error is about ``7e-6`` for single-precision input and less than ``1e-10`` for double-precision input. Special values (NaN, Inf) are not handled.

.. seealso::

    :ocv:func:`exp`,
    :ocv:func:`cartToPolar`,
    :ocv:func:`polarToCart`,
    :ocv:func:`phase`,
    :ocv:func:`pow`,
    :ocv:func:`sqrt`,
    :ocv:func:`magnitude`



LUT
---
Performs a look-up table transform of an array.

.. ocv:function:: void LUT( InputArray src, InputArray lut, OutputArray dst, int interpolation=0 )

.. ocv:pyfunction:: cv2.LUT(src, lut[, dst[, interpolation]]) -> dst

.. ocv:cfunction:: void cvLUT(const CvArr* src, CvArr* dst, const CvArr* lut)
.. ocv:pyoldfunction:: cv.LUT(src, dst, lut)-> None

    :param src: input array of 8-bit elements.

    :param lut: look-up table of 256 elements; in case of multi-channel input array, the table should either have a single channel (in this case the same table is used for all channels) or the same number of channels as in the input array.

    :param dst: output array of the same size and number of channels as ``src``, and the same depth as ``lut``.

The function ``LUT`` fills the output array with values from the look-up table. Indices of the entries are taken from the input array. That is, the function processes each element of ``src`` as follows:

.. math::

    \texttt{dst} (I)  \leftarrow \texttt{lut(src(I) + d)}

where

.. math::

    d =  \fork{0}{if \texttt{src} has depth \texttt{CV\_8U}}{128}{if \texttt{src} has depth \texttt{CV\_8S}}

.. seealso::

    :ocv:func:`convertScaleAbs`,
    :ocv:func:`Mat::convertTo`



magnitude
---------
Calculates the magnitude of 2D vectors.

.. ocv:function:: void magnitude(InputArray x, InputArray y, OutputArray magnitude)

.. ocv:pyfunction:: cv2.magnitude(x, y[, magnitude]) -> magnitude

    :param x: floating-point array of x-coordinates of the vectors.

    :param y: floating-point array of y-coordinates of the vectors; it must have the same size as ``x``.

    :param magnitude: output array of the same size and type as ``x``.

The function ``magnitude`` calculates the magnitude of 2D vectors formed from the corresponding elements of ``x`` and ``y`` arrays:

.. math::

    \texttt{dst} (I) =  \sqrt{\texttt{x}(I)^2 + \texttt{y}(I)^2}

.. seealso::

    :ocv:func:`cartToPolar`,
    :ocv:func:`polarToCart`,
    :ocv:func:`phase`,
    :ocv:func:`sqrt`



Mahalanobis
-----------
Calculates the Mahalanobis distance between two vectors.

.. ocv:function:: double Mahalanobis( InputArray v1, InputArray v2, InputArray icovar )

.. ocv:pyfunction:: cv2.Mahalanobis(v1, v2, icovar) -> retval

.. ocv:cfunction:: double cvMahalanobis( const CvArr* vec1, const CvArr* vec2, const CvArr* mat )

.. ocv:pyoldfunction:: cv.Mahalonobis(vec1, vec2, mat) -> None

    :param vec1: first 1D input vector.

    :param vec2: second 1D input vector.

    :param icovar: inverse covariance matrix.

The function ``Mahalanobis`` calculates and returns the weighted distance between two vectors:

.. math::

    d( \texttt{vec1} , \texttt{vec2} )= \sqrt{\sum_{i,j}{\texttt{icovar(i,j)}\cdot(\texttt{vec1}(I)-\texttt{vec2}(I))\cdot(\texttt{vec1(j)}-\texttt{vec2(j)})} }

The covariance matrix may be calculated using the
:ocv:func:`calcCovarMatrix` function and then inverted using the
:ocv:func:`invert` function (preferably using the ``DECOMP_SVD`` method, as the most accurate).



max
---
Calculates per-element maximum of two arrays or an array and a scalar.

.. ocv:function:: MatExpr max( const Mat& a, const Mat& b )

.. ocv:function:: MatExpr max( const Mat& a, double s )

.. ocv:function:: MatExpr max( double s, const Mat& a )

.. ocv:function:: void max(InputArray src1, InputArray src2, OutputArray dst)

.. ocv:function:: void max(const Mat& src1, const Mat& src2, Mat& dst)

.. ocv:function:: void max( const Mat& src1, double src2, Mat& dst )

.. ocv:pyfunction:: cv2.max(src1, src2[, dst]) -> dst

.. ocv:cfunction:: void cvMax(const CvArr* src1, const CvArr* src2, CvArr* dst)
.. ocv:cfunction:: void cvMaxS(const CvArr* src, double value, CvArr* dst)
.. ocv:pyoldfunction:: cv.Max(src1, src2, dst)-> None
.. ocv:pyoldfunction:: cv.MaxS(src, value, dst)-> None

    :param src1: first input array.

    :param src2: second input array of the same size and type as  ``src1`` .

    :param value: real scalar value.

    :param dst: output array of the same size and type as ``src1``.

The functions ``max`` calculate the per-element maximum of two arrays:

.. math::

    \texttt{dst} (I)= \max ( \texttt{src1} (I), \texttt{src2} (I))

or array and a scalar:

.. math::

    \texttt{dst} (I)= \max ( \texttt{src1} (I), \texttt{value} )

In the second variant, when the input array is multi-channel, each channel is compared with ``value`` independently.

The first 3 variants of the function listed above are actually a part of
:ref:`MatrixExpressions` . They return an expression object that can be further either transformed/ assigned to a matrix, or passed to a function, and so on.

.. seealso::

    :ocv:func:`min`,
    :ocv:func:`compare`,
    :ocv:func:`inRange`,
    :ocv:func:`minMaxLoc`,
    :ref:`MatrixExpressions`


mean
----
Calculates an average (mean) of array elements.

.. ocv:function:: Scalar mean(InputArray src, InputArray mask=noArray())

.. ocv:pyfunction:: cv2.mean(src[, mask]) -> retval

.. ocv:cfunction:: CvScalar cvAvg( const CvArr* arr, const CvArr* mask=NULL )

.. ocv:pyoldfunction:: cv.Avg(arr, mask=None) -> scalar

    :param src: input array that should have from 1 to 4 channels so that the result can be stored in :ocv:class:`Scalar_` .

    :param mask: optional operation mask.

The function ``mean`` calculates the mean value ``M`` of array elements, independently for each channel, and return it:

.. math::

    \begin{array}{l} N =  \sum _{I: \; \texttt{mask} (I) \ne 0} 1 \\ M_c =  \left ( \sum _{I: \; \texttt{mask} (I) \ne 0}{ \texttt{mtx} (I)_c} \right )/N \end{array}

When all the mask elements are 0's, the functions return ``Scalar::all(0)`` .

.. seealso::

    :ocv:func:`countNonZero`,
    :ocv:func:`meanStdDev`,
    :ocv:func:`norm`,
    :ocv:func:`minMaxLoc`



meanStdDev
----------
Calculates a mean and standard deviation of array elements.

.. ocv:function:: void meanStdDev(InputArray src, OutputArray mean, OutputArray stddev, InputArray mask=noArray())

.. ocv:pyfunction:: cv2.meanStdDev(src[, mean[, stddev[, mask]]]) -> mean, stddev

.. ocv:cfunction:: void cvAvgSdv( const CvArr* arr, CvScalar* mean, CvScalar* std_dev, const CvArr* mask=NULL )

.. ocv:pyoldfunction:: cv.AvgSdv(arr, mask=None) -> (mean, stdDev)

    :param src: input array that should have from 1 to 4 channels so that the results can be stored in  :ocv:class:`Scalar_` 's.

    :param mean: output parameter: calculated mean value.

    :param stddev: output parameter: calculateded standard deviation.

    :param mask: optional operation mask.

The function ``meanStdDev`` calculates the mean and the standard deviation ``M`` of array elements independently for each channel and returns it via the output parameters:

.. math::

    \begin{array}{l} N =  \sum _{I, \texttt{mask} (I)  \ne 0} 1 \\ \texttt{mean} _c =  \frac{\sum_{ I: \; \texttt{mask}(I) \ne 0} \texttt{src} (I)_c}{N} \\ \texttt{stddev} _c =  \sqrt{\frac{\sum_{ I: \; \texttt{mask}(I) \ne 0} \left ( \texttt{src} (I)_c -  \texttt{mean} _c \right )^2}{N}} \end{array}

When all the mask elements are 0's, the functions return ``mean=stddev=Scalar::all(0)`` .

.. note:: The calculated standard deviation is only the diagonal of the complete normalized covariance matrix. If the full matrix is needed, you can reshape the multi-channel array ``M x N`` to the single-channel array ``M*N x mtx.channels()`` (only possible when the matrix is continuous) and then pass the matrix to :ocv:func:`calcCovarMatrix` .

.. seealso::

    :ocv:func:`countNonZero`,
    :ocv:func:`mean`,
    :ocv:func:`norm`,
    :ocv:func:`minMaxLoc`,
    :ocv:func:`calcCovarMatrix`



merge
-----
Creates one multichannel array out of several single-channel ones.

.. ocv:function:: void merge(const Mat* mv, size_t count, OutputArray dst)

.. ocv:function:: void merge( InputArrayOfArrays mv, OutputArray dst )

.. ocv:pyfunction:: cv2.merge(mv[, dst]) -> dst

.. ocv:cfunction:: void cvMerge(const CvArr* src0, const CvArr* src1, const CvArr* src2, const CvArr* src3, CvArr* dst)
.. ocv:pyoldfunction:: cv.Merge(src0, src1, src2, src3, dst)-> None

    :param mv: input array or vector of matrices to be merged; all the matrices in ``mv`` must have the same size and the same depth.

    :param count: number of input matrices when ``mv`` is a plain C array; it must be greater than zero.

    :param dst: output array of the same size and the same depth as ``mv[0]``; The number of channels will be the total number of channels in the matrix array.

The functions ``merge`` merge several arrays to make a single multi-channel array. That is, each element of the output array will be a concatenation of the elements of the input arrays, where elements of i-th input array are treated as ``mv[i].channels()``-element vectors.

The function
:ocv:func:`split` does the reverse operation. If you need to shuffle channels in some other advanced way, use
:ocv:func:`mixChannels` .

.. seealso::

    :ocv:func:`mixChannels`,
    :ocv:func:`split`,
    :ocv:func:`Mat::reshape`



min
---
Calculates per-element minimum of two arrays or an array and a scalar.

.. ocv:function:: MatExpr min( const Mat& a, const Mat& b )

.. ocv:function:: MatExpr min( const Mat& a, double s )

.. ocv:function:: MatExpr min( double s, const Mat& a )

.. ocv:function:: void min(InputArray src1, InputArray src2, OutputArray dst)

.. ocv:function:: void min(const Mat& src1, const Mat& src2, Mat& dst)

.. ocv:function:: void min( const Mat& src1, double src2, Mat& dst )

.. ocv:pyfunction:: cv2.min(src1, src2[, dst]) -> dst

.. ocv:cfunction:: void cvMin(const CvArr* src1, const CvArr* src2, CvArr* dst)
.. ocv:cfunction:: void cvMinS(const CvArr* src, double value, CvArr* dst)
.. ocv:pyoldfunction:: cv.Min(src1, src2, dst)-> None
.. ocv:pyoldfunction:: cv.MinS(src, value, dst)-> None

    :param src1: first input array.

    :param src2: second input array of the same size and type as ``src1``.

    :param value: real scalar value.

    :param dst: output array of the same size and type as ``src1``.

The functions ``min`` calculate the per-element minimum of two arrays:

.. math::

    \texttt{dst} (I)= \min ( \texttt{src1} (I), \texttt{src2} (I))

or array and a scalar:

.. math::

    \texttt{dst} (I)= \min ( \texttt{src1} (I), \texttt{value} )

In the second variant, when the input array is multi-channel, each channel is compared with ``value`` independently.

The first three variants of the function listed above are actually a part of
:ref:`MatrixExpressions` . They return the expression object that can be further either transformed/assigned to a matrix, or passed to a function, and so on.

.. seealso::

    :ocv:func:`max`,
    :ocv:func:`compare`,
    :ocv:func:`inRange`,
    :ocv:func:`minMaxLoc`,
    :ref:`MatrixExpressions`


minMaxIdx
---------
Finds the global minimum and maximum in an array

.. ocv:function:: void minMaxIdx(InputArray src, double* minVal, double* maxVal, int* minIdx=0, int* maxIdx=0, InputArray mask=noArray())

    :param src: input single-channel array.

    :param minVal: pointer to the returned minimum value; ``NULL`` is used if not required.

    :param maxVal: pointer to the returned maximum value; ``NULL`` is used if not required.

    :param minIdx: pointer to the returned minimum location (in nD case); ``NULL`` is used if not required; Otherwise, it must point to an array of ``src.dims`` elements, the coordinates of the minimum element in each dimension are stored there sequentially.

        .. note::

            When ``minIdx`` is not NULL, it must have at least 2 elements (as well as ``maxIdx``), even if ``src`` is a single-row or single-column matrix. In OpenCV (following MATLAB) each array has at least 2 dimensions, i.e. single-column matrix is ``Mx1`` matrix (and therefore ``minIdx``/``maxIdx`` will be ``(i1,0)``/``(i2,0)``) and single-row matrix is ``1xN`` matrix (and therefore ``minIdx``/``maxIdx`` will be ``(0,j1)``/``(0,j2)``).

    :param maxIdx: pointer to the returned maximum location (in nD case). ``NULL`` is used if not required.

    The function ``minMaxIdx`` finds the minimum and maximum element values and their positions. The extremums are searched across the whole array or, if ``mask`` is not an empty array, in the specified array region.

    The function does not work with multi-channel arrays. If you need to find minimum or maximum elements across all the channels, use
    :ocv:func:`Mat::reshape` first to reinterpret the array as single-channel. Or you may extract the particular channel using either
    :ocv:func:`extractImageCOI` , or
    :ocv:func:`mixChannels` , or
    :ocv:func:`split` .

    In case of a sparse matrix, the minimum is found among non-zero elements only.



minMaxLoc
---------
Finds the global minimum and maximum in an array.

.. ocv:function:: void minMaxLoc(InputArray src, double* minVal, double* maxVal=0, Point* minLoc=0, Point* maxLoc=0, InputArray mask=noArray())

.. ocv:function:: void minMaxLoc( const SparseMat& a, double* minVal, double* maxVal, int* minIdx=0, int* maxIdx=0 )

.. ocv:pyfunction:: cv2.minMaxLoc(src[, mask]) -> minVal, maxVal, minLoc, maxLoc

.. ocv:cfunction:: void cvMinMaxLoc( const CvArr* arr, double* min_val, double* max_val, CvPoint* min_loc=NULL, CvPoint* max_loc=NULL, const CvArr* mask=NULL )

.. ocv:pyoldfunction:: cv.MinMaxLoc(arr, mask=None)-> (minVal, maxVal, minLoc, maxLoc)

    :param src: input single-channel array.

    :param minVal: pointer to the returned minimum value;  ``NULL`` is used if not required.

    :param maxVal: pointer to the returned maximum value;  ``NULL`` is used if not required.

    :param minLoc: pointer to the returned minimum location (in 2D case);  ``NULL`` is used if not required.

    :param maxLoc: pointer to the returned maximum location (in 2D case);  ``NULL`` is used if not required.

    :param mask: optional mask used to select a sub-array.

The functions ``minMaxLoc`` find the minimum and maximum element values and their positions. The extremums are searched across the whole array or,
if ``mask`` is not an empty array, in the specified array region.

The functions do not work with multi-channel arrays. If you need to find minimum or maximum elements across all the channels, use
:ocv:func:`Mat::reshape` first to reinterpret the array as single-channel. Or you may extract the particular channel using either
:ocv:func:`extractImageCOI` , or
:ocv:func:`mixChannels` , or
:ocv:func:`split` .

.. seealso::

    :ocv:func:`max`,
    :ocv:func:`min`,
    :ocv:func:`compare`,
    :ocv:func:`inRange`,
    :ocv:func:`extractImageCOI`,
    :ocv:func:`mixChannels`,
    :ocv:func:`split`,
    :ocv:func:`Mat::reshape`



mixChannels
-----------
Copies specified channels from input arrays to the specified channels of output arrays.

.. ocv:function:: void mixChannels( const Mat* src, size_t nsrcs, Mat* dst, size_t ndsts, const int* fromTo, size_t npairs )

.. ocv:function:: void mixChannels( const vector<Mat>& src, vector<Mat>& dst, const int* fromTo, size_t npairs )

.. ocv:pyfunction:: cv2.mixChannels(src, dst, fromTo) -> None

.. ocv:cfunction:: void cvMixChannels( const CvArr** src, int src_count, CvArr** dst, int dst_count, const int* from_to, int pair_count )

.. ocv:pyoldfunction:: cv.MixChannels(src, dst, fromTo) -> None

    :param src: input array or vector of matricesl; all of the matrices must have the same size and the same depth.

    :param nsrcs: number of matrices in ``src``.

    :param dst: output array or vector of matrices; all the matrices *must be allocated*; their size and depth must be the same as in ``src[0]``.

    :param ndsts: number of matrices in ``dst``.

    :param fromTo: array of index pairs specifying which channels are copied and where; ``fromTo[k*2]`` is a 0-based index of the input channel in ``src``, ``fromTo[k*2+1]`` is an index of the output channel in ``dst``; the continuous channel numbering is used: the first input image channels are indexed from ``0`` to ``src[0].channels()-1``, the second input image channels are indexed from ``src[0].channels()`` to ``src[0].channels() + src[1].channels()-1``,  and so on, the same scheme is used for the output image channels; as a special case, when ``fromTo[k*2]`` is negative, the corresponding output channel is filled with zero .

    :param npairs: number of index pairs in ``fromTo``.

The functions ``mixChannels`` provide an advanced mechanism for shuffling image channels.

:ocv:func:`split` and
:ocv:func:`merge` and some forms of
:ocv:func:`cvtColor` are partial cases of ``mixChannels`` .

In the example below, the code splits a 4-channel RGBA image into a 3-channel BGR (with R and B channels swapped) and a separate alpha-channel image: ::

    Mat rgba( 100, 100, CV_8UC4, Scalar(1,2,3,4) );
    Mat bgr( rgba.rows, rgba.cols, CV_8UC3 );
    Mat alpha( rgba.rows, rgba.cols, CV_8UC1 );

    // forming an array of matrices is a quite efficient operation,
    // because the matrix data is not copied, only the headers
    Mat out[] = { bgr, alpha };
    // rgba[0] -> bgr[2], rgba[1] -> bgr[1],
    // rgba[2] -> bgr[0], rgba[3] -> alpha[0]
    int from_to[] = { 0,2, 1,1, 2,0, 3,3 };
    mixChannels( &rgba, 1, out, 2, from_to, 4 );


.. note:: Unlike many other new-style C++ functions in OpenCV (see the introduction section and :ocv:func:`Mat::create` ), ``mixChannels`` requires the output arrays to be pre-allocated before calling the function.

.. seealso::

    :ocv:func:`split`,
    :ocv:func:`merge`,
    :ocv:func:`cvtColor`



mulSpectrums
------------
Performs the per-element multiplication of two Fourier spectrums.

.. ocv:function:: void mulSpectrums( InputArray a, InputArray b, OutputArray c, int flags, bool conjB=false )

.. ocv:pyfunction:: cv2.mulSpectrums(a, b, flags[, c[, conjB]]) -> c

.. ocv:cfunction:: void cvMulSpectrums( const CvArr* src1, const CvArr* src2, CvArr* dst, int flags)
.. ocv:pyoldfunction:: cv.MulSpectrums(src1, src2, dst, flags)-> None

    :param src1: first input array.

    :param src2: second input array of the same size and type as ``src1`` .

    :param dst: output array of the same size and type as ``src1`` .

    :param flags: operation flags; currently, the only supported flag is ``DFT_ROWS``, which indicates that each row of ``src1`` and ``src2`` is an independent 1D Fourier spectrum.

    :param conjB: optional flag that conjugates the second input array before the multiplication (true) or not (false).

The function ``mulSpectrums`` performs the per-element multiplication of the two CCS-packed or complex matrices that are results of a real or complex Fourier transform.

The function, together with
:ocv:func:`dft` and
:ocv:func:`idft` , may be used to calculate convolution (pass ``conjB=false`` ) or correlation (pass ``conjB=true`` ) of two arrays rapidly. When the arrays are complex, they are simply multiplied (per element) with an optional conjugation of the second-array elements. When the arrays are real, they are assumed to be CCS-packed (see
:ocv:func:`dft` for details).



multiply
--------
Calculates the per-element scaled product of two arrays.

.. ocv:function:: void multiply( InputArray src1, InputArray src2, OutputArray dst, double scale=1, int dtype=-1 )

.. ocv:pyfunction:: cv2.multiply(src1, src2[, dst[, scale[, dtype]]]) -> dst

.. ocv:cfunction:: void cvMul(const CvArr* src1, const CvArr* src2, CvArr* dst, double scale=1)
.. ocv:pyoldfunction:: cv.Mul(src1, src2, dst, scale=1) -> None

    :param src1: first input array.

    :param src2: second input array of the same size and the same type as ``src1``.

    :param dst: output array of the same size and type as ``src1``.

    :param scale: optional scale factor.

The function ``multiply`` calculates the per-element product of two arrays:

.. math::

    \texttt{dst} (I)= \texttt{saturate} ( \texttt{scale} \cdot \texttt{src1} (I)  \cdot \texttt{src2} (I))

There is also a
:ref:`MatrixExpressions` -friendly variant of the first function. See
:ocv:func:`Mat::mul` .

For a not-per-element matrix product, see
:ocv:func:`gemm` .

.. note:: Saturation is not applied when the output array has the depth ``CV_32S``. You may even get result of an incorrect sign in the case of overflow.

.. seealso::

    :ocv:func:`add`,
    :ocv:func:`subtract`,
    :ocv:func:`divide`,
    :ref:`MatrixExpressions`,
    :ocv:func:`scaleAdd`,
    :ocv:func:`addWeighted`,
    :ocv:func:`accumulate`,
    :ocv:func:`accumulateProduct`,
    :ocv:func:`accumulateSquare`,
    :ocv:func:`Mat::convertTo`



mulTransposed
-------------
Calculates the product of a matrix and its transposition.

.. ocv:function:: void mulTransposed( InputArray src, OutputArray dst, bool aTa, InputArray delta=noArray(), double scale=1, int dtype=-1 )

.. ocv:pyfunction:: cv2.mulTransposed(src, aTa[, dst[, delta[, scale[, dtype]]]]) -> dst

.. ocv:cfunction:: void cvMulTransposed( const CvArr* src, CvArr* dst, int order, const CvArr* delta=NULL, double scale=1. )

.. ocv:pyoldfunction:: cv.MulTransposed(src, dst, order, delta=None, scale=1.0) -> None

    :param src: input single-channel matrix. Note that unlike :ocv:func:`gemm`, the function can multiply not only floating-point matrices.

    :param dst: output square matrix.

    :param aTa: Flag specifying the multiplication ordering. See the description below.

    :param delta: Optional delta matrix subtracted from  ``src``  before the multiplication. When the matrix is empty ( ``delta=noArray()`` ), it is assumed to be zero, that is, nothing is subtracted. If it has the same size as  ``src`` , it is simply subtracted. Otherwise, it is "repeated" (see  :ocv:func:`repeat` ) to cover the full  ``src``  and then subtracted. Type of the delta matrix, when it is not empty, must be the same as the type of created output matrix. See the  ``dtype``  parameter description below.

    :param scale: Optional scale factor for the matrix product.

    :param dtype: Optional type of the output matrix. When it is negative, the output matrix will have the same type as  ``src`` . Otherwise, it will be ``type=CV_MAT_DEPTH(dtype)`` that should be either  ``CV_32F``  or  ``CV_64F`` .

The function ``mulTransposed`` calculates the product of ``src`` and its transposition:

.. math::

    \texttt{dst} = \texttt{scale} ( \texttt{src} - \texttt{delta} )^T ( \texttt{src} - \texttt{delta} )

if ``aTa=true`` , and

.. math::

    \texttt{dst} = \texttt{scale} ( \texttt{src} - \texttt{delta} ) ( \texttt{src} - \texttt{delta} )^T

otherwise. The function is used to calculate the covariance matrix. With zero delta, it can be used as a faster substitute for general matrix product ``A*B`` when ``B=A'``

.. seealso::

    :ocv:func:`calcCovarMatrix`,
    :ocv:func:`gemm`,
    :ocv:func:`repeat`,
    :ocv:func:`reduce`



norm
----
Calculates an absolute array norm, an absolute difference norm, or a relative difference norm.

.. ocv:function:: double norm(InputArray src1, int normType=NORM_L2, InputArray mask=noArray())

.. ocv:function:: double norm( InputArray src1, InputArray src2, int normType=NORM_L2, InputArray mask=noArray() )

.. ocv:function:: double norm( const SparseMat& src, int normType )

.. ocv:pyfunction:: cv2.norm(src1[, normType[, mask]]) -> retval
.. ocv:pyfunction:: cv2.norm(src1, src2[, normType[, mask]]) -> retval

.. ocv:cfunction:: double cvNorm( const CvArr* arr1, const CvArr* arr2=NULL, int norm_type=CV_L2, const CvArr* mask=NULL )

.. ocv:pyoldfunction:: cv.Norm(arr1, arr2, normType=CV_L2, mask=None) -> float

    :param src1: first input array.

    :param src2: second input array of the same size and the same type as ``src1``.

    :param normType: type of the norm (see the details below).

    :param mask: optional operation mask; it must have the same size as ``src1`` and ``CV_8UC1`` type.

The functions ``norm`` calculate an absolute norm of ``src1`` (when there is no ``src2`` ):

.. math::

    norm =  \forkthree{\|\texttt{src1}\|_{L_{\infty}} =  \max _I | \texttt{src1} (I)|}{if  $\texttt{normType} = \texttt{NORM\_INF}$ }
    { \| \texttt{src1} \| _{L_1} =  \sum _I | \texttt{src1} (I)|}{if  $\texttt{normType} = \texttt{NORM\_L1}$ }
    { \| \texttt{src1} \| _{L_2} =  \sqrt{\sum_I \texttt{src1}(I)^2} }{if  $\texttt{normType} = \texttt{NORM\_L2}$ }

or an absolute or relative difference norm if ``src2`` is there:

.. math::

    norm =  \forkthree{\|\texttt{src1}-\texttt{src2}\|_{L_{\infty}} =  \max _I | \texttt{src1} (I) -  \texttt{src2} (I)|}{if  $\texttt{normType} = \texttt{NORM\_INF}$ }
    { \| \texttt{src1} - \texttt{src2} \| _{L_1} =  \sum _I | \texttt{src1} (I) -  \texttt{src2} (I)|}{if  $\texttt{normType} = \texttt{NORM\_L1}$ }
    { \| \texttt{src1} - \texttt{src2} \| _{L_2} =  \sqrt{\sum_I (\texttt{src1}(I) - \texttt{src2}(I))^2} }{if  $\texttt{normType} = \texttt{NORM\_L2}$ }

or

.. math::

    norm =  \forkthree{\frac{\|\texttt{src1}-\texttt{src2}\|_{L_{\infty}}    }{\|\texttt{src2}\|_{L_{\infty}} }}{if  $\texttt{normType} = \texttt{NORM\_RELATIVE\_INF}$ }
    { \frac{\|\texttt{src1}-\texttt{src2}\|_{L_1} }{\|\texttt{src2}\|_{L_1}} }{if  $\texttt{normType} = \texttt{NORM\_RELATIVE\_L1}$ }
    { \frac{\|\texttt{src1}-\texttt{src2}\|_{L_2} }{\|\texttt{src2}\|_{L_2}} }{if  $\texttt{normType} = \texttt{NORM\_RELATIVE\_L2}$ }

The functions ``norm`` return the calculated norm.

When the ``mask`` parameter is specified and it is not empty, the norm is calculated only over the region specified by the mask.

A multi-channel input arrays are treated as a single-channel, that is, the results for all channels are combined.



normalize
---------
Normalizes the norm or value range of an array.

.. ocv:function:: void normalize( InputArray src, OutputArray dst, double alpha=1, double beta=0, int norm_type=NORM_L2, int dtype=-1, InputArray mask=noArray() )

.. ocv:function:: void normalize(const SparseMat& src, SparseMat& dst, double alpha, int normType)

.. ocv:pyfunction:: cv2.normalize(src[, dst[, alpha[, beta[, norm_type[, dtype[, mask]]]]]]) -> dst

    :param src: input array.

    :param dst: output array of the same size as  ``src`` .

    :param alpha: norm value to normalize to or the lower range boundary in case of the range normalization.

    :param beta: upper range boundary in case of the range normalization; it is not used for the norm normalization.

    :param normType: normalization type (see the details below).

    :param dtype: when negative, the output array has the same type as ``src``; otherwise, it has the same number of channels as  ``src`` and the depth ``=CV_MAT_DEPTH(dtype)``.

    :param mask: optional operation mask.


The functions ``normalize`` scale and shift the input array elements so that

.. math::

    \| \texttt{dst} \| _{L_p}= \texttt{alpha}

(where p=Inf, 1 or 2) when ``normType=NORM_INF``, ``NORM_L1``, or ``NORM_L2``, respectively; or so that

.. math::

    \min _I  \texttt{dst} (I)= \texttt{alpha} , \, \, \max _I  \texttt{dst} (I)= \texttt{beta}

when ``normType=NORM_MINMAX`` (for dense arrays only).
The optional mask specifies a sub-array to be normalized. This means that the norm or min-n-max are calculated over the sub-array, and then this sub-array is modified to be normalized. If you want to only use the mask to calculate the norm or min-max but modify the whole array, you can use
:ocv:func:`norm` and
:ocv:func:`Mat::convertTo`.

In case of sparse matrices, only the non-zero values are analyzed and transformed. Because of this, the range transformation for sparse matrices is not allowed since it can shift the zero level.

.. seealso::

    :ocv:func:`norm`,
    :ocv:func:`Mat::convertTo`,
    :ocv:func:`SparseMat::convertTo`



PCA
---
.. ocv:class:: PCA

Principal Component Analysis class.

The class is used to calculate a special basis for a set of vectors. The basis will consist of eigenvectors of the covariance matrix calculated from the input set of vectors. The class ``PCA`` can also transform vectors to/from the new coordinate space defined by the basis. Usually, in this new coordinate system, each vector from the original set (and any linear combination of such vectors) can be quite accurately approximated by taking its first few components, corresponding to the eigenvectors of the largest eigenvalues of the covariance matrix. Geometrically it means that you calculate a projection of the vector to a subspace formed by a few eigenvectors corresponding to the dominant eigenvalues of the covariance matrix. And usually such a projection is very close to the original vector. So, you can represent the original vector from a high-dimensional space with a much shorter vector consisting of the projected vector's coordinates in the subspace. Such a transformation is also known as Karhunen-Loeve Transform, or KLT. See
http://en.wikipedia.org/wiki/Principal\_component\_analysis .

The sample below is the function that takes two matrices. The first function stores a set of vectors (a row per vector) that is used to calculate PCA. The second function stores another "test" set of vectors (a row per vector). First, these vectors are compressed with PCA, then reconstructed back, and then the reconstruction error norm is computed and printed for each vector. ::

    PCA compressPCA(InputArray pcaset, int maxComponents,
                    const Mat& testset, OutputArray compressed)
    {
        PCA pca(pcaset, // pass the data
                Mat(), // there is no pre-computed mean vector,
                       // so let the PCA engine to compute it
                CV_PCA_DATA_AS_ROW, // indicate that the vectors
                                    // are stored as matrix rows
                                    // (use CV_PCA_DATA_AS_COL if the vectors are
                                    // the matrix columns)
                maxComponents // specify how many principal components to retain
                );
        // if there is no test data, just return the computed basis, ready-to-use
        if( !testset.data )
            return pca;
        CV_Assert( testset.cols == pcaset.cols );

        compressed.create(testset.rows, maxComponents, testset.type());

        Mat reconstructed;
        for( int i = 0; i < testset.rows; i++ )
        {
            Mat vec = testset.row(i), coeffs = compressed.row(i);
            // compress the vector, the result will be stored
            // in the i-th row of the output matrix
            pca.project(vec, coeffs);
            // and then reconstruct it
            pca.backProject(coeffs, reconstructed);
            // and measure the error
            printf("%d. diff = %g\n", i, norm(vec, reconstructed, NORM_L2));
        }
        return pca;
    }


.. seealso::

    :ocv:func:`calcCovarMatrix`,
    :ocv:func:`mulTransposed`,
    :ocv:class:`SVD`,
    :ocv:func:`dft`,
    :ocv:func:`dct`

.. note::

   * An example using PCA for dimensionality reduction while maintaining an amount of variance can be found at opencv_source_code/samples/cpp/pca.cpp

PCA::PCA
--------
PCA constructors

.. ocv:function:: PCA::PCA()

.. ocv:function:: PCA::PCA(InputArray data, InputArray mean, int flags, int maxComponents=0)

.. ocv:function:: PCA::PCA(InputArray data, InputArray mean, int flags, double retainedVariance)

    :param data: input samples stored as matrix rows or matrix columns.

    :param mean: optional mean value; if the matrix is empty (``noArray()``), the mean is computed from the data.

    :param flags: operation flags; currently the parameter is only used to specify the data layout:

        * **CV_PCA_DATA_AS_ROW** indicates that the input samples are stored as matrix rows.

        * **CV_PCA_DATA_AS_COL** indicates that the input samples are stored as matrix columns.

    :param maxComponents: maximum number of components that PCA should retain; by default, all the components are retained.

    :param retainedVariance: Percentage of variance that PCA should retain. Using this parameter will let the PCA decided how many components to retain but it will always keep at least 2.

The default constructor initializes an empty PCA structure. The other constructors initialize the structure and call
:ocv:funcx:`PCA::operator()` .



PCA::operator ()
----------------
Performs Principal Component Analysis of the supplied dataset.

.. ocv:function:: PCA& PCA::operator()(InputArray data, InputArray mean, int flags, int maxComponents=0)

.. ocv:function:: PCA& PCA::computeVar(InputArray data, InputArray mean, int flags, double retainedVariance)

.. ocv:pyfunction:: cv2.PCACompute(data[, mean[, eigenvectors[, maxComponents]]]) -> mean, eigenvectors

.. ocv:pyfunction:: cv2.PCAComputeVar(data, retainedVariance[, mean[, eigenvectors]]) -> mean, eigenvectors

    :param data: input samples stored as the matrix rows or as the matrix columns.

    :param mean: optional mean value; if the matrix is empty (``noArray()``), the mean is computed from the data.

    :param flags: operation flags; currently the parameter is only used to specify the data layout.

        * **CV_PCA_DATA_AS_ROW** indicates that the input samples are stored as matrix rows.

        * **CV_PCA_DATA_AS_COL** indicates that the input samples are stored as matrix columns.

    :param maxComponents: maximum number of components that PCA should retain; by default, all the components are retained.

    :param retainedVariance: Percentage of variance that PCA should retain. Using this parameter will let the PCA decided how many components to retain but it will always keep at least 2.

The operator performs PCA of the supplied dataset. It is safe to reuse the same PCA structure for multiple datasets. That is, if the  structure has been previously used with another dataset, the existing internal data is reclaimed and the new ``eigenvalues``, ``eigenvectors`` , and ``mean`` are allocated and computed.

The computed eigenvalues are sorted from the largest to the smallest and the corresponding eigenvectors are stored as ``PCA::eigenvectors`` rows.



PCA::project
------------
Projects vector(s) to the principal component subspace.

.. ocv:function:: Mat PCA::project(InputArray vec) const

.. ocv:function:: void PCA::project(InputArray vec, OutputArray result) const

.. ocv:pyfunction:: cv2.PCAProject(data, mean, eigenvectors[, result]) -> result

    :param vec: input vector(s); must have the same dimensionality and the same layout as the input data used at PCA phase, that is, if ``CV_PCA_DATA_AS_ROW`` are specified, then ``vec.cols==data.cols`` (vector dimensionality) and ``vec.rows`` is the number of vectors to project, and the same is true for the ``CV_PCA_DATA_AS_COL`` case.

    :param result: output vectors; in case of ``CV_PCA_DATA_AS_COL``, the output matrix has as many columns as the number of input vectors, this means that ``result.cols==vec.cols`` and the number of rows match the number of principal components (for example, ``maxComponents`` parameter passed to the constructor).

The methods project one or more vectors to the principal component subspace, where each vector projection is represented by coefficients in the principal component basis. The first form of the method returns the matrix that the second form writes to the result. So the first form can be used as a part of expression while the second form can be more efficient in a processing loop.



PCA::backProject
----------------
Reconstructs vectors from their PC projections.

.. ocv:function:: Mat PCA::backProject(InputArray vec) const

.. ocv:function:: void PCA::backProject(InputArray vec, OutputArray result) const

.. ocv:pyfunction:: cv2.PCABackProject(data, mean, eigenvectors[, result]) -> result

    :param vec: coordinates of the vectors in the principal component subspace, the layout and size are the same as of ``PCA::project`` output vectors.

    :param result: reconstructed vectors; the layout and size are the same as of ``PCA::project`` input vectors.

The methods are inverse operations to
:ocv:func:`PCA::project`. They take PC coordinates of projected vectors and reconstruct the original vectors. Unless all the principal components have been retained, the reconstructed vectors are different from the originals. But typically, the difference is small if the number of components is large enough (but still much smaller than the original vector dimensionality). As a result, PCA is used.



perspectiveTransform
--------------------
Performs the perspective matrix transformation of vectors.

.. ocv:function:: void perspectiveTransform( InputArray src, OutputArray dst, InputArray m )

.. ocv:pyfunction:: cv2.perspectiveTransform(src, m[, dst]) -> dst

.. ocv:cfunction:: void cvPerspectiveTransform(const CvArr* src, CvArr* dst, const CvMat* mat)
.. ocv:pyoldfunction:: cv.PerspectiveTransform(src, dst, mat)-> None

    :param src: input two-channel or three-channel floating-point array; each element is a 2D/3D vector to be transformed.

    :param dst: output array of the same size and type as ``src``.

    :param m: ``3x3`` or ``4x4`` floating-point transformation matrix.

The function ``perspectiveTransform`` transforms every element of ``src`` by treating it as a 2D or 3D vector, in the following way:

.. math::

    (x, y, z)  \rightarrow (x'/w, y'/w, z'/w)

where

.. math::

    (x', y', z', w') =  \texttt{mat} \cdot \begin{bmatrix} x & y & z & 1  \end{bmatrix}

and

.. math::

    w =  \fork{w'}{if $w' \ne 0$}{\infty}{otherwise}

Here a 3D vector transformation is shown. In case of a 2D vector transformation, the ``z`` component is omitted.

.. note:: The function transforms a sparse set of 2D or 3D vectors. If you want to transform an image using perspective transformation, use :ocv:func:`warpPerspective` . If you have an inverse problem, that is, you want to compute the most probable perspective transformation out of several pairs of corresponding points, you can use :ocv:func:`getPerspectiveTransform` or :ocv:func:`findHomography` .

.. seealso::

    :ocv:func:`transform`,
    :ocv:func:`warpPerspective`,
    :ocv:func:`getPerspectiveTransform`,
    :ocv:func:`findHomography`



phase
-----
Calculates the rotation angle of 2D vectors.

.. ocv:function:: void phase(InputArray x, InputArray y, OutputArray angle, bool angleInDegrees=false)

.. ocv:pyfunction:: cv2.phase(x, y[, angle[, angleInDegrees]]) -> angle

    :param x: input floating-point array of x-coordinates of 2D vectors.

    :param y: input array of y-coordinates of 2D vectors; it must have the same size and the same type as ``x``.

    :param angle: output array of vector angles; it has the same size and same type as  ``x`` .

    :param angleInDegrees: when true, the function calculates the angle in degrees, otherwise, they are measured in radians.

The function ``phase`` calculates the rotation angle of each 2D vector that is formed from the corresponding elements of ``x`` and ``y`` :

.. math::

    \texttt{angle} (I) =  \texttt{atan2} ( \texttt{y} (I), \texttt{x} (I))

The angle estimation accuracy is about 0.3 degrees. When ``x(I)=y(I)=0`` , the corresponding ``angle(I)`` is set to 0.


polarToCart
-----------
Calculates x and y coordinates of 2D vectors from their magnitude and angle.

.. ocv:function:: void polarToCart(InputArray magnitude, InputArray angle, OutputArray x, OutputArray y, bool angleInDegrees=false)

.. ocv:pyfunction:: cv2.polarToCart(magnitude, angle[, x[, y[, angleInDegrees]]]) -> x, y

.. ocv:cfunction:: void cvPolarToCart( const CvArr* magnitude, const CvArr* angle, CvArr* x, CvArr* y, int angle_in_degrees=0 )

.. ocv:pyoldfunction:: cv.PolarToCart(magnitude, angle, x, y, angleInDegrees=0)-> None

    :param magnitude: input floating-point array of magnitudes of 2D vectors; it can be an empty matrix (``=Mat()``), in this case, the function assumes that all the magnitudes are =1; if it is not empty, it must have the same size and type as ``angle``.

    :param angle: input floating-point array of angles of 2D vectors.

    :param x: output array of x-coordinates of 2D vectors; it has the same size and type as ``angle``.

    :param y: output array of y-coordinates of 2D vectors; it has the same size and type as ``angle``.

    :param angleInDegrees: when true, the input angles are measured in degrees, otherwise, they are measured in radians.

The function ``polarToCart`` calculates the Cartesian coordinates of each 2D vector represented by the corresponding elements of ``magnitude`` and ``angle`` :

.. math::

    \begin{array}{l} \texttt{x} (I) =  \texttt{magnitude} (I) \cos ( \texttt{angle} (I)) \\ \texttt{y} (I) =  \texttt{magnitude} (I) \sin ( \texttt{angle} (I)) \\ \end{array}

The relative accuracy of the estimated coordinates is about ``1e-6``.

.. seealso::

    :ocv:func:`cartToPolar`,
    :ocv:func:`magnitude`,
    :ocv:func:`phase`,
    :ocv:func:`exp`,
    :ocv:func:`log`,
    :ocv:func:`pow`,
    :ocv:func:`sqrt`



pow
---
Raises every array element to a power.

.. ocv:function:: void pow( InputArray src, double power, OutputArray dst )

.. ocv:pyfunction:: cv2.pow(src, power[, dst]) -> dst

.. ocv:cfunction:: void cvPow( const CvArr* src, CvArr* dst, double power)
.. ocv:pyoldfunction:: cv.Pow(src, dst, power)-> None

    :param src: input array.

    :param power: exponent of power.

    :param dst: output array of the same size and type as ``src``.

The function ``pow`` raises every element of the input array to ``power`` :

.. math::

    \texttt{dst} (I) =  \fork{\texttt{src}(I)^power}{if \texttt{power} is integer}{|\texttt{src}(I)|^power}{otherwise}

So, for a non-integer power exponent, the absolute values of input array elements are used. However, it is possible to get true values for negative values using some extra operations. In the example below, computing the 5th root of array ``src``  shows: ::

    Mat mask = src < 0;
    pow(src, 1./5, dst);
    subtract(Scalar::all(0), dst, dst, mask);


For some values of ``power`` , such as integer values, 0.5 and -0.5, specialized faster algorithms are used.

Special values (NaN, Inf) are not handled.

.. seealso::

    :ocv:func:`sqrt`,
    :ocv:func:`exp`,
    :ocv:func:`log`,
    :ocv:func:`cartToPolar`,
    :ocv:func:`polarToCart`



RNG
---

.. ocv:class:: RNG

Random number generator. It encapsulates the state (currently, a 64-bit integer) and has methods to return scalar random values and to fill arrays with random values. Currently it supports uniform and Gaussian (normal) distributions. The generator uses Multiply-With-Carry algorithm, introduced by G. Marsaglia (
http://en.wikipedia.org/wiki/Multiply-with-carry
). Gaussian-distribution random numbers are generated using the Ziggurat algorithm (
http://en.wikipedia.org/wiki/Ziggurat_algorithm
), introduced by G. Marsaglia and W. W. Tsang.



RNG::RNG
--------
The constructors

.. ocv:function:: RNG::RNG()

.. ocv:function:: RNG::RNG(uint64 state)

    :param state: 64-bit value used to initialize the RNG.

These are the RNG constructors. The first form sets the state to some pre-defined value, equal to ``2**32-1`` in the current implementation. The second form sets the state to the specified value. If you passed ``state=0`` , the constructor uses the above default value instead to avoid the singular random number sequence, consisting of all zeros.



RNG::next
---------
Returns the next random number.

.. ocv:function:: unsigned RNG::next()

The method updates the state using the MWC algorithm and returns the next 32-bit random number.



RNG::operator T
---------------
Returns the next random number of the specified type.

.. ocv:function:: RNG::operator uchar()

.. ocv:function:: RNG::operator schar()

.. ocv:function:: RNG::operator ushort()

.. ocv:function:: RNG::operator short()

.. ocv:function:: RNG::operator int()

.. ocv:function:: RNG::operator unsigned()

.. ocv:function:: RNG::operator float()

.. ocv:function:: RNG::operator double()

Each of the methods updates the state using the MWC algorithm and returns the next random number of the specified type. In case of integer types, the returned number is from the available value range for the specified type. In case of floating-point types, the returned value is from ``[0,1)`` range.



RNG::operator ()
----------------
Returns the next random number.

.. ocv:function:: unsigned RNG::operator ()()

.. ocv:function:: unsigned RNG::operator ()(unsigned N)

    :param N: upper non-inclusive boundary of the returned random number.

The methods transform the state using the MWC algorithm and return the next random number. The first form is equivalent to
:ocv:func:`RNG::next` . The second form returns the random number modulo ``N`` , which means that the result is in the range ``[0, N)`` .



RNG::uniform
------------
Returns the next random number sampled from the uniform distribution.

.. ocv:function:: int RNG::uniform(int a, int b)

.. ocv:function:: float RNG::uniform(float a, float b)

.. ocv:function:: double RNG::uniform(double a, double b)

    :param a: lower inclusive boundary of the returned random numbers.

    :param b: upper non-inclusive boundary of the returned random numbers.

The methods transform the state using the MWC algorithm and return the next uniformly-distributed random number of the specified type, deduced from the input parameter type, from the range ``[a, b)`` . There is a nuance illustrated by the following sample: ::

    RNG rng;

    // always produces 0
    double a = rng.uniform(0, 1);

    // produces double from [0, 1)
    double a1 = rng.uniform((double)0, (double)1);

    // produces float from [0, 1)
    double b = rng.uniform(0.f, 1.f);

    // produces double from [0, 1)
    double c = rng.uniform(0., 1.);

    // may cause compiler error because of ambiguity:
    //  RNG::uniform(0, (int)0.999999)? or RNG::uniform((double)0, 0.99999)?
    double d = rng.uniform(0, 0.999999);


The compiler does not take into account the type of the variable to which you assign the result of ``RNG::uniform`` . The only thing that matters to the compiler is the type of ``a`` and ``b`` parameters. So, if you want a floating-point random number, but the range boundaries are integer numbers, either put dots in the end, if they are constants, or use explicit type cast operators, as in the ``a1`` initialization above.



RNG::gaussian
-------------
Returns the next random number sampled from the Gaussian distribution.

.. ocv:function:: double RNG::gaussian(double sigma)

    :param sigma: standard deviation of the distribution.

The method transforms the state using the MWC algorithm and returns the next random number from the Gaussian distribution ``N(0,sigma)`` . That is, the mean value of the returned random numbers is zero and the standard deviation is the specified ``sigma`` .



RNG::fill
---------
Fills arrays with random numbers.

.. ocv:function:: void RNG::fill( InputOutputArray mat, int distType, InputArray a, InputArray b, bool saturateRange=false )

    :param mat: 2D or N-dimensional matrix; currently matrices with more than 4 channels are not supported by the methods, use  :ocv:func:`Mat::reshape` as a possible workaround.

    :param distType: distribution type, ``RNG::UNIFORM`` or ``RNG::NORMAL``.

    :param a: first distribution parameter; in case of the uniform distribution, this is an inclusive lower boundary, in case of the normal distribution, this is a mean value.

    :param b: second distribution parameter; in case of the uniform distribution, this is a non-inclusive upper boundary, in case of the normal distribution, this is a standard deviation (diagonal of the standard deviation matrix or the full standard deviation matrix).

    :param saturateRange: pre-saturation flag; for uniform distribution only; if true, the method will first convert a and b to the acceptable value range (according to the mat datatype) and then will generate uniformly distributed random numbers within the range ``[saturate(a), saturate(b))``, if ``saturateRange=false``, the method will generate uniformly distributed random numbers in the original range ``[a, b)`` and then will saturate them, it means, for example, that ``theRNG().fill(mat_8u, RNG::UNIFORM, -DBL_MAX, DBL_MAX)`` will likely produce array mostly filled with 0's and 255's, since the range ``(0, 255)`` is significantly smaller than ``[-DBL_MAX, DBL_MAX)``.

Each of the methods fills the matrix with the random values from the specified distribution. As the new numbers are generated, the RNG state is updated accordingly. In case of multiple-channel images, every channel is filled independently, which means that RNG cannot generate samples from the multi-dimensional Gaussian distribution with non-diagonal covariance matrix directly. To do that, the method generates samples from multi-dimensional standard Gaussian distribution with zero mean and identity covariation matrix, and then transforms them using :ocv:func:`transform` to get samples from the specified Gaussian distribution.

randu
-----
Generates a single uniformly-distributed random number or an array of random numbers.

.. ocv:function:: template<typename _Tp> _Tp randu()

.. ocv:function:: void randu( InputOutputArray dst, InputArray low, InputArray high )

.. ocv:pyfunction:: cv2.randu(dst, low, high) -> None

    :param dst: output array of random numbers; the array must be pre-allocated.

    :param low: inclusive lower boundary of the generated random numbers.

    :param high: exclusive upper boundary of the generated random numbers.

The template functions ``randu`` generate and return the next uniformly-distributed random value of the specified type. ``randu<int>()`` is an equivalent to ``(int)theRNG();`` , and so on. See
:ocv:class:`RNG` description.

The second non-template variant of the function fills the matrix ``dst`` with uniformly-distributed random numbers from the specified range:

.. math::

    \texttt{low} _c  \leq \texttt{dst} (I)_c <  \texttt{high} _c

.. seealso::

    :ocv:class:`RNG`,
    :ocv:func:`randn`,
    :ocv:func:`theRNG`



randn
-----
Fills the array with normally distributed random numbers.

.. ocv:function:: void randn( InputOutputArray dst, InputArray mean, InputArray stddev )

.. ocv:pyfunction:: cv2.randn(dst, mean, stddev) -> None

    :param dst: output array of random numbers; the array must be pre-allocated and have 1 to 4 channels.

    :param mean: mean value (expectation) of the generated random numbers.

    :param stddev: standard deviation of the generated random numbers; it can be either a vector (in which case a diagonal standard deviation matrix is assumed) or a square matrix.

The function ``randn`` fills the matrix ``dst`` with normally distributed random numbers with the specified mean vector and the standard deviation matrix. The generated random numbers are clipped to fit the value range of the output array data type.

.. seealso::

    :ocv:class:`RNG`,
    :ocv:func:`randu`



randShuffle
-----------
Shuffles the array elements randomly.

.. ocv:function:: void randShuffle( InputOutputArray dst, double iterFactor=1., RNG* rng=0 )

.. ocv:pyfunction:: cv2.randShuffle(dst[, iterFactor]) -> None

    :param dst: input/output numerical 1D array.

    :param iterFactor: scale factor that determines the number of random swap operations (see the details below).

    :param rng: optional random number generator used for shuffling; if it is zero, :ocv:func:`theRNG` () is used instead.

The function ``randShuffle`` shuffles the specified 1D array by randomly choosing pairs of elements and swapping them. The number of such swap operations will be ``dst.rows*dst.cols*iterFactor`` .

.. seealso::

    :ocv:class:`RNG`,
    :ocv:func:`sort`



reduce
------
Reduces a matrix to a vector.

.. ocv:function:: void reduce( InputArray src, OutputArray dst, int dim, int rtype, int dtype=-1 )

.. ocv:pyfunction:: cv2.reduce(src, dim, rtype[, dst[, dtype]]) -> dst

.. ocv:cfunction:: void cvReduce(const CvArr* src, CvArr* dst, int dim=-1, int op=CV_REDUCE_SUM)
.. ocv:pyoldfunction:: cv.Reduce(src, dst, dim=-1, op=CV_REDUCE_SUM)-> None

    :param src: input 2D matrix.

    :param dst: output vector. Its size and type is defined by  ``dim``  and  ``dtype``  parameters.

    :param dim: dimension index along which the matrix is reduced. 0 means that the matrix is reduced to a single row. 1 means that the matrix is reduced to a single column.

    :param rtype: reduction operation that could be one of the following:

            * **CV_REDUCE_SUM**: the output is the sum of all rows/columns of the matrix.

            * **CV_REDUCE_AVG**: the output is the mean vector of all rows/columns of the matrix.

            * **CV_REDUCE_MAX**: the output is the maximum (column/row-wise) of all rows/columns of the matrix.

            * **CV_REDUCE_MIN**: the output is the minimum (column/row-wise) of all rows/columns of the matrix.

    :param dtype: when negative, the output vector will have the same type as the input matrix, otherwise, its type will be ``CV_MAKE_TYPE(CV_MAT_DEPTH(dtype), src.channels())``.

The function ``reduce`` reduces the matrix to a vector by treating the matrix rows/columns as a set of 1D vectors and performing the specified operation on the vectors until a single row/column is obtained. For example, the function can be used to compute horizontal and vertical projections of a raster image. In case of ``CV_REDUCE_SUM`` and ``CV_REDUCE_AVG`` , the output may have a larger element bit-depth to preserve accuracy. And multi-channel arrays are also supported in these two reduction modes.

.. seealso:: :ocv:func:`repeat`



repeat
------
Fills the output array with repeated copies of the input array.

.. ocv:function:: void repeat(InputArray src, int ny, int nx, OutputArray dst)

.. ocv:function:: Mat repeat( const Mat& src, int ny, int nx )

.. ocv:pyfunction:: cv2.repeat(src, ny, nx[, dst]) -> dst

.. ocv:cfunction:: void cvRepeat(const CvArr* src, CvArr* dst)

.. ocv:pyoldfunction:: cv.Repeat(src, dst)-> None

    :param src: input array to replicate.

    :param dst: output array of the same type as ``src``.

    :param ny: Flag to specify how many times the ``src`` is repeated along the vertical axis.

    :param nx: Flag to specify how many times the ``src`` is repeated along the horizontal axis.

The functions
:ocv:func:`repeat` duplicate the input array one or more times along each of the two axes:

.. math::

    \texttt{dst} _{ij}= \texttt{src} _{i\mod src.rows, \; j\mod src.cols }

The second variant of the function is more convenient to use with
:ref:`MatrixExpressions` .

.. seealso::

    :ocv:func:`reduce`,
    :ref:`MatrixExpressions`



scaleAdd
--------
Calculates the sum of a scaled array and another array.

.. ocv:function:: void scaleAdd( InputArray src1, double alpha, InputArray src2, OutputArray dst )

.. ocv:pyfunction:: cv2.scaleAdd(src1, alpha, src2[, dst]) -> dst

.. ocv:cfunction:: void cvScaleAdd(const CvArr* src1, CvScalar scale, const CvArr* src2, CvArr* dst)
.. ocv:pyoldfunction:: cv.ScaleAdd(src1, scale, src2, dst)-> None

    :param src1: first input array.

    :param scale: scale factor for the first array.

    :param src2: second input array of the same size and type as ``src1``.

    :param dst: output array of the same size and type as ``src1``.

The function ``scaleAdd`` is one of the classical primitive linear algebra operations, known as ``DAXPY`` or ``SAXPY`` in `BLAS <http://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms>`_. It calculates the sum of a scaled array and another array:

.. math::

    \texttt{dst} (I)= \texttt{scale} \cdot \texttt{src1} (I) +  \texttt{src2} (I)

The function can also be emulated with a matrix expression, for example: ::

    Mat A(3, 3, CV_64F);
    ...
    A.row(0) = A.row(1)*2 + A.row(2);


.. seealso::

    :ocv:func:`add`,
    :ocv:func:`addWeighted`,
    :ocv:func:`subtract`,
    :ocv:func:`Mat::dot`,
    :ocv:func:`Mat::convertTo`,
    :ref:`MatrixExpressions`



setIdentity
-----------
Initializes a scaled identity matrix.

.. ocv:function:: void setIdentity( InputOutputArray mtx, const Scalar& s=Scalar(1) )

.. ocv:pyfunction:: cv2.setIdentity(mtx[, s]) -> None

.. ocv:cfunction:: void cvSetIdentity(CvArr* mat, CvScalar value=cvRealScalar(1))

.. ocv:pyoldfunction:: cv.SetIdentity(mat, value=1)-> None

    :param mtx: matrix to initialize (not necessarily square).

    :param value: value to assign to diagonal elements.

The function
:ocv:func:`setIdentity` initializes a scaled identity matrix:

.. math::

    \texttt{mtx} (i,j)= \fork{\texttt{value}}{ if $i=j$}{0}{otherwise}

The function can also be emulated using the matrix initializers and the matrix expressions: ::

    Mat A = Mat::eye(4, 3, CV_32F)*5;
    // A will be set to [[5, 0, 0], [0, 5, 0], [0, 0, 5], [0, 0, 0]]


.. seealso::

    :ocv:func:`Mat::zeros`,
    :ocv:func:`Mat::ones`,
    :ref:`MatrixExpressions`,
    :ocv:func:`Mat::setTo`,
    :ocv:func:`Mat::operator=`



solve
-----
Solves one or more linear systems or least-squares problems.

.. ocv:function:: bool solve(InputArray src1, InputArray src2, OutputArray dst, int flags=DECOMP_LU)

.. ocv:pyfunction:: cv2.solve(src1, src2[, dst[, flags]]) -> retval, dst

.. ocv:cfunction:: int cvSolve(const CvArr* src1, const CvArr* src2, CvArr* dst, int method=CV_LU)
.. ocv:pyoldfunction:: cv.Solve(A, B, X, method=CV_LU)-> None

    :param src1: input matrix on the left-hand side of the system.

    :param src2: input matrix on the right-hand side of the system.

    :param dst: output solution.

    :param flags: solution (matrix inversion) method.

            * **DECOMP_LU** Gaussian elimination with optimal pivot element chosen.

            * **DECOMP_CHOLESKY** Cholesky  :math:`LL^T`  factorization; the matrix ``src1`` must be symmetrical and positively defined.

            * **DECOMP_EIG** eigenvalue decomposition; the matrix ``src1`` must be symmetrical.

            * **DECOMP_SVD** singular value decomposition (SVD) method; the system can be over-defined and/or the matrix ``src1`` can be singular.

            * **DECOMP_QR** QR factorization; the system can be over-defined and/or the matrix ``src1`` can be singular.

            * **DECOMP_NORMAL** while all the previous flags are mutually exclusive, this flag can be used together with any of the previous; it means that the normal equations  :math:`\texttt{src1}^T\cdot\texttt{src1}\cdot\texttt{dst}=\texttt{src1}^T\texttt{src2}`  are solved instead of the original system  :math:`\texttt{src1}\cdot\texttt{dst}=\texttt{src2}` .

The function ``solve`` solves a linear system or least-squares problem (the latter is possible with SVD or QR methods, or by specifying the flag ``DECOMP_NORMAL`` ):

.. math::

    \texttt{dst} =  \arg \min _X \| \texttt{src1} \cdot \texttt{X} -  \texttt{src2} \|

If ``DECOMP_LU`` or ``DECOMP_CHOLESKY`` method is used, the function returns 1 if ``src1`` (or
:math:`\texttt{src1}^T\texttt{src1}` ) is non-singular. Otherwise, it returns 0. In the latter case, ``dst`` is not valid. Other methods find a pseudo-solution in case of a singular left-hand side part.

.. note:: If you want to find a unity-norm solution of an under-defined singular system :math:`\texttt{src1}\cdot\texttt{dst}=0` , the function ``solve`` will not do the work. Use :ocv:func:`SVD::solveZ` instead.

.. seealso::

    :ocv:func:`invert`,
    :ocv:class:`SVD`,
    :ocv:func:`eigen`



solveCubic
----------
Finds the real roots of a cubic equation.

.. ocv:function:: int solveCubic( InputArray coeffs, OutputArray roots )

.. ocv:pyfunction:: cv2.solveCubic(coeffs[, roots]) -> retval, roots

.. ocv:cfunction:: int cvSolveCubic( const CvMat* coeffs, CvMat* roots )

.. ocv:pyoldfunction:: cv.SolveCubic(coeffs, roots)-> None

    :param coeffs: equation coefficients, an array of 3 or 4 elements.

    :param roots: output array of real roots that has 1 or 3 elements.

The function ``solveCubic`` finds the real roots of a cubic equation:

* if ``coeffs`` is a 4-element vector:

.. math::

    \texttt{coeffs} [0] x^3 +  \texttt{coeffs} [1] x^2 +  \texttt{coeffs} [2] x +  \texttt{coeffs} [3] = 0

* if ``coeffs`` is a 3-element vector:

.. math::

    x^3 +  \texttt{coeffs} [0] x^2 +  \texttt{coeffs} [1] x +  \texttt{coeffs} [2] = 0

The roots are stored in the ``roots`` array.



solvePoly
---------
Finds the real or complex roots of a polynomial equation.

.. ocv:function:: double solvePoly( InputArray coeffs, OutputArray roots, int maxIters=300 )

.. ocv:pyfunction:: cv2.solvePoly(coeffs[, roots[, maxIters]]) -> retval, roots

    :param coeffs: array of polynomial coefficients.

    :param roots: output (complex) array of roots.

    :param maxIters: maximum number of iterations the algorithm does.

The function ``solvePoly`` finds real and complex roots of a polynomial equation:

.. math::

    \texttt{coeffs} [n] x^{n} +  \texttt{coeffs} [n-1] x^{n-1} + ... +  \texttt{coeffs} [1] x +  \texttt{coeffs} [0] = 0



sort
----
Sorts each row or each column of a matrix.

.. ocv:function:: void sort(InputArray src, OutputArray dst, int flags)

.. ocv:pyfunction:: cv2.sort(src, flags[, dst]) -> dst

    :param src: input single-channel array.

    :param dst: output array of the same size and type as ``src``.

    :param flags: operation flags, a combination of the following values:

            * **CV_SORT_EVERY_ROW** each matrix row is sorted independently.

            * **CV_SORT_EVERY_COLUMN** each matrix column is sorted independently; this flag and the previous one are mutually exclusive.

            * **CV_SORT_ASCENDING** each matrix row is sorted in the ascending order.

            * **CV_SORT_DESCENDING** each matrix row is sorted in the descending order; this flag and the previous one are also mutually exclusive.

The function ``sort`` sorts each matrix row or each matrix column in ascending or descending order. So you should pass two operation flags to get desired behaviour. If you want to sort matrix rows or columns lexicographically, you can use STL ``std::sort`` generic function with the proper comparison predicate.

.. seealso::

    :ocv:func:`sortIdx`,
    :ocv:func:`randShuffle`



sortIdx
-------
Sorts each row or each column of a matrix.

.. ocv:function:: void sortIdx(InputArray src, OutputArray dst, int flags)

.. ocv:pyfunction:: cv2.sortIdx(src, flags[, dst]) -> dst

    :param src: input single-channel array.

    :param dst: output integer array of the same size as ``src``.

    :param flags: operation flags that could be a combination of the following values:

            * **CV_SORT_EVERY_ROW** each matrix row is sorted independently.

            * **CV_SORT_EVERY_COLUMN** each matrix column is sorted independently; this flag and the previous one are mutually exclusive.

            * **CV_SORT_ASCENDING** each matrix row is sorted in the ascending order.

            * **CV_SORT_DESCENDING** each matrix row is sorted in the descending order; his flag and the previous one are also mutually exclusive.

The function ``sortIdx`` sorts each matrix row or each matrix column in the ascending or descending order. So you should pass two operation flags to get desired behaviour. Instead of reordering the elements themselves, it stores the indices of sorted elements in the output array. For example: ::

    Mat A = Mat::eye(3,3,CV_32F), B;
    sortIdx(A, B, CV_SORT_EVERY_ROW + CV_SORT_ASCENDING);
    // B will probably contain
    // (because of equal elements in A some permutations are possible):
    // [[1, 2, 0], [0, 2, 1], [0, 1, 2]]


.. seealso::

    :ocv:func:`sort`,
    :ocv:func:`randShuffle`



split
-----
Divides a multi-channel array into several single-channel arrays.

.. ocv:function:: void split( const Mat& src, Mat* mvbegin )

.. ocv:function:: void split( InputArray m, OutputArrayOfArrays mv )

.. ocv:pyfunction:: cv2.split(m[, mv]) -> mv

.. ocv:cfunction:: void cvSplit(const CvArr* src, CvArr* dst0, CvArr* dst1, CvArr* dst2, CvArr* dst3)

.. ocv:pyoldfunction:: cv.Split(src, dst0, dst1, dst2, dst3)-> None

    :param src: input multi-channel array.

    :param mv: output array or vector of arrays; in the first variant of the function the number of arrays must match ``src.channels()``; the arrays themselves are reallocated, if needed.

The functions ``split`` split a multi-channel array into separate single-channel arrays:

.. math::

    \texttt{mv} [c](I) =  \texttt{src} (I)_c

If you need to extract a single channel or do some other sophisticated channel permutation, use
:ocv:func:`mixChannels` .

.. seealso::

    :ocv:func:`merge`,
    :ocv:func:`mixChannels`,
    :ocv:func:`cvtColor`



sqrt
----
Calculates a square root of array elements.

.. ocv:function:: void sqrt(InputArray src, OutputArray dst)

.. ocv:pyfunction:: cv2.sqrt(src[, dst]) -> dst

.. ocv:cfunction:: float cvSqrt(float value)
.. ocv:pyoldfunction:: cv.Sqrt(value)-> float

    :param src: input floating-point array.

    :param dst: output array of the same size and type as ``src``.

The functions ``sqrt`` calculate a square root of each input array element. In case of multi-channel arrays, each channel is processed independently. The accuracy is approximately the same as of the built-in ``std::sqrt`` .

.. seealso::

    :ocv:func:`pow`,
    :ocv:func:`magnitude`



subtract
--------
Calculates the per-element difference between two arrays or array and a scalar.

.. ocv:function:: void subtract(InputArray src1, InputArray src2, OutputArray dst, InputArray mask=noArray(), int dtype=-1)

.. ocv:pyfunction:: cv2.subtract(src1, src2[, dst[, mask[, dtype]]]) -> dst

.. ocv:cfunction:: void cvSub(const CvArr* src1, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL)
.. ocv:cfunction:: void cvSubRS( const CvArr* src, CvScalar value, CvArr* dst, const CvArr* mask=NULL )
.. ocv:cfunction:: void cvSubS( const CvArr* src, CvScalar value, CvArr* dst, const CvArr* mask=NULL )

.. ocv:pyoldfunction:: cv.Sub(src1, src2, dst, mask=None) -> None
.. ocv:pyoldfunction:: cv.SubRS(src, value, dst, mask=None) -> None
.. ocv:pyoldfunction:: cv.SubS(src, value, dst, mask=None) -> None

    :param src1: first input array or a scalar.

    :param src2: second input array or a scalar.

    :param dst: output array of the same size and the same number of channels as the input array.

    :param mask: optional operation mask; this is an 8-bit single channel array that specifies elements of the output array to be changed.

    :param dtype: optional depth of the output array (see the details below).

The function ``subtract`` calculates:

 *
    Difference between two arrays, when both input arrays have the same size and the same number of channels:

    .. math::

        \texttt{dst}(I) =  \texttt{saturate} ( \texttt{src1}(I) -  \texttt{src2}(I)) \quad \texttt{if mask}(I) \ne0

 *
    Difference between an array and a scalar, when ``src2`` is constructed from ``Scalar`` or has the same number of elements as ``src1.channels()``:

    .. math::

        \texttt{dst}(I) =  \texttt{saturate} ( \texttt{src1}(I) -  \texttt{src2} ) \quad \texttt{if mask}(I) \ne0

 *
    Difference between a scalar and an array, when ``src1`` is constructed from ``Scalar`` or has the same number of elements as ``src2.channels()``:

    .. math::

        \texttt{dst}(I) =  \texttt{saturate} ( \texttt{src1} -  \texttt{src2}(I) ) \quad \texttt{if mask}(I) \ne0

 *
    The reverse difference between a scalar and an array in the case of ``SubRS``:

    .. math::

        \texttt{dst}(I) =  \texttt{saturate} ( \texttt{src2} -  \texttt{src1}(I) ) \quad \texttt{if mask}(I) \ne0

where ``I`` is a multi-dimensional index of array elements. In case of multi-channel arrays, each channel is processed independently.

The first function in the list above can be replaced with matrix expressions: ::

    dst = src1 - src2;
    dst -= src1; // equivalent to subtract(dst, src1, dst);

The input arrays and the output array can all have the same or different depths. For example, you can subtract to 8-bit unsigned arrays and store the difference in a 16-bit signed array. Depth of the output array is determined by ``dtype`` parameter. In the second and third cases above, as well as in the first case, when ``src1.depth() == src2.depth()``, ``dtype`` can be set to the default ``-1``. In this case the output array will have the same depth as the input array, be it ``src1``, ``src2`` or both.

.. note:: Saturation is not applied when the output array has the depth ``CV_32S``. You may even get result of an incorrect sign in the case of overflow.

.. seealso::

    :ocv:func:`add`,
    :ocv:func:`addWeighted`,
    :ocv:func:`scaleAdd`,
    :ocv:func:`Mat::convertTo`,
    :ref:`MatrixExpressions`



SVD
---
.. ocv:class:: SVD

Class for computing Singular Value Decomposition of a floating-point matrix. The Singular Value Decomposition is used to solve least-square problems, under-determined linear systems, invert matrices, compute condition numbers, and so on.

For a faster operation, you can pass ``flags=SVD::MODIFY_A|...`` to modify the decomposed matrix when it is not necessary to preserve it. If you want to compute a condition number of a matrix or an absolute value of its determinant, you do not need ``u`` and ``vt`` . You can pass ``flags=SVD::NO_UV|...`` . Another flag ``FULL_UV`` indicates that full-size ``u`` and ``vt`` must be computed, which is not necessary most of the time.

.. seealso::

    :ocv:func:`invert`,
    :ocv:func:`solve`,
    :ocv:func:`eigen`,
    :ocv:func:`determinant`



SVD::SVD
--------
The constructors.

.. ocv:function:: SVD::SVD()

.. ocv:function:: SVD::SVD( InputArray src, int flags=0 )

    :param src: decomposed matrix.

    :param flags: operation flags.

        * **SVD::MODIFY_A** use the algorithm to modify the decomposed matrix; it can save space and speed up processing.

        * **SVD::NO_UV** indicates that only a vector of singular values ``w`` is to be processed, while ``u`` and ``vt`` will be set to empty matrices.

        * **SVD::FULL_UV** when the matrix is not square, by default the algorithm produces ``u`` and ``vt`` matrices of sufficiently large size for the further ``A`` reconstruction; if, however,   ``FULL_UV`` flag is specified, ``u`` and ``vt`` will be full-size square orthogonal matrices.

The first constructor initializes an empty ``SVD`` structure. The second constructor initializes an empty ``SVD`` structure and then calls
:ocv:funcx:`SVD::operator()` .


SVD::operator ()
----------------
Performs SVD of a matrix.

.. ocv:function:: SVD& SVD::operator()( InputArray src, int flags=0 )

    :param src: decomposed matrix.

    :param flags: operation flags.

        * **SVD::MODIFY_A** use the algorithm to modify the decomposed matrix; it can save space and speed up processing.

        * **SVD::NO_UV** use only singular values; the algorithm does not compute ``u`` and ``vt`` matrices.

        * **SVD::FULL_UV** when the matrix is not square, by default the algorithm produces ``u`` and ``vt`` matrices of sufficiently large size for the further ``A`` reconstruction; if, however, the ``FULL_UV``  flag is specified, ``u``  and  ``vt``  are full-size square orthogonal matrices.

The operator performs the singular value decomposition of the supplied matrix. The ``u``,``vt`` , and the vector of singular values ``w`` are stored in the structure. The same ``SVD`` structure can be reused many times with different matrices. Each time, if needed, the previous ``u``,``vt`` , and ``w`` are reclaimed and the new matrices are created, which is all handled by
:ocv:func:`Mat::create` .


SVD::compute
------------
Performs SVD of a matrix

.. ocv:function:: static void SVD::compute( InputArray src, OutputArray w, OutputArray u, OutputArray vt, int flags=0 )

.. ocv:function:: static void SVD::compute( InputArray src, OutputArray w, int flags=0 )

.. ocv:pyfunction:: cv2.SVDecomp(src[, w[, u[, vt[, flags]]]]) -> w, u, vt

.. ocv:cfunction:: void cvSVD( CvArr* A, CvArr* W, CvArr* U=NULL, CvArr* V=NULL, int flags=0 )

.. ocv:pyoldfunction:: cv.SVD(A, W, U=None, V=None, flags=0) -> None

    :param src: decomposed matrix

    :param w: calculated singular values

    :param u: calculated left singular vectors

    :param V: calculated right singular vectors

    :param vt: transposed matrix of right singular values

    :param flags: operation flags - see :ocv:func:`SVD::SVD`.

The methods/functions perform SVD of matrix. Unlike ``SVD::SVD`` constructor and ``SVD::operator()``, they store the results to the user-provided matrices. ::

    Mat A, w, u, vt;
    SVD::compute(A, w, u, vt);


SVD::solveZ
-----------
Solves an under-determined singular linear system.

.. ocv:function:: static void SVD::solveZ( InputArray src, OutputArray dst )

    :param src: left-hand-side matrix.

    :param dst: found solution.

The method finds a unit-length solution ``x`` of a singular linear system
``A*x = 0``. Depending on the rank of ``A``, there can be no solutions, a single solution or an infinite number of solutions. In general, the algorithm solves the following problem:

.. math::

    dst =  \arg \min _{x:  \| x \| =1}  \| src  \cdot x  \|


SVD::backSubst
--------------
Performs a singular value back substitution.

.. ocv:function:: void SVD::backSubst( InputArray rhs, OutputArray dst ) const

.. ocv:function:: static void SVD::backSubst( InputArray w, InputArray u, InputArray vt, InputArray rhs, OutputArray dst )

.. ocv:pyfunction:: cv2.SVBackSubst(w, u, vt, rhs[, dst]) -> dst

.. ocv:cfunction:: void cvSVBkSb( const CvArr* W, const CvArr* U, const CvArr* V, const CvArr* B, CvArr* X, int flags )

.. ocv:pyoldfunction:: cv.SVBkSb(W, U, V, B, X, flags) -> None

    :param w: singular values

    :param u: left singular vectors

    :param V: right singular vectors

    :param vt: transposed matrix of right singular vectors.

    :param rhs: right-hand side of a linear system ``(u*w*v')*dst = rhs`` to be solved, where ``A`` has been previously decomposed.

    :param dst: found solution of the system.

The method calculates a back substitution for the specified right-hand side:

.. math::

    \texttt{x} =  \texttt{vt} ^T  \cdot diag( \texttt{w} )^{-1}  \cdot \texttt{u} ^T  \cdot \texttt{rhs} \sim \texttt{A} ^{-1}  \cdot \texttt{rhs}

Using this technique you can either get a very accurate solution of the convenient linear system, or the best (in the least-squares terms) pseudo-solution of an overdetermined linear system.

.. note:: Explicit SVD with the further back substitution only makes sense if you need to solve many linear systems with the same left-hand side (for example, ``src`` ). If all you need is to solve a single system (possibly with multiple ``rhs`` immediately available), simply call :ocv:func:`solve` add pass ``DECOMP_SVD`` there. It does absolutely the same thing.



sum
---
Calculates the sum of array elements.

.. ocv:function:: Scalar sum( InputArray src )

.. ocv:pyfunction:: cv2.sumElems(src) -> retval

.. ocv:cfunction:: CvScalar cvSum(const CvArr* arr)

.. ocv:pyoldfunction:: cv.Sum(arr) -> scalar

    :param arr: input array that must have from 1 to 4 channels.

The functions ``sum`` calculate and return the sum of array elements, independently for each channel.

.. seealso::

    :ocv:func:`countNonZero`,
    :ocv:func:`mean`,
    :ocv:func:`meanStdDev`,
    :ocv:func:`norm`,
    :ocv:func:`minMaxLoc`,
    :ocv:func:`reduce`



theRNG
------
Returns the default random number generator.

.. ocv:function:: RNG& theRNG()

The function ``theRNG`` returns the default random number generator. For each thread, there is a separate random number generator, so you can use the function safely in multi-thread environments. If you just need to get a single random number using this generator or initialize an array, you can use
:ocv:func:`randu` or
:ocv:func:`randn` instead. But if you are going to generate many random numbers inside a loop, it is much faster to use this function to retrieve the generator and then use ``RNG::operator _Tp()`` .

.. seealso::

    :ocv:class:`RNG`,
    :ocv:func:`randu`,
    :ocv:func:`randn`



trace
-----
Returns the trace of a matrix.

.. ocv:function:: Scalar trace( InputArray mtx )

.. ocv:pyfunction:: cv2.trace(mtx) -> retval

.. ocv:cfunction:: CvScalar cvTrace(const CvArr* mat)

.. ocv:pyoldfunction:: cv.Trace(mat) -> scalar

    :param mat: input matrix.

The function ``trace`` returns the sum of the diagonal elements of the matrix ``mtx`` .

.. math::

    \mathrm{tr} ( \texttt{mtx} ) =  \sum _i  \texttt{mtx} (i,i)



transform
---------
Performs the matrix transformation of every array element.

.. ocv:function:: void transform( InputArray src, OutputArray dst, InputArray m )

.. ocv:pyfunction:: cv2.transform(src, m[, dst]) -> dst

.. ocv:cfunction:: void cvTransform( const CvArr* src, CvArr* dst, const CvMat* transmat, const CvMat* shiftvec=NULL )

.. ocv:pyoldfunction:: cv.Transform(src, dst, transmat, shiftvec=None)-> None

    :param src: input array that must have as many channels (1 to 4) as ``m.cols`` or ``m.cols-1``.

    :param dst: output array of the same size and depth as ``src``; it has as many channels as ``m.rows``.

    :param m: transformation ``2x2`` or ``2x3`` floating-point matrix.

    :param shiftvec: optional translation vector (when ``m`` is ``2x2``)

The function ``transform`` performs the matrix transformation of every element of the array ``src`` and stores the results in ``dst`` :

.. math::

    \texttt{dst} (I) =  \texttt{m} \cdot \texttt{src} (I)

(when ``m.cols=src.channels()`` ), or

.. math::

    \texttt{dst} (I) =  \texttt{m} \cdot [ \texttt{src} (I); 1]

(when ``m.cols=src.channels()+1`` )

Every element of the ``N`` -channel array ``src`` is interpreted as ``N`` -element vector that is transformed using
the ``M x N`` or ``M x (N+1)`` matrix ``m``
to ``M``-element vector - the corresponding element of the output array ``dst`` .

The function may be used for geometrical transformation of
``N`` -dimensional
points, arbitrary linear color space transformation (such as various kinds of RGB to YUV transforms), shuffling the image channels, and so forth.

.. seealso::

    :ocv:func:`perspectiveTransform`,
    :ocv:func:`getAffineTransform`,
    :ocv:func:`estimateRigidTransform`,
    :ocv:func:`warpAffine`,
    :ocv:func:`warpPerspective`



transpose
---------
Transposes a matrix.

.. ocv:function:: void transpose(InputArray src, OutputArray dst)

.. ocv:pyfunction:: cv2.transpose(src[, dst]) -> dst

.. ocv:cfunction:: void cvTranspose(const CvArr* src, CvArr* dst)
.. ocv:pyoldfunction:: cv.Transpose(src, dst)-> None

    :param src: input array.

    :param dst: output array of the same type as ``src``.

The function :ocv:func:`transpose` transposes the matrix ``src`` :

.. math::

    \texttt{dst} (i,j) =  \texttt{src} (j,i)

.. note:: No complex conjugation is done in case of a complex matrix. It it should be done separately if needed.