1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510
|
Operations on Arrays
====================
.. highlight:: cpp
abs
---
Calculates an absolute value of each matrix element.
.. ocv:function:: MatExpr abs( const Mat& m )
.. ocv:function:: MatExpr abs( const MatExpr& e )
:param m: matrix.
:param e: matrix expression.
``abs`` is a meta-function that is expanded to one of :ocv:func:`absdiff` or :ocv:func:`convertScaleAbs` forms:
* ``C = abs(A-B)`` is equivalent to ``absdiff(A, B, C)``
* ``C = abs(A)`` is equivalent to ``absdiff(A, Scalar::all(0), C)``
* ``C = Mat_<Vec<uchar,n> >(abs(A*alpha + beta))`` is equivalent to ``convertScaleAbs(A, C, alpha, beta)``
The output matrix has the same size and the same type as the input one except for the last case, where ``C`` is ``depth=CV_8U`` .
.. seealso:: :ref:`MatrixExpressions`, :ocv:func:`absdiff`, :ocv:func:`convertScaleAbs`
absdiff
-------
Calculates the per-element absolute difference between two arrays or between an array and a scalar.
.. ocv:function:: void absdiff(InputArray src1, InputArray src2, OutputArray dst)
.. ocv:pyfunction:: cv2.absdiff(src1, src2[, dst]) -> dst
.. ocv:cfunction:: void cvAbsDiff(const CvArr* src1, const CvArr* src2, CvArr* dst)
.. ocv:cfunction:: void cvAbsDiffS(const CvArr* src, CvArr* dst, CvScalar value)
.. ocv:pyoldfunction:: cv.AbsDiff(src1, src2, dst)-> None
.. ocv:pyoldfunction:: cv.AbsDiffS(src, dst, value)-> None
:param src1: first input array or a scalar.
:param src2: second input array or a scalar.
:param src: single input array.
:param value: scalar value.
:param dst: output array that has the same size and type as input arrays.
The function ``absdiff`` calculates:
*
Absolute difference between two arrays when they have the same size and type:
.. math::
\texttt{dst}(I) = \texttt{saturate} (| \texttt{src1}(I) - \texttt{src2}(I)|)
*
Absolute difference between an array and a scalar when the second array is constructed from ``Scalar`` or has as many elements as the number of channels in ``src1``:
.. math::
\texttt{dst}(I) = \texttt{saturate} (| \texttt{src1}(I) - \texttt{src2} |)
*
Absolute difference between a scalar and an array when the first array is constructed from ``Scalar`` or has as many elements as the number of channels in ``src2``:
.. math::
\texttt{dst}(I) = \texttt{saturate} (| \texttt{src1} - \texttt{src2}(I) |)
where ``I`` is a multi-dimensional index of array elements. In case of multi-channel arrays, each channel is processed independently.
.. note:: Saturation is not applied when the arrays have the depth ``CV_32S``. You may even get a negative value in the case of overflow.
.. seealso:: :ocv:func:`abs`
add
---
Calculates the per-element sum of two arrays or an array and a scalar.
.. ocv:function:: void add(InputArray src1, InputArray src2, OutputArray dst, InputArray mask=noArray(), int dtype=-1)
.. ocv:pyfunction:: cv2.add(src1, src2[, dst[, mask[, dtype]]]) -> dst
.. ocv:cfunction:: void cvAdd(const CvArr* src1, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL)
.. ocv:cfunction:: void cvAddS(const CvArr* src, CvScalar value, CvArr* dst, const CvArr* mask=NULL)
.. ocv:pyoldfunction:: cv.Add(src1, src2, dst, mask=None)-> None
.. ocv:pyoldfunction:: cv.AddS(src, value, dst, mask=None)-> None
:param src1: first input array or a scalar.
:param src2: second input array or a scalar.
:param src: single input array.
:param value: scalar value.
:param dst: output array that has the same size and number of channels as the input array(s); the depth is defined by ``dtype`` or ``src1``/``src2``.
:param mask: optional operation mask - 8-bit single channel array, that specifies elements of the output array to be changed.
:param dtype: optional depth of the output array (see the discussion below).
The function ``add`` calculates:
*
Sum of two arrays when both input arrays have the same size and the same number of channels:
.. math::
\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}(I) + \texttt{src2}(I)) \quad \texttt{if mask}(I) \ne0
*
Sum of an array and a scalar when ``src2`` is constructed from ``Scalar`` or has the same number of elements as ``src1.channels()``:
.. math::
\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}(I) + \texttt{src2} ) \quad \texttt{if mask}(I) \ne0
*
Sum of a scalar and an array when ``src1`` is constructed from ``Scalar`` or has the same number of elements as ``src2.channels()``:
.. math::
\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1} + \texttt{src2}(I) ) \quad \texttt{if mask}(I) \ne0
where ``I`` is a multi-dimensional index of array elements. In case of multi-channel arrays, each channel is processed independently.
The first function in the list above can be replaced with matrix expressions: ::
dst = src1 + src2;
dst += src1; // equivalent to add(dst, src1, dst);
The input arrays and the output array can all have the same or different depths. For example, you can add a 16-bit unsigned array to a 8-bit signed array and store the sum as a 32-bit floating-point array. Depth of the output array is determined by the ``dtype`` parameter. In the second and third cases above, as well as in the first case, when ``src1.depth() == src2.depth()``, ``dtype`` can be set to the default ``-1``. In this case, the output array will have the same depth as the input array, be it ``src1``, ``src2`` or both.
.. note:: Saturation is not applied when the output array has the depth ``CV_32S``. You may even get result of an incorrect sign in the case of overflow.
.. seealso::
:ocv:func:`subtract`,
:ocv:func:`addWeighted`,
:ocv:func:`scaleAdd`,
:ocv:func:`Mat::convertTo`,
:ref:`MatrixExpressions`
addWeighted
-----------
Calculates the weighted sum of two arrays.
.. ocv:function:: void addWeighted(InputArray src1, double alpha, InputArray src2, double beta, double gamma, OutputArray dst, int dtype=-1)
.. ocv:pyfunction:: cv2.addWeighted(src1, alpha, src2, beta, gamma[, dst[, dtype]]) -> dst
.. ocv:cfunction:: void cvAddWeighted(const CvArr* src1, double alpha, const CvArr* src2, double beta, double gamma, CvArr* dst)
.. ocv:pyoldfunction:: cv.AddWeighted(src1, alpha, src2, beta, gamma, dst)-> None
:param src1: first input array.
:param alpha: weight of the first array elements.
:param src2: second input array of the same size and channel number as ``src1``.
:param beta: weight of the second array elements.
:param dst: output array that has the same size and number of channels as the input arrays.
:param gamma: scalar added to each sum.
:param dtype: optional depth of the output array; when both input arrays have the same depth, ``dtype`` can be set to ``-1``, which will be equivalent to ``src1.depth()``.
The function ``addWeighted`` calculates the weighted sum of two arrays as follows:
.. math::
\texttt{dst} (I)= \texttt{saturate} ( \texttt{src1} (I)* \texttt{alpha} + \texttt{src2} (I)* \texttt{beta} + \texttt{gamma} )
where ``I`` is a multi-dimensional index of array elements. In case of multi-channel arrays, each channel is processed independently.
The function can be replaced with a matrix expression: ::
dst = src1*alpha + src2*beta + gamma;
.. note:: Saturation is not applied when the output array has the depth ``CV_32S``. You may even get result of an incorrect sign in the case of overflow.
.. seealso::
:ocv:func:`add`,
:ocv:func:`subtract`,
:ocv:func:`scaleAdd`,
:ocv:func:`Mat::convertTo`,
:ref:`MatrixExpressions`
bitwise_and
-----------
Calculates the per-element bit-wise conjunction of two arrays or an array and a scalar.
.. ocv:function:: void bitwise_and(InputArray src1, InputArray src2, OutputArray dst, InputArray mask=noArray())
.. ocv:pyfunction:: cv2.bitwise_and(src1, src2[, dst[, mask]]) -> dst
.. ocv:cfunction:: void cvAnd(const CvArr* src1, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL)
.. ocv:cfunction:: void cvAndS(const CvArr* src, CvScalar value, CvArr* dst, const CvArr* mask=NULL)
.. ocv:pyoldfunction:: cv.And(src1, src2, dst, mask=None)-> None
.. ocv:pyoldfunction:: cv.AndS(src, value, dst, mask=None)-> None
:param src1: first input array or a scalar.
:param src2: second input array or a scalar.
:param src: single input array.
:param value: scalar value.
:param dst: output array that has the same size and type as the input arrays.
:param mask: optional operation mask, 8-bit single channel array, that specifies elements of the output array to be changed.
The function calculates the per-element bit-wise logical conjunction for:
*
Two arrays when ``src1`` and ``src2`` have the same size:
.. math::
\texttt{dst} (I) = \texttt{src1} (I) \wedge \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0
*
An array and a scalar when ``src2`` is constructed from ``Scalar`` or has the same number of elements as ``src1.channels()``:
.. math::
\texttt{dst} (I) = \texttt{src1} (I) \wedge \texttt{src2} \quad \texttt{if mask} (I) \ne0
*
A scalar and an array when ``src1`` is constructed from ``Scalar`` or has the same number of elements as ``src2.channels()``:
.. math::
\texttt{dst} (I) = \texttt{src1} \wedge \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0
In case of floating-point arrays, their machine-specific bit representations (usually IEEE754-compliant) are used for the operation. In case of multi-channel arrays, each channel is processed independently. In the second and third cases above, the scalar is first converted to the array type.
bitwise_not
-----------
Inverts every bit of an array.
.. ocv:function:: void bitwise_not(InputArray src, OutputArray dst, InputArray mask=noArray())
.. ocv:pyfunction:: cv2.bitwise_not(src[, dst[, mask]]) -> dst
.. ocv:cfunction:: void cvNot(const CvArr* src, CvArr* dst)
.. ocv:pyoldfunction:: cv.Not(src, dst)-> None
:param src: input array.
:param dst: output array that has the same size and type as the input array.
:param mask: optional operation mask, 8-bit single channel array, that specifies elements of the output array to be changed.
The function calculates per-element bit-wise inversion of the input array:
.. math::
\texttt{dst} (I) = \neg \texttt{src} (I)
In case of a floating-point input array, its machine-specific bit representation (usually IEEE754-compliant) is used for the operation. In case of multi-channel arrays, each channel is processed independently.
bitwise_or
----------
Calculates the per-element bit-wise disjunction of two arrays or an array and a scalar.
.. ocv:function:: void bitwise_or(InputArray src1, InputArray src2, OutputArray dst, InputArray mask=noArray())
.. ocv:pyfunction:: cv2.bitwise_or(src1, src2[, dst[, mask]]) -> dst
.. ocv:cfunction:: void cvOr(const CvArr* src1, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL)
.. ocv:cfunction:: void cvOrS(const CvArr* src, CvScalar value, CvArr* dst, const CvArr* mask=NULL)
.. ocv:pyoldfunction:: cv.Or(src1, src2, dst, mask=None)-> None
.. ocv:pyoldfunction:: cv.OrS(src, value, dst, mask=None)-> None
:param src1: first input array or a scalar.
:param src2: second input array or a scalar.
:param src: single input array.
:param value: scalar value.
:param dst: output array that has the same size and type as the input arrays.
:param mask: optional operation mask, 8-bit single channel array, that specifies elements of the output array to be changed.
The function calculates the per-element bit-wise logical disjunction for:
*
Two arrays when ``src1`` and ``src2`` have the same size:
.. math::
\texttt{dst} (I) = \texttt{src1} (I) \vee \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0
*
An array and a scalar when ``src2`` is constructed from ``Scalar`` or has the same number of elements as ``src1.channels()``:
.. math::
\texttt{dst} (I) = \texttt{src1} (I) \vee \texttt{src2} \quad \texttt{if mask} (I) \ne0
*
A scalar and an array when ``src1`` is constructed from ``Scalar`` or has the same number of elements as ``src2.channels()``:
.. math::
\texttt{dst} (I) = \texttt{src1} \vee \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0
In case of floating-point arrays, their machine-specific bit representations (usually IEEE754-compliant) are used for the operation. In case of multi-channel arrays, each channel is processed independently. In the second and third cases above, the scalar is first converted to the array type.
bitwise_xor
-----------
Calculates the per-element bit-wise "exclusive or" operation on two arrays or an array and a scalar.
.. ocv:function:: void bitwise_xor(InputArray src1, InputArray src2, OutputArray dst, InputArray mask=noArray())
.. ocv:pyfunction:: cv2.bitwise_xor(src1, src2[, dst[, mask]]) -> dst
.. ocv:cfunction:: void cvXor(const CvArr* src1, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL)
.. ocv:cfunction:: void cvXorS(const CvArr* src, CvScalar value, CvArr* dst, const CvArr* mask=NULL)
.. ocv:pyoldfunction:: cv.Xor(src1, src2, dst, mask=None)-> None
.. ocv:pyoldfunction:: cv.XorS(src, value, dst, mask=None)-> None
:param src1: first input array or a scalar.
:param src2: second input array or a scalar.
:param src: single input array.
:param value: scalar value.
:param dst: output array that has the same size and type as the input arrays.
:param mask: optional operation mask, 8-bit single channel array, that specifies elements of the output array to be changed.
The function calculates the per-element bit-wise logical "exclusive-or" operation for:
*
Two arrays when ``src1`` and ``src2`` have the same size:
.. math::
\texttt{dst} (I) = \texttt{src1} (I) \oplus \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0
*
An array and a scalar when ``src2`` is constructed from ``Scalar`` or has the same number of elements as ``src1.channels()``:
.. math::
\texttt{dst} (I) = \texttt{src1} (I) \oplus \texttt{src2} \quad \texttt{if mask} (I) \ne0
*
A scalar and an array when ``src1`` is constructed from ``Scalar`` or has the same number of elements as ``src2.channels()``:
.. math::
\texttt{dst} (I) = \texttt{src1} \oplus \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0
In case of floating-point arrays, their machine-specific bit representations (usually IEEE754-compliant) are used for the operation. In case of multi-channel arrays, each channel is processed independently. In the 2nd and 3rd cases above, the scalar is first converted to the array type.
calcCovarMatrix
---------------
Calculates the covariance matrix of a set of vectors.
.. ocv:function:: void calcCovarMatrix( const Mat* samples, int nsamples, Mat& covar, Mat& mean, int flags, int ctype=CV_64F)
.. ocv:function:: void calcCovarMatrix( InputArray samples, OutputArray covar, OutputArray mean, int flags, int ctype=CV_64F)
.. ocv:pyfunction:: cv2.calcCovarMatrix(samples, flags[, covar[, mean[, ctype]]]) -> covar, mean
.. ocv:cfunction:: void cvCalcCovarMatrix( const CvArr** vects, int count, CvArr* cov_mat, CvArr* avg, int flags )
.. ocv:pyoldfunction:: cv.CalcCovarMatrix(vects, covMat, avg, flags)-> None
:param samples: samples stored either as separate matrices or as rows/columns of a single matrix.
:param nsamples: number of samples when they are stored separately.
:param covar: output covariance matrix of the type ``ctype`` and square size.
:param ctype: type of the matrixl; it equals 'CV_64F' by default.
:param mean: input or output (depending on the flags) array as the average value of the input vectors.
:param vects: a set of vectors.
:param flags: operation flags as a combination of the following values:
* **CV_COVAR_SCRAMBLED** The output covariance matrix is calculated as:
.. math::
\texttt{scale} \cdot [ \texttt{vects} [0]- \texttt{mean} , \texttt{vects} [1]- \texttt{mean} ,...]^T \cdot [ \texttt{vects} [0]- \texttt{mean} , \texttt{vects} [1]- \texttt{mean} ,...],
The covariance matrix will be ``nsamples x nsamples``. Such an unusual covariance matrix is used for fast PCA of a set of very large vectors (see, for example, the EigenFaces technique for face recognition). Eigenvalues of this "scrambled" matrix match the eigenvalues of the true covariance matrix. The "true" eigenvectors can be easily calculated from the eigenvectors of the "scrambled" covariance matrix.
* **CV_COVAR_NORMAL** The output covariance matrix is calculated as:
.. math::
\texttt{scale} \cdot [ \texttt{vects} [0]- \texttt{mean} , \texttt{vects} [1]- \texttt{mean} ,...] \cdot [ \texttt{vects} [0]- \texttt{mean} , \texttt{vects} [1]- \texttt{mean} ,...]^T,
``covar`` will be a square matrix of the same size as the total number of elements in each input vector. One and only one of ``CV_COVAR_SCRAMBLED`` and ``CV_COVAR_NORMAL`` must be specified.
* **CV_COVAR_USE_AVG** If the flag is specified, the function does not calculate ``mean`` from the input vectors but, instead, uses the passed ``mean`` vector. This is useful if ``mean`` has been pre-calculated or known in advance, or if the covariance matrix is calculated by parts. In this case, ``mean`` is not a mean vector of the input sub-set of vectors but rather the mean vector of the whole set.
* **CV_COVAR_SCALE** If the flag is specified, the covariance matrix is scaled. In the "normal" mode, ``scale`` is ``1./nsamples`` . In the "scrambled" mode, ``scale`` is the reciprocal of the total number of elements in each input vector. By default (if the flag is not specified), the covariance matrix is not scaled ( ``scale=1`` ).
* **CV_COVAR_ROWS** [Only useful in the second variant of the function] If the flag is specified, all the input vectors are stored as rows of the ``samples`` matrix. ``mean`` should be a single-row vector in this case.
* **CV_COVAR_COLS** [Only useful in the second variant of the function] If the flag is specified, all the input vectors are stored as columns of the ``samples`` matrix. ``mean`` should be a single-column vector in this case.
The functions ``calcCovarMatrix`` calculate the covariance matrix and, optionally, the mean vector of the set of input vectors.
.. seealso::
:ocv:class:`PCA`,
:ocv:func:`mulTransposed`,
:ocv:func:`Mahalanobis`
cartToPolar
-----------
Calculates the magnitude and angle of 2D vectors.
.. ocv:function:: void cartToPolar(InputArray x, InputArray y, OutputArray magnitude, OutputArray angle, bool angleInDegrees=false)
.. ocv:pyfunction:: cv2.cartToPolar(x, y[, magnitude[, angle[, angleInDegrees]]]) -> magnitude, angle
.. ocv:cfunction:: void cvCartToPolar( const CvArr* x, const CvArr* y, CvArr* magnitude, CvArr* angle=NULL, int angle_in_degrees=0 )
.. ocv:pyoldfunction:: cv.CartToPolar(x, y, magnitude, angle=None, angleInDegrees=0)-> None
:param x: array of x-coordinates; this must be a single-precision or double-precision floating-point array.
:param y: array of y-coordinates, that must have the same size and same type as ``x``.
:param magnitude: output array of magnitudes of the same size and type as ``x``.
:param angle: output array of angles that has the same size and type as ``x``; the angles are measured in radians (from 0 to 2*Pi) or in degrees (0 to 360 degrees).
:param angleInDegrees: a flag, indicating whether the angles are measured in radians (which is by default), or in degrees.
:param angle_in_degrees: a flag, indicating whether the angles are measured in radians, or in degrees (specific to C syntax).
The function ``cartToPolar`` calculates either the magnitude, angle, or both for every 2D vector (x(I),y(I)):
.. math::
\begin{array}{l} \texttt{magnitude} (I)= \sqrt{\texttt{x}(I)^2+\texttt{y}(I)^2} , \\ \texttt{angle} (I)= \texttt{atan2} ( \texttt{y} (I), \texttt{x} (I))[ \cdot180 / \pi ] \end{array}
The angles are calculated with accuracy about 0.3 degrees. For the point (0,0), the angle is set to 0.
.. seealso::
:ocv:func:`Sobel`,
:ocv:func:`Scharr`
checkRange
----------
Checks every element of an input array for invalid values.
.. ocv:function:: bool checkRange( InputArray a, bool quiet=true, Point* pos=0, double minVal=-DBL_MAX, double maxVal=DBL_MAX )
.. ocv:pyfunction:: cv2.checkRange(a[, quiet[, minVal[, maxVal]]]) -> retval, pos
:param a: input array.
:param quiet: a flag, indicating whether the functions quietly return false when the array elements are out of range or they throw an exception.
:param pos: optional output parameter, where the position of the first outlier is stored; in the second function ``pos``, when not NULL, must be a pointer to array of ``src.dims`` elements.
:param minVal: inclusive lower boundary of valid values range.
:param maxVal: exclusive upper boundary of valid values range.
The functions ``checkRange`` check that every array element is neither NaN nor
infinite. When ``minVal < -DBL_MAX`` and ``maxVal < DBL_MAX``, the functions also check that each value is between ``minVal`` and ``maxVal``. In case of multi-channel arrays, each channel is processed independently.
If some values are out of range, position of the first outlier is stored in ``pos`` (when
``pos != NULL``). Then, the functions either return false (when ``quiet=true``) or throw an exception.
compare
-------
Performs the per-element comparison of two arrays or an array and scalar value.
.. ocv:function:: void compare(InputArray src1, InputArray src2, OutputArray dst, int cmpop)
.. ocv:pyfunction:: cv2.compare(src1, src2, cmpop[, dst]) -> dst
.. ocv:cfunction:: void cvCmp( const CvArr* src1, const CvArr* src2, CvArr* dst, int cmp_op )
.. ocv:pyoldfunction:: cv.Cmp(src1, src2, dst, cmpOp)-> None
.. ocv:cfunction:: void cvCmpS( const CvArr* src, double value, CvArr* dst, int cmp_op )
.. ocv:pyoldfunction:: cv.CmpS(src, value, dst, cmpOp)-> None
:param src1: first input array or a scalar (in the case of ``cvCmp``, ``cv.Cmp``, ``cvCmpS``, ``cv.CmpS`` it is always an array); when it is an array, it must have a single channel.
:param src2: second input array or a scalar (in the case of ``cvCmp`` and ``cv.Cmp`` it is always an array; in the case of ``cvCmpS``, ``cv.CmpS`` it is always a scalar); when it is an array, it must have a single channel.
:param src: single input array.
:param value: scalar value.
:param dst: output array that has the same size and type as the input arrays.
:param cmpop: a flag, that specifies correspondence between the arrays:
* **CMP_EQ** ``src1`` is equal to ``src2``.
* **CMP_GT** ``src1`` is greater than ``src2``.
* **CMP_GE** ``src1`` is greater than or equal to ``src2``.
* **CMP_LT** ``src1`` is less than ``src2``.
* **CMP_LE** ``src1`` is less than or equal to ``src2``.
* **CMP_NE** ``src1`` is unequal to ``src2``.
The function compares:
*
Elements of two arrays when ``src1`` and ``src2`` have the same size:
.. math::
\texttt{dst} (I) = \texttt{src1} (I) \,\texttt{cmpop}\, \texttt{src2} (I)
*
Elements of ``src1`` with a scalar ``src2`` when ``src2`` is constructed from ``Scalar`` or has a single element:
.. math::
\texttt{dst} (I) = \texttt{src1}(I) \,\texttt{cmpop}\, \texttt{src2}
*
``src1`` with elements of ``src2`` when ``src1`` is constructed from ``Scalar`` or has a single element:
.. math::
\texttt{dst} (I) = \texttt{src1} \,\texttt{cmpop}\, \texttt{src2} (I)
When the comparison result is true, the corresponding element of output array is set to 255.
The comparison operations can be replaced with the equivalent matrix expressions: ::
Mat dst1 = src1 >= src2;
Mat dst2 = src1 < 8;
...
.. seealso::
:ocv:func:`checkRange`,
:ocv:func:`min`,
:ocv:func:`max`,
:ocv:func:`threshold`,
:ref:`MatrixExpressions`
completeSymm
------------
Copies the lower or the upper half of a square matrix to another half.
.. ocv:function:: void completeSymm(InputOutputArray mtx, bool lowerToUpper=false)
.. ocv:pyfunction:: cv2.completeSymm(mtx[, lowerToUpper]) -> None
:param mtx: input-output floating-point square matrix.
:param lowerToUpper: operation flag; if true, the lower half is copied to the upper half. Otherwise, the upper half is copied to the lower half.
The function ``completeSymm`` copies the lower half of a square matrix to its another half. The matrix diagonal remains unchanged:
*
:math:`\texttt{mtx}_{ij}=\texttt{mtx}_{ji}` for
:math:`i > j` if ``lowerToUpper=false``
*
:math:`\texttt{mtx}_{ij}=\texttt{mtx}_{ji}` for
:math:`i < j` if ``lowerToUpper=true``
.. seealso::
:ocv:func:`flip`,
:ocv:func:`transpose`
convertScaleAbs
---------------
Scales, calculates absolute values, and converts the result to 8-bit.
.. ocv:function:: void convertScaleAbs(InputArray src, OutputArray dst, double alpha=1, double beta=0)
.. ocv:pyfunction:: cv2.convertScaleAbs(src[, dst[, alpha[, beta]]]) -> dst
.. ocv:cfunction:: void cvConvertScaleAbs(const CvArr* src, CvArr* dst, double scale=1, double shift=0)
.. ocv:pyoldfunction:: cv.ConvertScaleAbs(src, dst, scale=1.0, shift=0.0)-> None
:param src: input array.
:param dst: output array.
:param alpha: optional scale factor.
:param beta: optional delta added to the scaled values.
On each element of the input array, the function ``convertScaleAbs`` performs three operations sequentially: scaling, taking an absolute value, conversion to an unsigned 8-bit type:
.. math::
\texttt{dst} (I)= \texttt{saturate\_cast<uchar>} (| \texttt{src} (I)* \texttt{alpha} + \texttt{beta} |)
In case of multi-channel arrays, the function processes each channel independently. When the output is not 8-bit, the operation can be emulated by calling the ``Mat::convertTo`` method (or by using matrix expressions) and then by calculating an absolute value of the result. For example: ::
Mat_<float> A(30,30);
randu(A, Scalar(-100), Scalar(100));
Mat_<float> B = A*5 + 3;
B = abs(B);
// Mat_<float> B = abs(A*5+3) will also do the job,
// but it will allocate a temporary matrix
.. seealso::
:ocv:func:`Mat::convertTo`,
:ocv:func:`abs`
countNonZero
------------
Counts non-zero array elements.
.. ocv:function:: int countNonZero( InputArray src )
.. ocv:pyfunction:: cv2.countNonZero(src) -> retval
.. ocv:cfunction:: int cvCountNonZero(const CvArr* arr)
.. ocv:pyoldfunction:: cv.CountNonZero(arr)-> int
:param src: single-channel array.
The function returns the number of non-zero elements in ``src`` :
.. math::
\sum _{I: \; \texttt{src} (I) \ne0 } 1
.. seealso::
:ocv:func:`mean`,
:ocv:func:`meanStdDev`,
:ocv:func:`norm`,
:ocv:func:`minMaxLoc`,
:ocv:func:`calcCovarMatrix`
cvarrToMat
----------
Converts ``CvMat``, ``IplImage`` , or ``CvMatND`` to ``Mat``.
.. ocv:function:: Mat cvarrToMat( const CvArr* arr, bool copyData=false, bool allowND=true, int coiMode=0 )
:param arr: input ``CvMat``, ``IplImage`` , or ``CvMatND``.
:param copyData: when false (default value), no data is copied and only the new header is created, in this case, the original array should not be deallocated while the new matrix header is used; if the parameter is true, all the data is copied and you may deallocate the original array right after the conversion.
:param allowND: when true (default value), ``CvMatND`` is converted to 2-dimensional ``Mat``, if it is possible (see the discussion below); if it is not possible, or when the parameter is false, the function will report an error.
:param coiMode: parameter specifying how the IplImage COI (when set) is handled.
* If ``coiMode=0`` and COI is set, the function reports an error.
* If ``coiMode=1`` , the function never reports an error. Instead, it returns the header to the whole original image and you will have to check and process COI manually. See :ocv:func:`extractImageCOI` .
The function ``cvarrToMat`` converts ``CvMat``, ``IplImage`` , or ``CvMatND`` header to
:ocv:class:`Mat` header, and optionally duplicates the underlying data. The constructed header is returned by the function.
When ``copyData=false`` , the conversion is done really fast (in O(1) time) and the newly created matrix header will have ``refcount=0`` , which means that no reference counting is done for the matrix data. In this case, you have to preserve the data until the new header is destructed. Otherwise, when ``copyData=true`` , the new buffer is allocated and managed as if you created a new matrix from scratch and copied the data there. That is, ``cvarrToMat(arr, true)`` is equivalent to ``cvarrToMat(arr, false).clone()`` (assuming that COI is not set). The function provides a uniform way of supporting
``CvArr`` paradigm in the code that is migrated to use new-style data structures internally. The reverse transformation, from
``Mat`` to
``CvMat`` or
``IplImage`` can be done by a simple assignment: ::
CvMat* A = cvCreateMat(10, 10, CV_32F);
cvSetIdentity(A);
IplImage A1; cvGetImage(A, &A1);
Mat B = cvarrToMat(A);
Mat B1 = cvarrToMat(&A1);
IplImage C = B;
CvMat C1 = B1;
// now A, A1, B, B1, C and C1 are different headers
// for the same 10x10 floating-point array.
// note that you will need to use "&"
// to pass C & C1 to OpenCV functions, for example:
printf("%g\n", cvNorm(&C1, 0, CV_L2));
Normally, the function is used to convert an old-style 2D array (
``CvMat`` or
``IplImage`` ) to ``Mat`` . However, the function can also take
``CvMatND`` as an input and create
:ocv:func:`Mat` for it, if it is possible. And, for ``CvMatND A`` , it is possible if and only if ``A.dim[i].size*A.dim.step[i] == A.dim.step[i-1]`` for all or for all but one ``i, 0 < i < A.dims`` . That is, the matrix data should be continuous or it should be representable as a sequence of continuous matrices. By using this function in this way, you can process
``CvMatND`` using an arbitrary element-wise function.
The last parameter, ``coiMode`` , specifies how to deal with an image with COI set. By default, it is 0 and the function reports an error when an image with COI comes in. And ``coiMode=1`` means that no error is signalled. You have to check COI presence and handle it manually. The modern structures, such as
:ocv:class:`Mat` and
``MatND`` do not support COI natively. To process an individual channel of a new-style array, you need either to organize a loop over the array (for example, using matrix iterators) where the channel of interest will be processed, or extract the COI using
:ocv:func:`mixChannels` (for new-style arrays) or
:ocv:func:`extractImageCOI` (for old-style arrays), process this individual channel, and insert it back to the output array if needed (using
:ocv:func:`mixChannels` or
:ocv:func:`insertImageCOI` , respectively).
.. seealso::
:ocv:cfunc:`cvGetImage`,
:ocv:cfunc:`cvGetMat`,
:ocv:func:`extractImageCOI`,
:ocv:func:`insertImageCOI`,
:ocv:func:`mixChannels`
dct
---
Performs a forward or inverse discrete Cosine transform of 1D or 2D array.
.. ocv:function:: void dct(InputArray src, OutputArray dst, int flags=0)
.. ocv:pyfunction:: cv2.dct(src[, dst[, flags]]) -> dst
.. ocv:cfunction:: void cvDCT(const CvArr* src, CvArr* dst, int flags)
.. ocv:pyoldfunction:: cv.DCT(src, dst, flags)-> None
:param src: input floating-point array.
:param dst: output array of the same size and type as ``src`` .
:param flags: transformation flags as a combination of the following values:
* **DCT_INVERSE** performs an inverse 1D or 2D transform instead of the default forward transform.
* **DCT_ROWS** performs a forward or inverse transform of every individual row of the input matrix. This flag enables you to transform multiple vectors simultaneously and can be used to decrease the overhead (which is sometimes several times larger than the processing itself) to perform 3D and higher-dimensional transforms and so forth.
The function ``dct`` performs a forward or inverse discrete Cosine transform (DCT) of a 1D or 2D floating-point array:
*
Forward Cosine transform of a 1D vector of ``N`` elements:
.. math::
Y = C^{(N)} \cdot X
where
.. math::
C^{(N)}_{jk}= \sqrt{\alpha_j/N} \cos \left ( \frac{\pi(2k+1)j}{2N} \right )
and
:math:`\alpha_0=1`, :math:`\alpha_j=2` for *j > 0*.
*
Inverse Cosine transform of a 1D vector of ``N`` elements:
.. math::
X = \left (C^{(N)} \right )^{-1} \cdot Y = \left (C^{(N)} \right )^T \cdot Y
(since
:math:`C^{(N)}` is an orthogonal matrix,
:math:`C^{(N)} \cdot \left(C^{(N)}\right)^T = I` )
*
Forward 2D Cosine transform of ``M x N`` matrix:
.. math::
Y = C^{(N)} \cdot X \cdot \left (C^{(N)} \right )^T
*
Inverse 2D Cosine transform of ``M x N`` matrix:
.. math::
X = \left (C^{(N)} \right )^T \cdot X \cdot C^{(N)}
The function chooses the mode of operation by looking at the flags and size of the input array:
*
If ``(flags & DCT_INVERSE) == 0`` , the function does a forward 1D or 2D transform. Otherwise, it is an inverse 1D or 2D transform.
*
If ``(flags & DCT_ROWS) != 0`` , the function performs a 1D transform of each row.
*
If the array is a single column or a single row, the function performs a 1D transform.
*
If none of the above is true, the function performs a 2D transform.
.. note::
Currently ``dct`` supports even-size arrays (2, 4, 6 ...). For data analysis and approximation, you can pad the array when necessary.
Also, the function performance depends very much, and not monotonically, on the array size (see
:ocv:func:`getOptimalDFTSize` ). In the current implementation DCT of a vector of size ``N`` is calculated via DFT of a vector of size ``N/2`` . Thus, the optimal DCT size ``N1 >= N`` can be calculated as: ::
size_t getOptimalDCTSize(size_t N) { return 2*getOptimalDFTSize((N+1)/2); }
N1 = getOptimalDCTSize(N);
.. seealso:: :ocv:func:`dft` , :ocv:func:`getOptimalDFTSize` , :ocv:func:`idct`
dft
---
Performs a forward or inverse Discrete Fourier transform of a 1D or 2D floating-point array.
.. ocv:function:: void dft(InputArray src, OutputArray dst, int flags=0, int nonzeroRows=0)
.. ocv:pyfunction:: cv2.dft(src[, dst[, flags[, nonzeroRows]]]) -> dst
.. ocv:cfunction:: void cvDFT( const CvArr* src, CvArr* dst, int flags, int nonzero_rows=0 )
.. ocv:pyoldfunction:: cv.DFT(src, dst, flags, nonzeroRows=0)-> None
:param src: input array that could be real or complex.
:param dst: output array whose size and type depends on the ``flags`` .
:param flags: transformation flags, representing a combination of the following values:
* **DFT_INVERSE** performs an inverse 1D or 2D transform instead of the default forward transform.
* **DFT_SCALE** scales the result: divide it by the number of array elements. Normally, it is combined with ``DFT_INVERSE``.
* **DFT_ROWS** performs a forward or inverse transform of every individual row of the input matrix; this flag enables you to transform multiple vectors simultaneously and can be used to decrease the overhead (which is sometimes several times larger than the processing itself) to perform 3D and higher-dimensional transformations and so forth.
* **DFT_COMPLEX_OUTPUT** performs a forward transformation of 1D or 2D real array; the result, though being a complex array, has complex-conjugate symmetry (*CCS*, see the function description below for details), and such an array can be packed into a real array of the same size as input, which is the fastest option and which is what the function does by default; however, you may wish to get a full complex array (for simpler spectrum analysis, and so on) - pass the flag to enable the function to produce a full-size complex output array.
* **DFT_REAL_OUTPUT** performs an inverse transformation of a 1D or 2D complex array; the result is normally a complex array of the same size, however, if the input array has conjugate-complex symmetry (for example, it is a result of forward transformation with ``DFT_COMPLEX_OUTPUT`` flag), the output is a real array; while the function itself does not check whether the input is symmetrical or not, you can pass the flag and then the function will assume the symmetry and produce the real output array (note that when the input is packed into a real array and inverse transformation is executed, the function treats the input as a packed complex-conjugate symmetrical array, and the output will also be a real array).
:param nonzeroRows: when the parameter is not zero, the function assumes that only the first ``nonzeroRows`` rows of the input array (``DFT_INVERSE`` is not set) or only the first ``nonzeroRows`` of the output array (``DFT_INVERSE`` is set) contain non-zeros, thus, the function can handle the rest of the rows more efficiently and save some time; this technique is very useful for calculating array cross-correlation or convolution using DFT.
The function performs one of the following:
*
Forward the Fourier transform of a 1D vector of ``N`` elements:
.. math::
Y = F^{(N)} \cdot X,
where
:math:`F^{(N)}_{jk}=\exp(-2\pi i j k/N)` and
:math:`i=\sqrt{-1}`
*
Inverse the Fourier transform of a 1D vector of ``N`` elements:
.. math::
\begin{array}{l} X'= \left (F^{(N)} \right )^{-1} \cdot Y = \left (F^{(N)} \right )^* \cdot y \\ X = (1/N) \cdot X, \end{array}
where
:math:`F^*=\left(\textrm{Re}(F^{(N)})-\textrm{Im}(F^{(N)})\right)^T`
*
Forward the 2D Fourier transform of a ``M x N`` matrix:
.. math::
Y = F^{(M)} \cdot X \cdot F^{(N)}
*
Inverse the 2D Fourier transform of a ``M x N`` matrix:
.. math::
\begin{array}{l} X'= \left (F^{(M)} \right )^* \cdot Y \cdot \left (F^{(N)} \right )^* \\ X = \frac{1}{M \cdot N} \cdot X' \end{array}
In case of real (single-channel) data, the output spectrum of the forward Fourier transform or input spectrum of the inverse Fourier transform can be represented in a packed format called *CCS* (complex-conjugate-symmetrical). It was borrowed from IPL (Intel* Image Processing Library). Here is how 2D *CCS* spectrum looks:
.. math::
\begin{bmatrix} Re Y_{0,0} & Re Y_{0,1} & Im Y_{0,1} & Re Y_{0,2} & Im Y_{0,2} & \cdots & Re Y_{0,N/2-1} & Im Y_{0,N/2-1} & Re Y_{0,N/2} \\ Re Y_{1,0} & Re Y_{1,1} & Im Y_{1,1} & Re Y_{1,2} & Im Y_{1,2} & \cdots & Re Y_{1,N/2-1} & Im Y_{1,N/2-1} & Re Y_{1,N/2} \\ Im Y_{1,0} & Re Y_{2,1} & Im Y_{2,1} & Re Y_{2,2} & Im Y_{2,2} & \cdots & Re Y_{2,N/2-1} & Im Y_{2,N/2-1} & Im Y_{1,N/2} \\ \hdotsfor{9} \\ Re Y_{M/2-1,0} & Re Y_{M-3,1} & Im Y_{M-3,1} & \hdotsfor{3} & Re Y_{M-3,N/2-1} & Im Y_{M-3,N/2-1}& Re Y_{M/2-1,N/2} \\ Im Y_{M/2-1,0} & Re Y_{M-2,1} & Im Y_{M-2,1} & \hdotsfor{3} & Re Y_{M-2,N/2-1} & Im Y_{M-2,N/2-1}& Im Y_{M/2-1,N/2} \\ Re Y_{M/2,0} & Re Y_{M-1,1} & Im Y_{M-1,1} & \hdotsfor{3} & Re Y_{M-1,N/2-1} & Im Y_{M-1,N/2-1}& Re Y_{M/2,N/2} \end{bmatrix}
In case of 1D transform of a real vector, the output looks like the first row of the matrix above.
So, the function chooses an operation mode depending on the flags and size of the input array:
* If ``DFT_ROWS`` is set or the input array has a single row or single column, the function performs a 1D forward or inverse transform of each row of a matrix when ``DFT_ROWS`` is set. Otherwise, it performs a 2D transform.
* If the input array is real and ``DFT_INVERSE`` is not set, the function performs a forward 1D or 2D transform:
* When ``DFT_COMPLEX_OUTPUT`` is set, the output is a complex matrix of the same size as input.
* When ``DFT_COMPLEX_OUTPUT`` is not set, the output is a real matrix of the same size as input. In case of 2D transform, it uses the packed format as shown above. In case of a single 1D transform, it looks like the first row of the matrix above. In case of multiple 1D transforms (when using the ``DFT_ROWS`` flag), each row of the output matrix looks like the first row of the matrix above.
* If the input array is complex and either ``DFT_INVERSE`` or ``DFT_REAL_OUTPUT`` are not set, the output is a complex array of the same size as input. The function performs a forward or inverse 1D or 2D transform of the whole input array or each row of the input array independently, depending on the flags ``DFT_INVERSE`` and ``DFT_ROWS``.
* When ``DFT_INVERSE`` is set and the input array is real, or it is complex but ``DFT_REAL_OUTPUT`` is set, the output is a real array of the same size as input. The function performs a 1D or 2D inverse transformation of the whole input array or each individual row, depending on the flags ``DFT_INVERSE`` and ``DFT_ROWS``.
If ``DFT_SCALE`` is set, the scaling is done after the transformation.
Unlike :ocv:func:`dct` , the function supports arrays of arbitrary size. But only those arrays are processed efficiently, whose sizes can be factorized in a product of small prime numbers (2, 3, and 5 in the current implementation). Such an efficient DFT size can be calculated using the :ocv:func:`getOptimalDFTSize` method.
The sample below illustrates how to calculate a DFT-based convolution of two 2D real arrays: ::
void convolveDFT(InputArray A, InputArray B, OutputArray C)
{
// reallocate the output array if needed
C.create(abs(A.rows - B.rows)+1, abs(A.cols - B.cols)+1, A.type());
Size dftSize;
// calculate the size of DFT transform
dftSize.width = getOptimalDFTSize(A.cols + B.cols - 1);
dftSize.height = getOptimalDFTSize(A.rows + B.rows - 1);
// allocate temporary buffers and initialize them with 0's
Mat tempA(dftSize, A.type(), Scalar::all(0));
Mat tempB(dftSize, B.type(), Scalar::all(0));
// copy A and B to the top-left corners of tempA and tempB, respectively
Mat roiA(tempA, Rect(0,0,A.cols,A.rows));
A.copyTo(roiA);
Mat roiB(tempB, Rect(0,0,B.cols,B.rows));
B.copyTo(roiB);
// now transform the padded A & B in-place;
// use "nonzeroRows" hint for faster processing
dft(tempA, tempA, 0, A.rows);
dft(tempB, tempB, 0, B.rows);
// multiply the spectrums;
// the function handles packed spectrum representations well
mulSpectrums(tempA, tempB, tempA);
// transform the product back from the frequency domain.
// Even though all the result rows will be non-zero,
// you need only the first C.rows of them, and thus you
// pass nonzeroRows == C.rows
dft(tempA, tempA, DFT_INVERSE + DFT_SCALE, C.rows);
// now copy the result back to C.
tempA(Rect(0, 0, C.cols, C.rows)).copyTo(C);
// all the temporary buffers will be deallocated automatically
}
To optimize this sample, consider the following approaches:
*
Since ``nonzeroRows != 0`` is passed to the forward transform calls and since ``A`` and ``B`` are copied to the top-left corners of ``tempA`` and ``tempB``, respectively, it is not necessary to clear the whole ``tempA`` and ``tempB``. It is only necessary to clear the ``tempA.cols - A.cols`` ( ``tempB.cols - B.cols``) rightmost columns of the matrices.
*
This DFT-based convolution does not have to be applied to the whole big arrays, especially if ``B`` is significantly smaller than ``A`` or vice versa. Instead, you can calculate convolution by parts. To do this, you need to split the output array ``C`` into multiple tiles. For each tile, estimate which parts of ``A`` and ``B`` are required to calculate convolution in this tile. If the tiles in ``C`` are too small, the speed will decrease a lot because of repeated work. In the ultimate case, when each tile in ``C`` is a single pixel, the algorithm becomes equivalent to the naive convolution algorithm. If the tiles are too big, the temporary arrays ``tempA`` and ``tempB`` become too big and there is also a slowdown because of bad cache locality. So, there is an optimal tile size somewhere in the middle.
*
If different tiles in ``C`` can be calculated in parallel and, thus, the convolution is done by parts, the loop can be threaded.
All of the above improvements have been implemented in :ocv:func:`matchTemplate` and :ocv:func:`filter2D` . Therefore, by using them, you can get the performance even better than with the above theoretically optimal implementation. Though, those two functions actually calculate cross-correlation, not convolution, so you need to "flip" the second convolution operand ``B`` vertically and horizontally using :ocv:func:`flip` .
.. seealso:: :ocv:func:`dct` , :ocv:func:`getOptimalDFTSize` , :ocv:func:`mulSpectrums`, :ocv:func:`filter2D` , :ocv:func:`matchTemplate` , :ocv:func:`flip` , :ocv:func:`cartToPolar` , :ocv:func:`magnitude` , :ocv:func:`phase`
.. note::
* An example using the discrete fourier transform can be found at opencv_source_code/samples/cpp/dft.cpp
* (Python) An example using the dft functionality to perform Wiener deconvolution can be found at opencv_source/samples/python2/deconvolution.py
* (Python) An example rearranging the quadrants of a Fourier image can be found at opencv_source/samples/python2/dft.py
divide
------
Performs per-element division of two arrays or a scalar by an array.
.. ocv:function:: void divide(InputArray src1, InputArray src2, OutputArray dst, double scale=1, int dtype=-1)
.. ocv:function:: void divide(double scale, InputArray src2, OutputArray dst, int dtype=-1)
.. ocv:pyfunction:: cv2.divide(src1, src2[, dst[, scale[, dtype]]]) -> dst
.. ocv:pyfunction:: cv2.divide(scale, src2[, dst[, dtype]]) -> dst
.. ocv:cfunction:: void cvDiv(const CvArr* src1, const CvArr* src2, CvArr* dst, double scale=1)
.. ocv:pyoldfunction:: cv.Div(src1, src2, dst, scale=1) -> None
:param src1: first input array.
:param src2: second input array of the same size and type as ``src1``.
:param scale: scalar factor.
:param dst: output array of the same size and type as ``src2``.
:param dtype: optional depth of the output array; if ``-1``, ``dst`` will have depth ``src2.depth()``, but in case of an array-by-array division, you can only pass ``-1`` when ``src1.depth()==src2.depth()``.
The functions ``divide`` divide one array by another:
.. math::
\texttt{dst(I) = saturate(src1(I)*scale/src2(I))}
or a scalar by an array when there is no ``src1`` :
.. math::
\texttt{dst(I) = saturate(scale/src2(I))}
When ``src2(I)`` is zero, ``dst(I)`` will also be zero. Different channels of multi-channel arrays are processed independently.
.. note:: Saturation is not applied when the output array has the depth ``CV_32S``. You may even get result of an incorrect sign in the case of overflow.
.. seealso::
:ocv:func:`multiply`,
:ocv:func:`add`,
:ocv:func:`subtract`,
:ref:`MatrixExpressions`
determinant
-----------
Returns the determinant of a square floating-point matrix.
.. ocv:function:: double determinant(InputArray mtx)
.. ocv:pyfunction:: cv2.determinant(mtx) -> retval
.. ocv:cfunction:: double cvDet( const CvArr* mat )
.. ocv:pyoldfunction:: cv.Det(mat) -> float
:param mtx: input matrix that must have ``CV_32FC1`` or ``CV_64FC1`` type and square size.
:param mat: input matrix that must have ``CV_32FC1`` or ``CV_64FC1`` type and square size.
The function ``determinant`` calculates and returns the determinant of the specified matrix. For small matrices ( ``mtx.cols=mtx.rows<=3`` ),
the direct method is used. For larger matrices, the function uses LU factorization with partial pivoting.
For symmetric positively-determined matrices, it is also possible to use :ocv:func:`eigen` decomposition to calculate the determinant.
.. seealso::
:ocv:func:`trace`,
:ocv:func:`invert`,
:ocv:func:`solve`,
:ocv:func:`eigen`,
:ref:`MatrixExpressions`
eigen
-----
Calculates eigenvalues and eigenvectors of a symmetric matrix.
.. ocv:function:: bool eigen(InputArray src, OutputArray eigenvalues, int lowindex=-1, int highindex=-1)
.. ocv:function:: bool eigen(InputArray src, OutputArray eigenvalues, OutputArray eigenvectors, int lowindex=-1,int highindex=-1)
.. ocv:pyfunction:: cv2.eigen(src, computeEigenvectors[, eigenvalues[, eigenvectors]]) -> retval, eigenvalues, eigenvectors
.. ocv:cfunction:: void cvEigenVV( CvArr* mat, CvArr* evects, CvArr* evals, double eps=0, int lowindex=-1, int highindex=-1 )
.. ocv:pyoldfunction:: cv.EigenVV(mat, evects, evals, eps, lowindex=-1, highindex=-1)-> None
:param src: input matrix that must have ``CV_32FC1`` or ``CV_64FC1`` type, square size and be symmetrical (``src`` :sup:`T` == ``src``).
:param eigenvalues: output vector of eigenvalues of the same type as ``src``; the eigenvalues are stored in the descending order.
:param eigenvectors: output matrix of eigenvectors; it has the same size and type as ``src``; the eigenvectors are stored as subsequent matrix rows, in the same order as the corresponding eigenvalues.
:param lowindex: optional index of largest eigenvalue/-vector to calculate; the parameter is ignored in the current implementation.
:param highindex: optional index of smallest eigenvalue/-vector to calculate; the parameter is ignored in the current implementation.
The functions ``eigen`` calculate just eigenvalues, or eigenvalues and eigenvectors of the symmetric matrix ``src`` : ::
src*eigenvectors.row(i).t() = eigenvalues.at<srcType>(i)*eigenvectors.row(i).t()
.. note:: in the new and the old interfaces different ordering of eigenvalues and eigenvectors parameters is used.
.. seealso:: :ocv:func:`completeSymm` , :ocv:class:`PCA`
exp
---
Calculates the exponent of every array element.
.. ocv:function:: void exp(InputArray src, OutputArray dst)
.. ocv:pyfunction:: cv2.exp(src[, dst]) -> dst
.. ocv:cfunction:: void cvExp(const CvArr* src, CvArr* dst)
.. ocv:pyoldfunction:: cv.Exp(src, dst)-> None
:param src: input array.
:param dst: output array of the same size and type as ``src``.
The function ``exp`` calculates the exponent of every element of the input array:
.. math::
\texttt{dst} [I] = e^{ src(I) }
The maximum relative error is about ``7e-6`` for single-precision input and less than ``1e-10`` for double-precision input. Currently, the function converts denormalized values to zeros on output. Special values (NaN, Inf) are not handled.
.. seealso:: :ocv:func:`log` , :ocv:func:`cartToPolar` , :ocv:func:`polarToCart` , :ocv:func:`phase` , :ocv:func:`pow` , :ocv:func:`sqrt` , :ocv:func:`magnitude`
extractImageCOI
---------------
Extracts the selected image channel.
.. ocv:function:: void extractImageCOI( const CvArr* arr, OutputArray coiimg, int coi=-1 )
:param arr: input array; it should be a pointer to ``CvMat`` or ``IplImage``.
:param coiimg: output array with a single channel and the same size and depth as ``arr``.
:param coi: if the parameter is ``>=0``, it specifies the channel to extract, if it is ``<0`` and ``arr`` is a pointer to ``IplImage`` with a valid COI set, the selected COI is extracted.
The function ``extractImageCOI`` is used to extract an image COI from an old-style array and put the result to the new-style C++ matrix. As usual, the output matrix is reallocated using ``Mat::create`` if needed.
To extract a channel from a new-style matrix, use
:ocv:func:`mixChannels` or
:ocv:func:`split` .
.. seealso:: :ocv:func:`mixChannels` , :ocv:func:`split` , :ocv:func:`merge` , :ocv:func:`cvarrToMat` , :ocv:cfunc:`cvSetImageCOI` , :ocv:cfunc:`cvGetImageCOI`
insertImageCOI
--------------
Copies the selected image channel from a new-style C++ matrix to the old-style C array.
.. ocv:function:: void insertImageCOI( InputArray coiimg, CvArr* arr, int coi=-1 )
:param coiimg: input array with a single channel and the same size and depth as ``arr``.
:param arr: output array, it should be a pointer to ``CvMat`` or ``IplImage``.
:param coi: if the parameter is ``>=0``, it specifies the channel to insert, if it is ``<0`` and ``arr`` is a pointer to ``IplImage`` with a valid COI set, the selected COI is extracted.
The function ``insertImageCOI`` is used to extract an image COI from a new-style C++ matrix and put the result to the old-style array.
The sample below illustrates how to use the function:
::
Mat temp(240, 320, CV_8UC1, Scalar(255));
IplImage* img = cvCreateImage(cvSize(320,240), IPL_DEPTH_8U, 3);
insertImageCOI(temp, img, 1); //insert to the first channel
cvNamedWindow("window",1);
cvShowImage("window", img); //you should see green image, because channel number 1 is green (BGR)
cvWaitKey(0);
cvDestroyAllWindows();
cvReleaseImage(&img);
To insert a channel to a new-style matrix, use
:ocv:func:`merge` .
.. seealso:: :ocv:func:`mixChannels` , :ocv:func:`split` , :ocv:func:`merge` , :ocv:func:`cvarrToMat` , :ocv:cfunc:`cvSetImageCOI` , :ocv:cfunc:`cvGetImageCOI`
flip
----
Flips a 2D array around vertical, horizontal, or both axes.
.. ocv:function:: void flip(InputArray src, OutputArray dst, int flipCode)
.. ocv:pyfunction:: cv2.flip(src, flipCode[, dst]) -> dst
.. ocv:cfunction:: void cvFlip( const CvArr* src, CvArr* dst=NULL, int flip_mode=0 )
.. ocv:pyoldfunction:: cv.Flip(src, dst=None, flipMode=0)-> None
:param src: input array.
:param dst: output array of the same size and type as ``src``.
:param flipCode: a flag to specify how to flip the array; 0 means flipping around the x-axis and positive value (for example, 1) means flipping around y-axis. Negative value (for example, -1) means flipping around both axes (see the discussion below for the formulas).
The function ``flip`` flips the array in one of three different ways (row and column indices are 0-based):
.. math::
\texttt{dst} _{ij} =
\left\{
\begin{array}{l l}
\texttt{src} _{\texttt{src.rows}-i-1,j} & if\; \texttt{flipCode} = 0 \\
\texttt{src} _{i, \texttt{src.cols} -j-1} & if\; \texttt{flipCode} > 0 \\
\texttt{src} _{ \texttt{src.rows} -i-1, \texttt{src.cols} -j-1} & if\; \texttt{flipCode} < 0 \\
\end{array}
\right.
The example scenarios of using the function are the following:
*
Vertical flipping of the image (``flipCode == 0``) to switch between top-left and bottom-left image origin. This is a typical operation in video processing on Microsoft Windows* OS.
*
Horizontal flipping of the image with the subsequent horizontal shift and absolute difference calculation to check for a vertical-axis symmetry (``flipCode > 0``).
*
Simultaneous horizontal and vertical flipping of the image with the subsequent shift and absolute difference calculation to check for a central symmetry (``flipCode < 0``).
*
Reversing the order of point arrays (``flipCode > 0`` or ``flipCode == 0``).
.. seealso:: :ocv:func:`transpose` , :ocv:func:`repeat` , :ocv:func:`completeSymm`
gemm
----
Performs generalized matrix multiplication.
.. ocv:function:: void gemm( InputArray src1, InputArray src2, double alpha, InputArray src3, double gamma, OutputArray dst, int flags=0 )
.. ocv:pyfunction:: cv2.gemm(src1, src2, alpha, src3, gamma[, dst[, flags]]) -> dst
.. ocv:cfunction:: void cvGEMM( const CvArr* src1, const CvArr* src2, double alpha, const CvArr* src3, double beta, CvArr* dst, int tABC=0)
.. ocv:pyoldfunction:: cv.GEMM(src1, src2, alpha, src3, beta, dst, tABC=0)-> None
:param src1: first multiplied input matrix that should have ``CV_32FC1``, ``CV_64FC1``, ``CV_32FC2``, or ``CV_64FC2`` type.
:param src2: second multiplied input matrix of the same type as ``src1``.
:param alpha: weight of the matrix product.
:param src3: third optional delta matrix added to the matrix product; it should have the same type as ``src1`` and ``src2``.
:param beta: weight of ``src3``.
:param dst: output matrix; it has the proper size and the same type as input matrices.
:param flags: operation flags:
* **GEMM_1_T** transposes ``src1``.
* **GEMM_2_T** transposes ``src2``.
* **GEMM_3_T** transposes ``src3``.
The function performs generalized matrix multiplication similar to the ``gemm`` functions in BLAS level 3. For example, ``gemm(src1, src2, alpha, src3, beta, dst, GEMM_1_T + GEMM_3_T)`` corresponds to
.. math::
\texttt{dst} = \texttt{alpha} \cdot \texttt{src1} ^T \cdot \texttt{src2} + \texttt{beta} \cdot \texttt{src3} ^T
The function can be replaced with a matrix expression. For example, the above call can be replaced with: ::
dst = alpha*src1.t()*src2 + beta*src3.t();
.. seealso:: :ocv:func:`mulTransposed` , :ocv:func:`transform` , :ref:`MatrixExpressions`
getConvertElem
--------------
Returns a conversion function for a single pixel.
.. ocv:function:: ConvertData getConvertElem(int fromType, int toType)
.. ocv:function:: ConvertScaleData getConvertScaleElem(int fromType, int toType)
:param fromType: input pixel type.
:param toType: output pixel type.
:param from: callback parameter: pointer to the input pixel.
:param to: callback parameter: pointer to the output pixel
:param cn: callback parameter: the number of channels; it can be arbitrary, 1, 100, 100000, etc.
:param alpha: ``ConvertScaleData`` callback optional parameter: the scale factor.
:param beta: ``ConvertScaleData`` callback optional parameter: the delta or offset.
The functions ``getConvertElem`` and ``getConvertScaleElem`` return pointers to the functions for converting individual pixels from one type to another. While the main function purpose is to convert single pixels (actually, for converting sparse matrices from one type to another), you can use them to convert the whole row of a dense matrix or the whole matrix at once, by setting ``cn = matrix.cols*matrix.rows*matrix.channels()`` if the matrix data is continuous.
``ConvertData`` and ``ConvertScaleData`` are defined as: ::
typedef void (*ConvertData)(const void* from, void* to, int cn)
typedef void (*ConvertScaleData)(const void* from, void* to,
int cn, double alpha, double beta)
.. seealso:: :ocv:func:`Mat::convertTo` , :ocv:func:`SparseMat::convertTo`
getOptimalDFTSize
-----------------
Returns the optimal DFT size for a given vector size.
.. ocv:function:: int getOptimalDFTSize(int vecsize)
.. ocv:pyfunction:: cv2.getOptimalDFTSize(vecsize) -> retval
.. ocv:cfunction:: int cvGetOptimalDFTSize(int size0)
.. ocv:pyoldfunction:: cv.GetOptimalDFTSize(size0)-> int
:param vecsize: vector size.
DFT performance is not a monotonic function of a vector size. Therefore, when you calculate convolution of two arrays or perform the spectral analysis of an array, it usually makes sense to pad the input data with zeros to get a bit larger array that can be transformed much faster than the original one.
Arrays whose size is a power-of-two (2, 4, 8, 16, 32, ...) are the fastest to process. Though, the arrays whose size is a product of 2's, 3's, and 5's (for example, 300 = 5*5*3*2*2) are also processed quite efficiently.
The function ``getOptimalDFTSize`` returns the minimum number ``N`` that is greater than or equal to ``vecsize`` so that the DFT of a vector of size ``N`` can be processed efficiently. In the current implementation ``N`` = 2 :sup:`p` * 3 :sup:`q` * 5 :sup:`r` for some integer ``p``, ``q``, ``r``.
The function returns a negative number if ``vecsize`` is too large (very close to ``INT_MAX`` ).
While the function cannot be used directly to estimate the optimal vector size for DCT transform (since the current DCT implementation supports only even-size vectors), it can be easily processed as ``getOptimalDFTSize((vecsize+1)/2)*2``.
.. seealso:: :ocv:func:`dft` , :ocv:func:`dct` , :ocv:func:`idft` , :ocv:func:`idct` , :ocv:func:`mulSpectrums`
idct
----
Calculates the inverse Discrete Cosine Transform of a 1D or 2D array.
.. ocv:function:: void idct(InputArray src, OutputArray dst, int flags=0)
.. ocv:pyfunction:: cv2.idct(src[, dst[, flags]]) -> dst
:param src: input floating-point single-channel array.
:param dst: output array of the same size and type as ``src``.
:param flags: operation flags.
``idct(src, dst, flags)`` is equivalent to ``dct(src, dst, flags | DCT_INVERSE)``.
.. seealso::
:ocv:func:`dct`,
:ocv:func:`dft`,
:ocv:func:`idft`,
:ocv:func:`getOptimalDFTSize`
idft
----
Calculates the inverse Discrete Fourier Transform of a 1D or 2D array.
.. ocv:function:: void idft(InputArray src, OutputArray dst, int flags=0, int nonzeroRows=0)
.. ocv:pyfunction:: cv2.idft(src[, dst[, flags[, nonzeroRows]]]) -> dst
:param src: input floating-point real or complex array.
:param dst: output array whose size and type depend on the ``flags``.
:param flags: operation flags (see :ocv:func:`dft`).
:param nonzeroRows: number of ``dst`` rows to process; the rest of the rows have undefined content (see the convolution sample in :ocv:func:`dft` description.
``idft(src, dst, flags)`` is equivalent to ``dft(src, dst, flags | DFT_INVERSE)`` .
See :ocv:func:`dft` for details.
.. note:: None of ``dft`` and ``idft`` scales the result by default. So, you should pass ``DFT_SCALE`` to one of ``dft`` or ``idft`` explicitly to make these transforms mutually inverse.
.. seealso::
:ocv:func:`dft`,
:ocv:func:`dct`,
:ocv:func:`idct`,
:ocv:func:`mulSpectrums`,
:ocv:func:`getOptimalDFTSize`
inRange
-------
Checks if array elements lie between the elements of two other arrays.
.. ocv:function:: void inRange(InputArray src, InputArray lowerb, InputArray upperb, OutputArray dst)
.. ocv:pyfunction:: cv2.inRange(src, lowerb, upperb[, dst]) -> dst
.. ocv:cfunction:: void cvInRange(const CvArr* src, const CvArr* lower, const CvArr* upper, CvArr* dst)
.. ocv:cfunction:: void cvInRangeS(const CvArr* src, CvScalar lower, CvScalar upper, CvArr* dst)
.. ocv:pyoldfunction:: cv.InRange(src, lower, upper, dst)-> None
.. ocv:pyoldfunction:: cv.InRangeS(src, lower, upper, dst)-> None
:param src: first input array.
:param lowerb: inclusive lower boundary array or a scalar.
:param upperb: inclusive upper boundary array or a scalar.
:param dst: output array of the same size as ``src`` and ``CV_8U`` type.
The function checks the range as follows:
* For every element of a single-channel input array:
.. math::
\texttt{dst} (I)= \texttt{lowerb} (I)_0 \leq \texttt{src} (I)_0 \leq \texttt{upperb} (I)_0
* For two-channel arrays:
.. math::
\texttt{dst} (I)= \texttt{lowerb} (I)_0 \leq \texttt{src} (I)_0 \leq \texttt{upperb} (I)_0 \land \texttt{lowerb} (I)_1 \leq \texttt{src} (I)_1 \leq \texttt{upperb} (I)_1
* and so forth.
That is, ``dst`` (I) is set to 255 (all ``1`` -bits) if ``src`` (I) is within the specified 1D, 2D, 3D, ... box and 0 otherwise.
When the lower and/or upper boundary parameters are scalars, the indexes ``(I)`` at ``lowerb`` and ``upperb`` in the above formulas should be omitted.
invert
------
Finds the inverse or pseudo-inverse of a matrix.
.. ocv:function:: double invert(InputArray src, OutputArray dst, int flags=DECOMP_LU)
.. ocv:pyfunction:: cv2.invert(src[, dst[, flags]]) -> retval, dst
.. ocv:cfunction:: double cvInvert( const CvArr* src, CvArr* dst, int method=CV_LU )
.. ocv:pyoldfunction:: cv.Invert(src, dst, method=CV_LU) -> float
:param src: input floating-point ``M x N`` matrix.
:param dst: output matrix of ``N x M`` size and the same type as ``src``.
:param flags: inversion method :
* **DECOMP_LU** Gaussian elimination with the optimal pivot element chosen.
* **DECOMP_SVD** singular value decomposition (SVD) method.
* **DECOMP_CHOLESKY** Cholesky decomposition; the matrix must be symmetrical and positively defined.
The function ``invert`` inverts the matrix ``src`` and stores the result in ``dst`` .
When the matrix ``src`` is singular or non-square, the function calculates the pseudo-inverse matrix (the ``dst`` matrix) so that ``norm(src*dst - I)`` is minimal, where I is an identity matrix.
In case of the ``DECOMP_LU`` method, the function returns non-zero value if the inverse has been successfully calculated and 0 if ``src`` is singular.
In case of the ``DECOMP_SVD`` method, the function returns the inverse condition number of ``src`` (the ratio of the smallest singular value to the largest singular value) and 0 if ``src`` is singular. The SVD method calculates a pseudo-inverse matrix if ``src`` is singular.
Similarly to ``DECOMP_LU`` , the method ``DECOMP_CHOLESKY`` works only with non-singular square matrices that should also be symmetrical and positively defined. In this case, the function stores the inverted matrix in ``dst`` and returns non-zero. Otherwise, it returns 0.
.. seealso::
:ocv:func:`solve`,
:ocv:class:`SVD`
log
---
Calculates the natural logarithm of every array element.
.. ocv:function:: void log(InputArray src, OutputArray dst)
.. ocv:pyfunction:: cv2.log(src[, dst]) -> dst
.. ocv:cfunction:: void cvLog(const CvArr* src, CvArr* dst)
.. ocv:pyoldfunction:: cv.Log(src, dst)-> None
:param src: input array.
:param dst: output array of the same size and type as ``src`` .
The function ``log`` calculates the natural logarithm of the absolute value of every element of the input array:
.. math::
\texttt{dst} (I) = \fork{\log |\texttt{src}(I)|}{if $\texttt{src}(I) \ne 0$ }{\texttt{C}}{otherwise}
where ``C`` is a large negative number (about -700 in the current implementation).
The maximum relative error is about ``7e-6`` for single-precision input and less than ``1e-10`` for double-precision input. Special values (NaN, Inf) are not handled.
.. seealso::
:ocv:func:`exp`,
:ocv:func:`cartToPolar`,
:ocv:func:`polarToCart`,
:ocv:func:`phase`,
:ocv:func:`pow`,
:ocv:func:`sqrt`,
:ocv:func:`magnitude`
LUT
---
Performs a look-up table transform of an array.
.. ocv:function:: void LUT( InputArray src, InputArray lut, OutputArray dst, int interpolation=0 )
.. ocv:pyfunction:: cv2.LUT(src, lut[, dst[, interpolation]]) -> dst
.. ocv:cfunction:: void cvLUT(const CvArr* src, CvArr* dst, const CvArr* lut)
.. ocv:pyoldfunction:: cv.LUT(src, dst, lut)-> None
:param src: input array of 8-bit elements.
:param lut: look-up table of 256 elements; in case of multi-channel input array, the table should either have a single channel (in this case the same table is used for all channels) or the same number of channels as in the input array.
:param dst: output array of the same size and number of channels as ``src``, and the same depth as ``lut``.
The function ``LUT`` fills the output array with values from the look-up table. Indices of the entries are taken from the input array. That is, the function processes each element of ``src`` as follows:
.. math::
\texttt{dst} (I) \leftarrow \texttt{lut(src(I) + d)}
where
.. math::
d = \fork{0}{if \texttt{src} has depth \texttt{CV\_8U}}{128}{if \texttt{src} has depth \texttt{CV\_8S}}
.. seealso::
:ocv:func:`convertScaleAbs`,
:ocv:func:`Mat::convertTo`
magnitude
---------
Calculates the magnitude of 2D vectors.
.. ocv:function:: void magnitude(InputArray x, InputArray y, OutputArray magnitude)
.. ocv:pyfunction:: cv2.magnitude(x, y[, magnitude]) -> magnitude
:param x: floating-point array of x-coordinates of the vectors.
:param y: floating-point array of y-coordinates of the vectors; it must have the same size as ``x``.
:param magnitude: output array of the same size and type as ``x``.
The function ``magnitude`` calculates the magnitude of 2D vectors formed from the corresponding elements of ``x`` and ``y`` arrays:
.. math::
\texttt{dst} (I) = \sqrt{\texttt{x}(I)^2 + \texttt{y}(I)^2}
.. seealso::
:ocv:func:`cartToPolar`,
:ocv:func:`polarToCart`,
:ocv:func:`phase`,
:ocv:func:`sqrt`
Mahalanobis
-----------
Calculates the Mahalanobis distance between two vectors.
.. ocv:function:: double Mahalanobis( InputArray v1, InputArray v2, InputArray icovar )
.. ocv:pyfunction:: cv2.Mahalanobis(v1, v2, icovar) -> retval
.. ocv:cfunction:: double cvMahalanobis( const CvArr* vec1, const CvArr* vec2, const CvArr* mat )
.. ocv:pyoldfunction:: cv.Mahalonobis(vec1, vec2, mat) -> None
:param vec1: first 1D input vector.
:param vec2: second 1D input vector.
:param icovar: inverse covariance matrix.
The function ``Mahalanobis`` calculates and returns the weighted distance between two vectors:
.. math::
d( \texttt{vec1} , \texttt{vec2} )= \sqrt{\sum_{i,j}{\texttt{icovar(i,j)}\cdot(\texttt{vec1}(I)-\texttt{vec2}(I))\cdot(\texttt{vec1(j)}-\texttt{vec2(j)})} }
The covariance matrix may be calculated using the
:ocv:func:`calcCovarMatrix` function and then inverted using the
:ocv:func:`invert` function (preferably using the ``DECOMP_SVD`` method, as the most accurate).
max
---
Calculates per-element maximum of two arrays or an array and a scalar.
.. ocv:function:: MatExpr max( const Mat& a, const Mat& b )
.. ocv:function:: MatExpr max( const Mat& a, double s )
.. ocv:function:: MatExpr max( double s, const Mat& a )
.. ocv:function:: void max(InputArray src1, InputArray src2, OutputArray dst)
.. ocv:function:: void max(const Mat& src1, const Mat& src2, Mat& dst)
.. ocv:function:: void max( const Mat& src1, double src2, Mat& dst )
.. ocv:pyfunction:: cv2.max(src1, src2[, dst]) -> dst
.. ocv:cfunction:: void cvMax(const CvArr* src1, const CvArr* src2, CvArr* dst)
.. ocv:cfunction:: void cvMaxS(const CvArr* src, double value, CvArr* dst)
.. ocv:pyoldfunction:: cv.Max(src1, src2, dst)-> None
.. ocv:pyoldfunction:: cv.MaxS(src, value, dst)-> None
:param src1: first input array.
:param src2: second input array of the same size and type as ``src1`` .
:param value: real scalar value.
:param dst: output array of the same size and type as ``src1``.
The functions ``max`` calculate the per-element maximum of two arrays:
.. math::
\texttt{dst} (I)= \max ( \texttt{src1} (I), \texttt{src2} (I))
or array and a scalar:
.. math::
\texttt{dst} (I)= \max ( \texttt{src1} (I), \texttt{value} )
In the second variant, when the input array is multi-channel, each channel is compared with ``value`` independently.
The first 3 variants of the function listed above are actually a part of
:ref:`MatrixExpressions` . They return an expression object that can be further either transformed/ assigned to a matrix, or passed to a function, and so on.
.. seealso::
:ocv:func:`min`,
:ocv:func:`compare`,
:ocv:func:`inRange`,
:ocv:func:`minMaxLoc`,
:ref:`MatrixExpressions`
mean
----
Calculates an average (mean) of array elements.
.. ocv:function:: Scalar mean(InputArray src, InputArray mask=noArray())
.. ocv:pyfunction:: cv2.mean(src[, mask]) -> retval
.. ocv:cfunction:: CvScalar cvAvg( const CvArr* arr, const CvArr* mask=NULL )
.. ocv:pyoldfunction:: cv.Avg(arr, mask=None) -> scalar
:param src: input array that should have from 1 to 4 channels so that the result can be stored in :ocv:class:`Scalar_` .
:param mask: optional operation mask.
The function ``mean`` calculates the mean value ``M`` of array elements, independently for each channel, and return it:
.. math::
\begin{array}{l} N = \sum _{I: \; \texttt{mask} (I) \ne 0} 1 \\ M_c = \left ( \sum _{I: \; \texttt{mask} (I) \ne 0}{ \texttt{mtx} (I)_c} \right )/N \end{array}
When all the mask elements are 0's, the functions return ``Scalar::all(0)`` .
.. seealso::
:ocv:func:`countNonZero`,
:ocv:func:`meanStdDev`,
:ocv:func:`norm`,
:ocv:func:`minMaxLoc`
meanStdDev
----------
Calculates a mean and standard deviation of array elements.
.. ocv:function:: void meanStdDev(InputArray src, OutputArray mean, OutputArray stddev, InputArray mask=noArray())
.. ocv:pyfunction:: cv2.meanStdDev(src[, mean[, stddev[, mask]]]) -> mean, stddev
.. ocv:cfunction:: void cvAvgSdv( const CvArr* arr, CvScalar* mean, CvScalar* std_dev, const CvArr* mask=NULL )
.. ocv:pyoldfunction:: cv.AvgSdv(arr, mask=None) -> (mean, stdDev)
:param src: input array that should have from 1 to 4 channels so that the results can be stored in :ocv:class:`Scalar_` 's.
:param mean: output parameter: calculated mean value.
:param stddev: output parameter: calculateded standard deviation.
:param mask: optional operation mask.
The function ``meanStdDev`` calculates the mean and the standard deviation ``M`` of array elements independently for each channel and returns it via the output parameters:
.. math::
\begin{array}{l} N = \sum _{I, \texttt{mask} (I) \ne 0} 1 \\ \texttt{mean} _c = \frac{\sum_{ I: \; \texttt{mask}(I) \ne 0} \texttt{src} (I)_c}{N} \\ \texttt{stddev} _c = \sqrt{\frac{\sum_{ I: \; \texttt{mask}(I) \ne 0} \left ( \texttt{src} (I)_c - \texttt{mean} _c \right )^2}{N}} \end{array}
When all the mask elements are 0's, the functions return ``mean=stddev=Scalar::all(0)`` .
.. note:: The calculated standard deviation is only the diagonal of the complete normalized covariance matrix. If the full matrix is needed, you can reshape the multi-channel array ``M x N`` to the single-channel array ``M*N x mtx.channels()`` (only possible when the matrix is continuous) and then pass the matrix to :ocv:func:`calcCovarMatrix` .
.. seealso::
:ocv:func:`countNonZero`,
:ocv:func:`mean`,
:ocv:func:`norm`,
:ocv:func:`minMaxLoc`,
:ocv:func:`calcCovarMatrix`
merge
-----
Creates one multichannel array out of several single-channel ones.
.. ocv:function:: void merge(const Mat* mv, size_t count, OutputArray dst)
.. ocv:function:: void merge( InputArrayOfArrays mv, OutputArray dst )
.. ocv:pyfunction:: cv2.merge(mv[, dst]) -> dst
.. ocv:cfunction:: void cvMerge(const CvArr* src0, const CvArr* src1, const CvArr* src2, const CvArr* src3, CvArr* dst)
.. ocv:pyoldfunction:: cv.Merge(src0, src1, src2, src3, dst)-> None
:param mv: input array or vector of matrices to be merged; all the matrices in ``mv`` must have the same size and the same depth.
:param count: number of input matrices when ``mv`` is a plain C array; it must be greater than zero.
:param dst: output array of the same size and the same depth as ``mv[0]``; The number of channels will be the total number of channels in the matrix array.
The functions ``merge`` merge several arrays to make a single multi-channel array. That is, each element of the output array will be a concatenation of the elements of the input arrays, where elements of i-th input array are treated as ``mv[i].channels()``-element vectors.
The function
:ocv:func:`split` does the reverse operation. If you need to shuffle channels in some other advanced way, use
:ocv:func:`mixChannels` .
.. seealso::
:ocv:func:`mixChannels`,
:ocv:func:`split`,
:ocv:func:`Mat::reshape`
min
---
Calculates per-element minimum of two arrays or an array and a scalar.
.. ocv:function:: MatExpr min( const Mat& a, const Mat& b )
.. ocv:function:: MatExpr min( const Mat& a, double s )
.. ocv:function:: MatExpr min( double s, const Mat& a )
.. ocv:function:: void min(InputArray src1, InputArray src2, OutputArray dst)
.. ocv:function:: void min(const Mat& src1, const Mat& src2, Mat& dst)
.. ocv:function:: void min( const Mat& src1, double src2, Mat& dst )
.. ocv:pyfunction:: cv2.min(src1, src2[, dst]) -> dst
.. ocv:cfunction:: void cvMin(const CvArr* src1, const CvArr* src2, CvArr* dst)
.. ocv:cfunction:: void cvMinS(const CvArr* src, double value, CvArr* dst)
.. ocv:pyoldfunction:: cv.Min(src1, src2, dst)-> None
.. ocv:pyoldfunction:: cv.MinS(src, value, dst)-> None
:param src1: first input array.
:param src2: second input array of the same size and type as ``src1``.
:param value: real scalar value.
:param dst: output array of the same size and type as ``src1``.
The functions ``min`` calculate the per-element minimum of two arrays:
.. math::
\texttt{dst} (I)= \min ( \texttt{src1} (I), \texttt{src2} (I))
or array and a scalar:
.. math::
\texttt{dst} (I)= \min ( \texttt{src1} (I), \texttt{value} )
In the second variant, when the input array is multi-channel, each channel is compared with ``value`` independently.
The first three variants of the function listed above are actually a part of
:ref:`MatrixExpressions` . They return the expression object that can be further either transformed/assigned to a matrix, or passed to a function, and so on.
.. seealso::
:ocv:func:`max`,
:ocv:func:`compare`,
:ocv:func:`inRange`,
:ocv:func:`minMaxLoc`,
:ref:`MatrixExpressions`
minMaxIdx
---------
Finds the global minimum and maximum in an array
.. ocv:function:: void minMaxIdx(InputArray src, double* minVal, double* maxVal, int* minIdx=0, int* maxIdx=0, InputArray mask=noArray())
:param src: input single-channel array.
:param minVal: pointer to the returned minimum value; ``NULL`` is used if not required.
:param maxVal: pointer to the returned maximum value; ``NULL`` is used if not required.
:param minIdx: pointer to the returned minimum location (in nD case); ``NULL`` is used if not required; Otherwise, it must point to an array of ``src.dims`` elements, the coordinates of the minimum element in each dimension are stored there sequentially.
.. note::
When ``minIdx`` is not NULL, it must have at least 2 elements (as well as ``maxIdx``), even if ``src`` is a single-row or single-column matrix. In OpenCV (following MATLAB) each array has at least 2 dimensions, i.e. single-column matrix is ``Mx1`` matrix (and therefore ``minIdx``/``maxIdx`` will be ``(i1,0)``/``(i2,0)``) and single-row matrix is ``1xN`` matrix (and therefore ``minIdx``/``maxIdx`` will be ``(0,j1)``/``(0,j2)``).
:param maxIdx: pointer to the returned maximum location (in nD case). ``NULL`` is used if not required.
The function ``minMaxIdx`` finds the minimum and maximum element values and their positions. The extremums are searched across the whole array or, if ``mask`` is not an empty array, in the specified array region.
The function does not work with multi-channel arrays. If you need to find minimum or maximum elements across all the channels, use
:ocv:func:`Mat::reshape` first to reinterpret the array as single-channel. Or you may extract the particular channel using either
:ocv:func:`extractImageCOI` , or
:ocv:func:`mixChannels` , or
:ocv:func:`split` .
In case of a sparse matrix, the minimum is found among non-zero elements only.
minMaxLoc
---------
Finds the global minimum and maximum in an array.
.. ocv:function:: void minMaxLoc(InputArray src, double* minVal, double* maxVal=0, Point* minLoc=0, Point* maxLoc=0, InputArray mask=noArray())
.. ocv:function:: void minMaxLoc( const SparseMat& a, double* minVal, double* maxVal, int* minIdx=0, int* maxIdx=0 )
.. ocv:pyfunction:: cv2.minMaxLoc(src[, mask]) -> minVal, maxVal, minLoc, maxLoc
.. ocv:cfunction:: void cvMinMaxLoc( const CvArr* arr, double* min_val, double* max_val, CvPoint* min_loc=NULL, CvPoint* max_loc=NULL, const CvArr* mask=NULL )
.. ocv:pyoldfunction:: cv.MinMaxLoc(arr, mask=None)-> (minVal, maxVal, minLoc, maxLoc)
:param src: input single-channel array.
:param minVal: pointer to the returned minimum value; ``NULL`` is used if not required.
:param maxVal: pointer to the returned maximum value; ``NULL`` is used if not required.
:param minLoc: pointer to the returned minimum location (in 2D case); ``NULL`` is used if not required.
:param maxLoc: pointer to the returned maximum location (in 2D case); ``NULL`` is used if not required.
:param mask: optional mask used to select a sub-array.
The functions ``minMaxLoc`` find the minimum and maximum element values and their positions. The extremums are searched across the whole array or,
if ``mask`` is not an empty array, in the specified array region.
The functions do not work with multi-channel arrays. If you need to find minimum or maximum elements across all the channels, use
:ocv:func:`Mat::reshape` first to reinterpret the array as single-channel. Or you may extract the particular channel using either
:ocv:func:`extractImageCOI` , or
:ocv:func:`mixChannels` , or
:ocv:func:`split` .
.. seealso::
:ocv:func:`max`,
:ocv:func:`min`,
:ocv:func:`compare`,
:ocv:func:`inRange`,
:ocv:func:`extractImageCOI`,
:ocv:func:`mixChannels`,
:ocv:func:`split`,
:ocv:func:`Mat::reshape`
mixChannels
-----------
Copies specified channels from input arrays to the specified channels of output arrays.
.. ocv:function:: void mixChannels( const Mat* src, size_t nsrcs, Mat* dst, size_t ndsts, const int* fromTo, size_t npairs )
.. ocv:function:: void mixChannels( const vector<Mat>& src, vector<Mat>& dst, const int* fromTo, size_t npairs )
.. ocv:pyfunction:: cv2.mixChannels(src, dst, fromTo) -> None
.. ocv:cfunction:: void cvMixChannels( const CvArr** src, int src_count, CvArr** dst, int dst_count, const int* from_to, int pair_count )
.. ocv:pyoldfunction:: cv.MixChannels(src, dst, fromTo) -> None
:param src: input array or vector of matricesl; all of the matrices must have the same size and the same depth.
:param nsrcs: number of matrices in ``src``.
:param dst: output array or vector of matrices; all the matrices *must be allocated*; their size and depth must be the same as in ``src[0]``.
:param ndsts: number of matrices in ``dst``.
:param fromTo: array of index pairs specifying which channels are copied and where; ``fromTo[k*2]`` is a 0-based index of the input channel in ``src``, ``fromTo[k*2+1]`` is an index of the output channel in ``dst``; the continuous channel numbering is used: the first input image channels are indexed from ``0`` to ``src[0].channels()-1``, the second input image channels are indexed from ``src[0].channels()`` to ``src[0].channels() + src[1].channels()-1``, and so on, the same scheme is used for the output image channels; as a special case, when ``fromTo[k*2]`` is negative, the corresponding output channel is filled with zero .
:param npairs: number of index pairs in ``fromTo``.
The functions ``mixChannels`` provide an advanced mechanism for shuffling image channels.
:ocv:func:`split` and
:ocv:func:`merge` and some forms of
:ocv:func:`cvtColor` are partial cases of ``mixChannels`` .
In the example below, the code splits a 4-channel RGBA image into a 3-channel BGR (with R and B channels swapped) and a separate alpha-channel image: ::
Mat rgba( 100, 100, CV_8UC4, Scalar(1,2,3,4) );
Mat bgr( rgba.rows, rgba.cols, CV_8UC3 );
Mat alpha( rgba.rows, rgba.cols, CV_8UC1 );
// forming an array of matrices is a quite efficient operation,
// because the matrix data is not copied, only the headers
Mat out[] = { bgr, alpha };
// rgba[0] -> bgr[2], rgba[1] -> bgr[1],
// rgba[2] -> bgr[0], rgba[3] -> alpha[0]
int from_to[] = { 0,2, 1,1, 2,0, 3,3 };
mixChannels( &rgba, 1, out, 2, from_to, 4 );
.. note:: Unlike many other new-style C++ functions in OpenCV (see the introduction section and :ocv:func:`Mat::create` ), ``mixChannels`` requires the output arrays to be pre-allocated before calling the function.
.. seealso::
:ocv:func:`split`,
:ocv:func:`merge`,
:ocv:func:`cvtColor`
mulSpectrums
------------
Performs the per-element multiplication of two Fourier spectrums.
.. ocv:function:: void mulSpectrums( InputArray a, InputArray b, OutputArray c, int flags, bool conjB=false )
.. ocv:pyfunction:: cv2.mulSpectrums(a, b, flags[, c[, conjB]]) -> c
.. ocv:cfunction:: void cvMulSpectrums( const CvArr* src1, const CvArr* src2, CvArr* dst, int flags)
.. ocv:pyoldfunction:: cv.MulSpectrums(src1, src2, dst, flags)-> None
:param src1: first input array.
:param src2: second input array of the same size and type as ``src1`` .
:param dst: output array of the same size and type as ``src1`` .
:param flags: operation flags; currently, the only supported flag is ``DFT_ROWS``, which indicates that each row of ``src1`` and ``src2`` is an independent 1D Fourier spectrum.
:param conjB: optional flag that conjugates the second input array before the multiplication (true) or not (false).
The function ``mulSpectrums`` performs the per-element multiplication of the two CCS-packed or complex matrices that are results of a real or complex Fourier transform.
The function, together with
:ocv:func:`dft` and
:ocv:func:`idft` , may be used to calculate convolution (pass ``conjB=false`` ) or correlation (pass ``conjB=true`` ) of two arrays rapidly. When the arrays are complex, they are simply multiplied (per element) with an optional conjugation of the second-array elements. When the arrays are real, they are assumed to be CCS-packed (see
:ocv:func:`dft` for details).
multiply
--------
Calculates the per-element scaled product of two arrays.
.. ocv:function:: void multiply( InputArray src1, InputArray src2, OutputArray dst, double scale=1, int dtype=-1 )
.. ocv:pyfunction:: cv2.multiply(src1, src2[, dst[, scale[, dtype]]]) -> dst
.. ocv:cfunction:: void cvMul(const CvArr* src1, const CvArr* src2, CvArr* dst, double scale=1)
.. ocv:pyoldfunction:: cv.Mul(src1, src2, dst, scale=1) -> None
:param src1: first input array.
:param src2: second input array of the same size and the same type as ``src1``.
:param dst: output array of the same size and type as ``src1``.
:param scale: optional scale factor.
The function ``multiply`` calculates the per-element product of two arrays:
.. math::
\texttt{dst} (I)= \texttt{saturate} ( \texttt{scale} \cdot \texttt{src1} (I) \cdot \texttt{src2} (I))
There is also a
:ref:`MatrixExpressions` -friendly variant of the first function. See
:ocv:func:`Mat::mul` .
For a not-per-element matrix product, see
:ocv:func:`gemm` .
.. note:: Saturation is not applied when the output array has the depth ``CV_32S``. You may even get result of an incorrect sign in the case of overflow.
.. seealso::
:ocv:func:`add`,
:ocv:func:`subtract`,
:ocv:func:`divide`,
:ref:`MatrixExpressions`,
:ocv:func:`scaleAdd`,
:ocv:func:`addWeighted`,
:ocv:func:`accumulate`,
:ocv:func:`accumulateProduct`,
:ocv:func:`accumulateSquare`,
:ocv:func:`Mat::convertTo`
mulTransposed
-------------
Calculates the product of a matrix and its transposition.
.. ocv:function:: void mulTransposed( InputArray src, OutputArray dst, bool aTa, InputArray delta=noArray(), double scale=1, int dtype=-1 )
.. ocv:pyfunction:: cv2.mulTransposed(src, aTa[, dst[, delta[, scale[, dtype]]]]) -> dst
.. ocv:cfunction:: void cvMulTransposed( const CvArr* src, CvArr* dst, int order, const CvArr* delta=NULL, double scale=1. )
.. ocv:pyoldfunction:: cv.MulTransposed(src, dst, order, delta=None, scale=1.0) -> None
:param src: input single-channel matrix. Note that unlike :ocv:func:`gemm`, the function can multiply not only floating-point matrices.
:param dst: output square matrix.
:param aTa: Flag specifying the multiplication ordering. See the description below.
:param delta: Optional delta matrix subtracted from ``src`` before the multiplication. When the matrix is empty ( ``delta=noArray()`` ), it is assumed to be zero, that is, nothing is subtracted. If it has the same size as ``src`` , it is simply subtracted. Otherwise, it is "repeated" (see :ocv:func:`repeat` ) to cover the full ``src`` and then subtracted. Type of the delta matrix, when it is not empty, must be the same as the type of created output matrix. See the ``dtype`` parameter description below.
:param scale: Optional scale factor for the matrix product.
:param dtype: Optional type of the output matrix. When it is negative, the output matrix will have the same type as ``src`` . Otherwise, it will be ``type=CV_MAT_DEPTH(dtype)`` that should be either ``CV_32F`` or ``CV_64F`` .
The function ``mulTransposed`` calculates the product of ``src`` and its transposition:
.. math::
\texttt{dst} = \texttt{scale} ( \texttt{src} - \texttt{delta} )^T ( \texttt{src} - \texttt{delta} )
if ``aTa=true`` , and
.. math::
\texttt{dst} = \texttt{scale} ( \texttt{src} - \texttt{delta} ) ( \texttt{src} - \texttt{delta} )^T
otherwise. The function is used to calculate the covariance matrix. With zero delta, it can be used as a faster substitute for general matrix product ``A*B`` when ``B=A'``
.. seealso::
:ocv:func:`calcCovarMatrix`,
:ocv:func:`gemm`,
:ocv:func:`repeat`,
:ocv:func:`reduce`
norm
----
Calculates an absolute array norm, an absolute difference norm, or a relative difference norm.
.. ocv:function:: double norm(InputArray src1, int normType=NORM_L2, InputArray mask=noArray())
.. ocv:function:: double norm( InputArray src1, InputArray src2, int normType=NORM_L2, InputArray mask=noArray() )
.. ocv:function:: double norm( const SparseMat& src, int normType )
.. ocv:pyfunction:: cv2.norm(src1[, normType[, mask]]) -> retval
.. ocv:pyfunction:: cv2.norm(src1, src2[, normType[, mask]]) -> retval
.. ocv:cfunction:: double cvNorm( const CvArr* arr1, const CvArr* arr2=NULL, int norm_type=CV_L2, const CvArr* mask=NULL )
.. ocv:pyoldfunction:: cv.Norm(arr1, arr2, normType=CV_L2, mask=None) -> float
:param src1: first input array.
:param src2: second input array of the same size and the same type as ``src1``.
:param normType: type of the norm (see the details below).
:param mask: optional operation mask; it must have the same size as ``src1`` and ``CV_8UC1`` type.
The functions ``norm`` calculate an absolute norm of ``src1`` (when there is no ``src2`` ):
.. math::
norm = \forkthree{\|\texttt{src1}\|_{L_{\infty}} = \max _I | \texttt{src1} (I)|}{if $\texttt{normType} = \texttt{NORM\_INF}$ }
{ \| \texttt{src1} \| _{L_1} = \sum _I | \texttt{src1} (I)|}{if $\texttt{normType} = \texttt{NORM\_L1}$ }
{ \| \texttt{src1} \| _{L_2} = \sqrt{\sum_I \texttt{src1}(I)^2} }{if $\texttt{normType} = \texttt{NORM\_L2}$ }
or an absolute or relative difference norm if ``src2`` is there:
.. math::
norm = \forkthree{\|\texttt{src1}-\texttt{src2}\|_{L_{\infty}} = \max _I | \texttt{src1} (I) - \texttt{src2} (I)|}{if $\texttt{normType} = \texttt{NORM\_INF}$ }
{ \| \texttt{src1} - \texttt{src2} \| _{L_1} = \sum _I | \texttt{src1} (I) - \texttt{src2} (I)|}{if $\texttt{normType} = \texttt{NORM\_L1}$ }
{ \| \texttt{src1} - \texttt{src2} \| _{L_2} = \sqrt{\sum_I (\texttt{src1}(I) - \texttt{src2}(I))^2} }{if $\texttt{normType} = \texttt{NORM\_L2}$ }
or
.. math::
norm = \forkthree{\frac{\|\texttt{src1}-\texttt{src2}\|_{L_{\infty}} }{\|\texttt{src2}\|_{L_{\infty}} }}{if $\texttt{normType} = \texttt{NORM\_RELATIVE\_INF}$ }
{ \frac{\|\texttt{src1}-\texttt{src2}\|_{L_1} }{\|\texttt{src2}\|_{L_1}} }{if $\texttt{normType} = \texttt{NORM\_RELATIVE\_L1}$ }
{ \frac{\|\texttt{src1}-\texttt{src2}\|_{L_2} }{\|\texttt{src2}\|_{L_2}} }{if $\texttt{normType} = \texttt{NORM\_RELATIVE\_L2}$ }
The functions ``norm`` return the calculated norm.
When the ``mask`` parameter is specified and it is not empty, the norm is calculated only over the region specified by the mask.
A multi-channel input arrays are treated as a single-channel, that is, the results for all channels are combined.
normalize
---------
Normalizes the norm or value range of an array.
.. ocv:function:: void normalize( InputArray src, OutputArray dst, double alpha=1, double beta=0, int norm_type=NORM_L2, int dtype=-1, InputArray mask=noArray() )
.. ocv:function:: void normalize(const SparseMat& src, SparseMat& dst, double alpha, int normType)
.. ocv:pyfunction:: cv2.normalize(src[, dst[, alpha[, beta[, norm_type[, dtype[, mask]]]]]]) -> dst
:param src: input array.
:param dst: output array of the same size as ``src`` .
:param alpha: norm value to normalize to or the lower range boundary in case of the range normalization.
:param beta: upper range boundary in case of the range normalization; it is not used for the norm normalization.
:param normType: normalization type (see the details below).
:param dtype: when negative, the output array has the same type as ``src``; otherwise, it has the same number of channels as ``src`` and the depth ``=CV_MAT_DEPTH(dtype)``.
:param mask: optional operation mask.
The functions ``normalize`` scale and shift the input array elements so that
.. math::
\| \texttt{dst} \| _{L_p}= \texttt{alpha}
(where p=Inf, 1 or 2) when ``normType=NORM_INF``, ``NORM_L1``, or ``NORM_L2``, respectively; or so that
.. math::
\min _I \texttt{dst} (I)= \texttt{alpha} , \, \, \max _I \texttt{dst} (I)= \texttt{beta}
when ``normType=NORM_MINMAX`` (for dense arrays only).
The optional mask specifies a sub-array to be normalized. This means that the norm or min-n-max are calculated over the sub-array, and then this sub-array is modified to be normalized. If you want to only use the mask to calculate the norm or min-max but modify the whole array, you can use
:ocv:func:`norm` and
:ocv:func:`Mat::convertTo`.
In case of sparse matrices, only the non-zero values are analyzed and transformed. Because of this, the range transformation for sparse matrices is not allowed since it can shift the zero level.
.. seealso::
:ocv:func:`norm`,
:ocv:func:`Mat::convertTo`,
:ocv:func:`SparseMat::convertTo`
PCA
---
.. ocv:class:: PCA
Principal Component Analysis class.
The class is used to calculate a special basis for a set of vectors. The basis will consist of eigenvectors of the covariance matrix calculated from the input set of vectors. The class ``PCA`` can also transform vectors to/from the new coordinate space defined by the basis. Usually, in this new coordinate system, each vector from the original set (and any linear combination of such vectors) can be quite accurately approximated by taking its first few components, corresponding to the eigenvectors of the largest eigenvalues of the covariance matrix. Geometrically it means that you calculate a projection of the vector to a subspace formed by a few eigenvectors corresponding to the dominant eigenvalues of the covariance matrix. And usually such a projection is very close to the original vector. So, you can represent the original vector from a high-dimensional space with a much shorter vector consisting of the projected vector's coordinates in the subspace. Such a transformation is also known as Karhunen-Loeve Transform, or KLT. See
http://en.wikipedia.org/wiki/Principal\_component\_analysis .
The sample below is the function that takes two matrices. The first function stores a set of vectors (a row per vector) that is used to calculate PCA. The second function stores another "test" set of vectors (a row per vector). First, these vectors are compressed with PCA, then reconstructed back, and then the reconstruction error norm is computed and printed for each vector. ::
PCA compressPCA(InputArray pcaset, int maxComponents,
const Mat& testset, OutputArray compressed)
{
PCA pca(pcaset, // pass the data
Mat(), // there is no pre-computed mean vector,
// so let the PCA engine to compute it
CV_PCA_DATA_AS_ROW, // indicate that the vectors
// are stored as matrix rows
// (use CV_PCA_DATA_AS_COL if the vectors are
// the matrix columns)
maxComponents // specify how many principal components to retain
);
// if there is no test data, just return the computed basis, ready-to-use
if( !testset.data )
return pca;
CV_Assert( testset.cols == pcaset.cols );
compressed.create(testset.rows, maxComponents, testset.type());
Mat reconstructed;
for( int i = 0; i < testset.rows; i++ )
{
Mat vec = testset.row(i), coeffs = compressed.row(i);
// compress the vector, the result will be stored
// in the i-th row of the output matrix
pca.project(vec, coeffs);
// and then reconstruct it
pca.backProject(coeffs, reconstructed);
// and measure the error
printf("%d. diff = %g\n", i, norm(vec, reconstructed, NORM_L2));
}
return pca;
}
.. seealso::
:ocv:func:`calcCovarMatrix`,
:ocv:func:`mulTransposed`,
:ocv:class:`SVD`,
:ocv:func:`dft`,
:ocv:func:`dct`
.. note::
* An example using PCA for dimensionality reduction while maintaining an amount of variance can be found at opencv_source_code/samples/cpp/pca.cpp
PCA::PCA
--------
PCA constructors
.. ocv:function:: PCA::PCA()
.. ocv:function:: PCA::PCA(InputArray data, InputArray mean, int flags, int maxComponents=0)
.. ocv:function:: PCA::PCA(InputArray data, InputArray mean, int flags, double retainedVariance)
:param data: input samples stored as matrix rows or matrix columns.
:param mean: optional mean value; if the matrix is empty (``noArray()``), the mean is computed from the data.
:param flags: operation flags; currently the parameter is only used to specify the data layout:
* **CV_PCA_DATA_AS_ROW** indicates that the input samples are stored as matrix rows.
* **CV_PCA_DATA_AS_COL** indicates that the input samples are stored as matrix columns.
:param maxComponents: maximum number of components that PCA should retain; by default, all the components are retained.
:param retainedVariance: Percentage of variance that PCA should retain. Using this parameter will let the PCA decided how many components to retain but it will always keep at least 2.
The default constructor initializes an empty PCA structure. The other constructors initialize the structure and call
:ocv:funcx:`PCA::operator()` .
PCA::operator ()
----------------
Performs Principal Component Analysis of the supplied dataset.
.. ocv:function:: PCA& PCA::operator()(InputArray data, InputArray mean, int flags, int maxComponents=0)
.. ocv:function:: PCA& PCA::computeVar(InputArray data, InputArray mean, int flags, double retainedVariance)
.. ocv:pyfunction:: cv2.PCACompute(data[, mean[, eigenvectors[, maxComponents]]]) -> mean, eigenvectors
.. ocv:pyfunction:: cv2.PCAComputeVar(data, retainedVariance[, mean[, eigenvectors]]) -> mean, eigenvectors
:param data: input samples stored as the matrix rows or as the matrix columns.
:param mean: optional mean value; if the matrix is empty (``noArray()``), the mean is computed from the data.
:param flags: operation flags; currently the parameter is only used to specify the data layout.
* **CV_PCA_DATA_AS_ROW** indicates that the input samples are stored as matrix rows.
* **CV_PCA_DATA_AS_COL** indicates that the input samples are stored as matrix columns.
:param maxComponents: maximum number of components that PCA should retain; by default, all the components are retained.
:param retainedVariance: Percentage of variance that PCA should retain. Using this parameter will let the PCA decided how many components to retain but it will always keep at least 2.
The operator performs PCA of the supplied dataset. It is safe to reuse the same PCA structure for multiple datasets. That is, if the structure has been previously used with another dataset, the existing internal data is reclaimed and the new ``eigenvalues``, ``eigenvectors`` , and ``mean`` are allocated and computed.
The computed eigenvalues are sorted from the largest to the smallest and the corresponding eigenvectors are stored as ``PCA::eigenvectors`` rows.
PCA::project
------------
Projects vector(s) to the principal component subspace.
.. ocv:function:: Mat PCA::project(InputArray vec) const
.. ocv:function:: void PCA::project(InputArray vec, OutputArray result) const
.. ocv:pyfunction:: cv2.PCAProject(data, mean, eigenvectors[, result]) -> result
:param vec: input vector(s); must have the same dimensionality and the same layout as the input data used at PCA phase, that is, if ``CV_PCA_DATA_AS_ROW`` are specified, then ``vec.cols==data.cols`` (vector dimensionality) and ``vec.rows`` is the number of vectors to project, and the same is true for the ``CV_PCA_DATA_AS_COL`` case.
:param result: output vectors; in case of ``CV_PCA_DATA_AS_COL``, the output matrix has as many columns as the number of input vectors, this means that ``result.cols==vec.cols`` and the number of rows match the number of principal components (for example, ``maxComponents`` parameter passed to the constructor).
The methods project one or more vectors to the principal component subspace, where each vector projection is represented by coefficients in the principal component basis. The first form of the method returns the matrix that the second form writes to the result. So the first form can be used as a part of expression while the second form can be more efficient in a processing loop.
PCA::backProject
----------------
Reconstructs vectors from their PC projections.
.. ocv:function:: Mat PCA::backProject(InputArray vec) const
.. ocv:function:: void PCA::backProject(InputArray vec, OutputArray result) const
.. ocv:pyfunction:: cv2.PCABackProject(data, mean, eigenvectors[, result]) -> result
:param vec: coordinates of the vectors in the principal component subspace, the layout and size are the same as of ``PCA::project`` output vectors.
:param result: reconstructed vectors; the layout and size are the same as of ``PCA::project`` input vectors.
The methods are inverse operations to
:ocv:func:`PCA::project`. They take PC coordinates of projected vectors and reconstruct the original vectors. Unless all the principal components have been retained, the reconstructed vectors are different from the originals. But typically, the difference is small if the number of components is large enough (but still much smaller than the original vector dimensionality). As a result, PCA is used.
perspectiveTransform
--------------------
Performs the perspective matrix transformation of vectors.
.. ocv:function:: void perspectiveTransform( InputArray src, OutputArray dst, InputArray m )
.. ocv:pyfunction:: cv2.perspectiveTransform(src, m[, dst]) -> dst
.. ocv:cfunction:: void cvPerspectiveTransform(const CvArr* src, CvArr* dst, const CvMat* mat)
.. ocv:pyoldfunction:: cv.PerspectiveTransform(src, dst, mat)-> None
:param src: input two-channel or three-channel floating-point array; each element is a 2D/3D vector to be transformed.
:param dst: output array of the same size and type as ``src``.
:param m: ``3x3`` or ``4x4`` floating-point transformation matrix.
The function ``perspectiveTransform`` transforms every element of ``src`` by treating it as a 2D or 3D vector, in the following way:
.. math::
(x, y, z) \rightarrow (x'/w, y'/w, z'/w)
where
.. math::
(x', y', z', w') = \texttt{mat} \cdot \begin{bmatrix} x & y & z & 1 \end{bmatrix}
and
.. math::
w = \fork{w'}{if $w' \ne 0$}{\infty}{otherwise}
Here a 3D vector transformation is shown. In case of a 2D vector transformation, the ``z`` component is omitted.
.. note:: The function transforms a sparse set of 2D or 3D vectors. If you want to transform an image using perspective transformation, use :ocv:func:`warpPerspective` . If you have an inverse problem, that is, you want to compute the most probable perspective transformation out of several pairs of corresponding points, you can use :ocv:func:`getPerspectiveTransform` or :ocv:func:`findHomography` .
.. seealso::
:ocv:func:`transform`,
:ocv:func:`warpPerspective`,
:ocv:func:`getPerspectiveTransform`,
:ocv:func:`findHomography`
phase
-----
Calculates the rotation angle of 2D vectors.
.. ocv:function:: void phase(InputArray x, InputArray y, OutputArray angle, bool angleInDegrees=false)
.. ocv:pyfunction:: cv2.phase(x, y[, angle[, angleInDegrees]]) -> angle
:param x: input floating-point array of x-coordinates of 2D vectors.
:param y: input array of y-coordinates of 2D vectors; it must have the same size and the same type as ``x``.
:param angle: output array of vector angles; it has the same size and same type as ``x`` .
:param angleInDegrees: when true, the function calculates the angle in degrees, otherwise, they are measured in radians.
The function ``phase`` calculates the rotation angle of each 2D vector that is formed from the corresponding elements of ``x`` and ``y`` :
.. math::
\texttt{angle} (I) = \texttt{atan2} ( \texttt{y} (I), \texttt{x} (I))
The angle estimation accuracy is about 0.3 degrees. When ``x(I)=y(I)=0`` , the corresponding ``angle(I)`` is set to 0.
polarToCart
-----------
Calculates x and y coordinates of 2D vectors from their magnitude and angle.
.. ocv:function:: void polarToCart(InputArray magnitude, InputArray angle, OutputArray x, OutputArray y, bool angleInDegrees=false)
.. ocv:pyfunction:: cv2.polarToCart(magnitude, angle[, x[, y[, angleInDegrees]]]) -> x, y
.. ocv:cfunction:: void cvPolarToCart( const CvArr* magnitude, const CvArr* angle, CvArr* x, CvArr* y, int angle_in_degrees=0 )
.. ocv:pyoldfunction:: cv.PolarToCart(magnitude, angle, x, y, angleInDegrees=0)-> None
:param magnitude: input floating-point array of magnitudes of 2D vectors; it can be an empty matrix (``=Mat()``), in this case, the function assumes that all the magnitudes are =1; if it is not empty, it must have the same size and type as ``angle``.
:param angle: input floating-point array of angles of 2D vectors.
:param x: output array of x-coordinates of 2D vectors; it has the same size and type as ``angle``.
:param y: output array of y-coordinates of 2D vectors; it has the same size and type as ``angle``.
:param angleInDegrees: when true, the input angles are measured in degrees, otherwise, they are measured in radians.
The function ``polarToCart`` calculates the Cartesian coordinates of each 2D vector represented by the corresponding elements of ``magnitude`` and ``angle`` :
.. math::
\begin{array}{l} \texttt{x} (I) = \texttt{magnitude} (I) \cos ( \texttt{angle} (I)) \\ \texttt{y} (I) = \texttt{magnitude} (I) \sin ( \texttt{angle} (I)) \\ \end{array}
The relative accuracy of the estimated coordinates is about ``1e-6``.
.. seealso::
:ocv:func:`cartToPolar`,
:ocv:func:`magnitude`,
:ocv:func:`phase`,
:ocv:func:`exp`,
:ocv:func:`log`,
:ocv:func:`pow`,
:ocv:func:`sqrt`
pow
---
Raises every array element to a power.
.. ocv:function:: void pow( InputArray src, double power, OutputArray dst )
.. ocv:pyfunction:: cv2.pow(src, power[, dst]) -> dst
.. ocv:cfunction:: void cvPow( const CvArr* src, CvArr* dst, double power)
.. ocv:pyoldfunction:: cv.Pow(src, dst, power)-> None
:param src: input array.
:param power: exponent of power.
:param dst: output array of the same size and type as ``src``.
The function ``pow`` raises every element of the input array to ``power`` :
.. math::
\texttt{dst} (I) = \fork{\texttt{src}(I)^power}{if \texttt{power} is integer}{|\texttt{src}(I)|^power}{otherwise}
So, for a non-integer power exponent, the absolute values of input array elements are used. However, it is possible to get true values for negative values using some extra operations. In the example below, computing the 5th root of array ``src`` shows: ::
Mat mask = src < 0;
pow(src, 1./5, dst);
subtract(Scalar::all(0), dst, dst, mask);
For some values of ``power`` , such as integer values, 0.5 and -0.5, specialized faster algorithms are used.
Special values (NaN, Inf) are not handled.
.. seealso::
:ocv:func:`sqrt`,
:ocv:func:`exp`,
:ocv:func:`log`,
:ocv:func:`cartToPolar`,
:ocv:func:`polarToCart`
RNG
---
.. ocv:class:: RNG
Random number generator. It encapsulates the state (currently, a 64-bit integer) and has methods to return scalar random values and to fill arrays with random values. Currently it supports uniform and Gaussian (normal) distributions. The generator uses Multiply-With-Carry algorithm, introduced by G. Marsaglia (
http://en.wikipedia.org/wiki/Multiply-with-carry
). Gaussian-distribution random numbers are generated using the Ziggurat algorithm (
http://en.wikipedia.org/wiki/Ziggurat_algorithm
), introduced by G. Marsaglia and W. W. Tsang.
RNG::RNG
--------
The constructors
.. ocv:function:: RNG::RNG()
.. ocv:function:: RNG::RNG(uint64 state)
:param state: 64-bit value used to initialize the RNG.
These are the RNG constructors. The first form sets the state to some pre-defined value, equal to ``2**32-1`` in the current implementation. The second form sets the state to the specified value. If you passed ``state=0`` , the constructor uses the above default value instead to avoid the singular random number sequence, consisting of all zeros.
RNG::next
---------
Returns the next random number.
.. ocv:function:: unsigned RNG::next()
The method updates the state using the MWC algorithm and returns the next 32-bit random number.
RNG::operator T
---------------
Returns the next random number of the specified type.
.. ocv:function:: RNG::operator uchar()
.. ocv:function:: RNG::operator schar()
.. ocv:function:: RNG::operator ushort()
.. ocv:function:: RNG::operator short()
.. ocv:function:: RNG::operator int()
.. ocv:function:: RNG::operator unsigned()
.. ocv:function:: RNG::operator float()
.. ocv:function:: RNG::operator double()
Each of the methods updates the state using the MWC algorithm and returns the next random number of the specified type. In case of integer types, the returned number is from the available value range for the specified type. In case of floating-point types, the returned value is from ``[0,1)`` range.
RNG::operator ()
----------------
Returns the next random number.
.. ocv:function:: unsigned RNG::operator ()()
.. ocv:function:: unsigned RNG::operator ()(unsigned N)
:param N: upper non-inclusive boundary of the returned random number.
The methods transform the state using the MWC algorithm and return the next random number. The first form is equivalent to
:ocv:func:`RNG::next` . The second form returns the random number modulo ``N`` , which means that the result is in the range ``[0, N)`` .
RNG::uniform
------------
Returns the next random number sampled from the uniform distribution.
.. ocv:function:: int RNG::uniform(int a, int b)
.. ocv:function:: float RNG::uniform(float a, float b)
.. ocv:function:: double RNG::uniform(double a, double b)
:param a: lower inclusive boundary of the returned random numbers.
:param b: upper non-inclusive boundary of the returned random numbers.
The methods transform the state using the MWC algorithm and return the next uniformly-distributed random number of the specified type, deduced from the input parameter type, from the range ``[a, b)`` . There is a nuance illustrated by the following sample: ::
RNG rng;
// always produces 0
double a = rng.uniform(0, 1);
// produces double from [0, 1)
double a1 = rng.uniform((double)0, (double)1);
// produces float from [0, 1)
double b = rng.uniform(0.f, 1.f);
// produces double from [0, 1)
double c = rng.uniform(0., 1.);
// may cause compiler error because of ambiguity:
// RNG::uniform(0, (int)0.999999)? or RNG::uniform((double)0, 0.99999)?
double d = rng.uniform(0, 0.999999);
The compiler does not take into account the type of the variable to which you assign the result of ``RNG::uniform`` . The only thing that matters to the compiler is the type of ``a`` and ``b`` parameters. So, if you want a floating-point random number, but the range boundaries are integer numbers, either put dots in the end, if they are constants, or use explicit type cast operators, as in the ``a1`` initialization above.
RNG::gaussian
-------------
Returns the next random number sampled from the Gaussian distribution.
.. ocv:function:: double RNG::gaussian(double sigma)
:param sigma: standard deviation of the distribution.
The method transforms the state using the MWC algorithm and returns the next random number from the Gaussian distribution ``N(0,sigma)`` . That is, the mean value of the returned random numbers is zero and the standard deviation is the specified ``sigma`` .
RNG::fill
---------
Fills arrays with random numbers.
.. ocv:function:: void RNG::fill( InputOutputArray mat, int distType, InputArray a, InputArray b, bool saturateRange=false )
:param mat: 2D or N-dimensional matrix; currently matrices with more than 4 channels are not supported by the methods, use :ocv:func:`Mat::reshape` as a possible workaround.
:param distType: distribution type, ``RNG::UNIFORM`` or ``RNG::NORMAL``.
:param a: first distribution parameter; in case of the uniform distribution, this is an inclusive lower boundary, in case of the normal distribution, this is a mean value.
:param b: second distribution parameter; in case of the uniform distribution, this is a non-inclusive upper boundary, in case of the normal distribution, this is a standard deviation (diagonal of the standard deviation matrix or the full standard deviation matrix).
:param saturateRange: pre-saturation flag; for uniform distribution only; if true, the method will first convert a and b to the acceptable value range (according to the mat datatype) and then will generate uniformly distributed random numbers within the range ``[saturate(a), saturate(b))``, if ``saturateRange=false``, the method will generate uniformly distributed random numbers in the original range ``[a, b)`` and then will saturate them, it means, for example, that ``theRNG().fill(mat_8u, RNG::UNIFORM, -DBL_MAX, DBL_MAX)`` will likely produce array mostly filled with 0's and 255's, since the range ``(0, 255)`` is significantly smaller than ``[-DBL_MAX, DBL_MAX)``.
Each of the methods fills the matrix with the random values from the specified distribution. As the new numbers are generated, the RNG state is updated accordingly. In case of multiple-channel images, every channel is filled independently, which means that RNG cannot generate samples from the multi-dimensional Gaussian distribution with non-diagonal covariance matrix directly. To do that, the method generates samples from multi-dimensional standard Gaussian distribution with zero mean and identity covariation matrix, and then transforms them using :ocv:func:`transform` to get samples from the specified Gaussian distribution.
randu
-----
Generates a single uniformly-distributed random number or an array of random numbers.
.. ocv:function:: template<typename _Tp> _Tp randu()
.. ocv:function:: void randu( InputOutputArray dst, InputArray low, InputArray high )
.. ocv:pyfunction:: cv2.randu(dst, low, high) -> None
:param dst: output array of random numbers; the array must be pre-allocated.
:param low: inclusive lower boundary of the generated random numbers.
:param high: exclusive upper boundary of the generated random numbers.
The template functions ``randu`` generate and return the next uniformly-distributed random value of the specified type. ``randu<int>()`` is an equivalent to ``(int)theRNG();`` , and so on. See
:ocv:class:`RNG` description.
The second non-template variant of the function fills the matrix ``dst`` with uniformly-distributed random numbers from the specified range:
.. math::
\texttt{low} _c \leq \texttt{dst} (I)_c < \texttt{high} _c
.. seealso::
:ocv:class:`RNG`,
:ocv:func:`randn`,
:ocv:func:`theRNG`
randn
-----
Fills the array with normally distributed random numbers.
.. ocv:function:: void randn( InputOutputArray dst, InputArray mean, InputArray stddev )
.. ocv:pyfunction:: cv2.randn(dst, mean, stddev) -> None
:param dst: output array of random numbers; the array must be pre-allocated and have 1 to 4 channels.
:param mean: mean value (expectation) of the generated random numbers.
:param stddev: standard deviation of the generated random numbers; it can be either a vector (in which case a diagonal standard deviation matrix is assumed) or a square matrix.
The function ``randn`` fills the matrix ``dst`` with normally distributed random numbers with the specified mean vector and the standard deviation matrix. The generated random numbers are clipped to fit the value range of the output array data type.
.. seealso::
:ocv:class:`RNG`,
:ocv:func:`randu`
randShuffle
-----------
Shuffles the array elements randomly.
.. ocv:function:: void randShuffle( InputOutputArray dst, double iterFactor=1., RNG* rng=0 )
.. ocv:pyfunction:: cv2.randShuffle(dst[, iterFactor]) -> None
:param dst: input/output numerical 1D array.
:param iterFactor: scale factor that determines the number of random swap operations (see the details below).
:param rng: optional random number generator used for shuffling; if it is zero, :ocv:func:`theRNG` () is used instead.
The function ``randShuffle`` shuffles the specified 1D array by randomly choosing pairs of elements and swapping them. The number of such swap operations will be ``dst.rows*dst.cols*iterFactor`` .
.. seealso::
:ocv:class:`RNG`,
:ocv:func:`sort`
reduce
------
Reduces a matrix to a vector.
.. ocv:function:: void reduce( InputArray src, OutputArray dst, int dim, int rtype, int dtype=-1 )
.. ocv:pyfunction:: cv2.reduce(src, dim, rtype[, dst[, dtype]]) -> dst
.. ocv:cfunction:: void cvReduce(const CvArr* src, CvArr* dst, int dim=-1, int op=CV_REDUCE_SUM)
.. ocv:pyoldfunction:: cv.Reduce(src, dst, dim=-1, op=CV_REDUCE_SUM)-> None
:param src: input 2D matrix.
:param dst: output vector. Its size and type is defined by ``dim`` and ``dtype`` parameters.
:param dim: dimension index along which the matrix is reduced. 0 means that the matrix is reduced to a single row. 1 means that the matrix is reduced to a single column.
:param rtype: reduction operation that could be one of the following:
* **CV_REDUCE_SUM**: the output is the sum of all rows/columns of the matrix.
* **CV_REDUCE_AVG**: the output is the mean vector of all rows/columns of the matrix.
* **CV_REDUCE_MAX**: the output is the maximum (column/row-wise) of all rows/columns of the matrix.
* **CV_REDUCE_MIN**: the output is the minimum (column/row-wise) of all rows/columns of the matrix.
:param dtype: when negative, the output vector will have the same type as the input matrix, otherwise, its type will be ``CV_MAKE_TYPE(CV_MAT_DEPTH(dtype), src.channels())``.
The function ``reduce`` reduces the matrix to a vector by treating the matrix rows/columns as a set of 1D vectors and performing the specified operation on the vectors until a single row/column is obtained. For example, the function can be used to compute horizontal and vertical projections of a raster image. In case of ``CV_REDUCE_SUM`` and ``CV_REDUCE_AVG`` , the output may have a larger element bit-depth to preserve accuracy. And multi-channel arrays are also supported in these two reduction modes.
.. seealso:: :ocv:func:`repeat`
repeat
------
Fills the output array with repeated copies of the input array.
.. ocv:function:: void repeat(InputArray src, int ny, int nx, OutputArray dst)
.. ocv:function:: Mat repeat( const Mat& src, int ny, int nx )
.. ocv:pyfunction:: cv2.repeat(src, ny, nx[, dst]) -> dst
.. ocv:cfunction:: void cvRepeat(const CvArr* src, CvArr* dst)
.. ocv:pyoldfunction:: cv.Repeat(src, dst)-> None
:param src: input array to replicate.
:param dst: output array of the same type as ``src``.
:param ny: Flag to specify how many times the ``src`` is repeated along the vertical axis.
:param nx: Flag to specify how many times the ``src`` is repeated along the horizontal axis.
The functions
:ocv:func:`repeat` duplicate the input array one or more times along each of the two axes:
.. math::
\texttt{dst} _{ij}= \texttt{src} _{i\mod src.rows, \; j\mod src.cols }
The second variant of the function is more convenient to use with
:ref:`MatrixExpressions` .
.. seealso::
:ocv:func:`reduce`,
:ref:`MatrixExpressions`
scaleAdd
--------
Calculates the sum of a scaled array and another array.
.. ocv:function:: void scaleAdd( InputArray src1, double alpha, InputArray src2, OutputArray dst )
.. ocv:pyfunction:: cv2.scaleAdd(src1, alpha, src2[, dst]) -> dst
.. ocv:cfunction:: void cvScaleAdd(const CvArr* src1, CvScalar scale, const CvArr* src2, CvArr* dst)
.. ocv:pyoldfunction:: cv.ScaleAdd(src1, scale, src2, dst)-> None
:param src1: first input array.
:param scale: scale factor for the first array.
:param src2: second input array of the same size and type as ``src1``.
:param dst: output array of the same size and type as ``src1``.
The function ``scaleAdd`` is one of the classical primitive linear algebra operations, known as ``DAXPY`` or ``SAXPY`` in `BLAS <http://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms>`_. It calculates the sum of a scaled array and another array:
.. math::
\texttt{dst} (I)= \texttt{scale} \cdot \texttt{src1} (I) + \texttt{src2} (I)
The function can also be emulated with a matrix expression, for example: ::
Mat A(3, 3, CV_64F);
...
A.row(0) = A.row(1)*2 + A.row(2);
.. seealso::
:ocv:func:`add`,
:ocv:func:`addWeighted`,
:ocv:func:`subtract`,
:ocv:func:`Mat::dot`,
:ocv:func:`Mat::convertTo`,
:ref:`MatrixExpressions`
setIdentity
-----------
Initializes a scaled identity matrix.
.. ocv:function:: void setIdentity( InputOutputArray mtx, const Scalar& s=Scalar(1) )
.. ocv:pyfunction:: cv2.setIdentity(mtx[, s]) -> None
.. ocv:cfunction:: void cvSetIdentity(CvArr* mat, CvScalar value=cvRealScalar(1))
.. ocv:pyoldfunction:: cv.SetIdentity(mat, value=1)-> None
:param mtx: matrix to initialize (not necessarily square).
:param value: value to assign to diagonal elements.
The function
:ocv:func:`setIdentity` initializes a scaled identity matrix:
.. math::
\texttt{mtx} (i,j)= \fork{\texttt{value}}{ if $i=j$}{0}{otherwise}
The function can also be emulated using the matrix initializers and the matrix expressions: ::
Mat A = Mat::eye(4, 3, CV_32F)*5;
// A will be set to [[5, 0, 0], [0, 5, 0], [0, 0, 5], [0, 0, 0]]
.. seealso::
:ocv:func:`Mat::zeros`,
:ocv:func:`Mat::ones`,
:ref:`MatrixExpressions`,
:ocv:func:`Mat::setTo`,
:ocv:func:`Mat::operator=`
solve
-----
Solves one or more linear systems or least-squares problems.
.. ocv:function:: bool solve(InputArray src1, InputArray src2, OutputArray dst, int flags=DECOMP_LU)
.. ocv:pyfunction:: cv2.solve(src1, src2[, dst[, flags]]) -> retval, dst
.. ocv:cfunction:: int cvSolve(const CvArr* src1, const CvArr* src2, CvArr* dst, int method=CV_LU)
.. ocv:pyoldfunction:: cv.Solve(A, B, X, method=CV_LU)-> None
:param src1: input matrix on the left-hand side of the system.
:param src2: input matrix on the right-hand side of the system.
:param dst: output solution.
:param flags: solution (matrix inversion) method.
* **DECOMP_LU** Gaussian elimination with optimal pivot element chosen.
* **DECOMP_CHOLESKY** Cholesky :math:`LL^T` factorization; the matrix ``src1`` must be symmetrical and positively defined.
* **DECOMP_EIG** eigenvalue decomposition; the matrix ``src1`` must be symmetrical.
* **DECOMP_SVD** singular value decomposition (SVD) method; the system can be over-defined and/or the matrix ``src1`` can be singular.
* **DECOMP_QR** QR factorization; the system can be over-defined and/or the matrix ``src1`` can be singular.
* **DECOMP_NORMAL** while all the previous flags are mutually exclusive, this flag can be used together with any of the previous; it means that the normal equations :math:`\texttt{src1}^T\cdot\texttt{src1}\cdot\texttt{dst}=\texttt{src1}^T\texttt{src2}` are solved instead of the original system :math:`\texttt{src1}\cdot\texttt{dst}=\texttt{src2}` .
The function ``solve`` solves a linear system or least-squares problem (the latter is possible with SVD or QR methods, or by specifying the flag ``DECOMP_NORMAL`` ):
.. math::
\texttt{dst} = \arg \min _X \| \texttt{src1} \cdot \texttt{X} - \texttt{src2} \|
If ``DECOMP_LU`` or ``DECOMP_CHOLESKY`` method is used, the function returns 1 if ``src1`` (or
:math:`\texttt{src1}^T\texttt{src1}` ) is non-singular. Otherwise, it returns 0. In the latter case, ``dst`` is not valid. Other methods find a pseudo-solution in case of a singular left-hand side part.
.. note:: If you want to find a unity-norm solution of an under-defined singular system :math:`\texttt{src1}\cdot\texttt{dst}=0` , the function ``solve`` will not do the work. Use :ocv:func:`SVD::solveZ` instead.
.. seealso::
:ocv:func:`invert`,
:ocv:class:`SVD`,
:ocv:func:`eigen`
solveCubic
----------
Finds the real roots of a cubic equation.
.. ocv:function:: int solveCubic( InputArray coeffs, OutputArray roots )
.. ocv:pyfunction:: cv2.solveCubic(coeffs[, roots]) -> retval, roots
.. ocv:cfunction:: int cvSolveCubic( const CvMat* coeffs, CvMat* roots )
.. ocv:pyoldfunction:: cv.SolveCubic(coeffs, roots)-> None
:param coeffs: equation coefficients, an array of 3 or 4 elements.
:param roots: output array of real roots that has 1 or 3 elements.
The function ``solveCubic`` finds the real roots of a cubic equation:
* if ``coeffs`` is a 4-element vector:
.. math::
\texttt{coeffs} [0] x^3 + \texttt{coeffs} [1] x^2 + \texttt{coeffs} [2] x + \texttt{coeffs} [3] = 0
* if ``coeffs`` is a 3-element vector:
.. math::
x^3 + \texttt{coeffs} [0] x^2 + \texttt{coeffs} [1] x + \texttt{coeffs} [2] = 0
The roots are stored in the ``roots`` array.
solvePoly
---------
Finds the real or complex roots of a polynomial equation.
.. ocv:function:: double solvePoly( InputArray coeffs, OutputArray roots, int maxIters=300 )
.. ocv:pyfunction:: cv2.solvePoly(coeffs[, roots[, maxIters]]) -> retval, roots
:param coeffs: array of polynomial coefficients.
:param roots: output (complex) array of roots.
:param maxIters: maximum number of iterations the algorithm does.
The function ``solvePoly`` finds real and complex roots of a polynomial equation:
.. math::
\texttt{coeffs} [n] x^{n} + \texttt{coeffs} [n-1] x^{n-1} + ... + \texttt{coeffs} [1] x + \texttt{coeffs} [0] = 0
sort
----
Sorts each row or each column of a matrix.
.. ocv:function:: void sort(InputArray src, OutputArray dst, int flags)
.. ocv:pyfunction:: cv2.sort(src, flags[, dst]) -> dst
:param src: input single-channel array.
:param dst: output array of the same size and type as ``src``.
:param flags: operation flags, a combination of the following values:
* **CV_SORT_EVERY_ROW** each matrix row is sorted independently.
* **CV_SORT_EVERY_COLUMN** each matrix column is sorted independently; this flag and the previous one are mutually exclusive.
* **CV_SORT_ASCENDING** each matrix row is sorted in the ascending order.
* **CV_SORT_DESCENDING** each matrix row is sorted in the descending order; this flag and the previous one are also mutually exclusive.
The function ``sort`` sorts each matrix row or each matrix column in ascending or descending order. So you should pass two operation flags to get desired behaviour. If you want to sort matrix rows or columns lexicographically, you can use STL ``std::sort`` generic function with the proper comparison predicate.
.. seealso::
:ocv:func:`sortIdx`,
:ocv:func:`randShuffle`
sortIdx
-------
Sorts each row or each column of a matrix.
.. ocv:function:: void sortIdx(InputArray src, OutputArray dst, int flags)
.. ocv:pyfunction:: cv2.sortIdx(src, flags[, dst]) -> dst
:param src: input single-channel array.
:param dst: output integer array of the same size as ``src``.
:param flags: operation flags that could be a combination of the following values:
* **CV_SORT_EVERY_ROW** each matrix row is sorted independently.
* **CV_SORT_EVERY_COLUMN** each matrix column is sorted independently; this flag and the previous one are mutually exclusive.
* **CV_SORT_ASCENDING** each matrix row is sorted in the ascending order.
* **CV_SORT_DESCENDING** each matrix row is sorted in the descending order; his flag and the previous one are also mutually exclusive.
The function ``sortIdx`` sorts each matrix row or each matrix column in the ascending or descending order. So you should pass two operation flags to get desired behaviour. Instead of reordering the elements themselves, it stores the indices of sorted elements in the output array. For example: ::
Mat A = Mat::eye(3,3,CV_32F), B;
sortIdx(A, B, CV_SORT_EVERY_ROW + CV_SORT_ASCENDING);
// B will probably contain
// (because of equal elements in A some permutations are possible):
// [[1, 2, 0], [0, 2, 1], [0, 1, 2]]
.. seealso::
:ocv:func:`sort`,
:ocv:func:`randShuffle`
split
-----
Divides a multi-channel array into several single-channel arrays.
.. ocv:function:: void split( const Mat& src, Mat* mvbegin )
.. ocv:function:: void split( InputArray m, OutputArrayOfArrays mv )
.. ocv:pyfunction:: cv2.split(m[, mv]) -> mv
.. ocv:cfunction:: void cvSplit(const CvArr* src, CvArr* dst0, CvArr* dst1, CvArr* dst2, CvArr* dst3)
.. ocv:pyoldfunction:: cv.Split(src, dst0, dst1, dst2, dst3)-> None
:param src: input multi-channel array.
:param mv: output array or vector of arrays; in the first variant of the function the number of arrays must match ``src.channels()``; the arrays themselves are reallocated, if needed.
The functions ``split`` split a multi-channel array into separate single-channel arrays:
.. math::
\texttt{mv} [c](I) = \texttt{src} (I)_c
If you need to extract a single channel or do some other sophisticated channel permutation, use
:ocv:func:`mixChannels` .
.. seealso::
:ocv:func:`merge`,
:ocv:func:`mixChannels`,
:ocv:func:`cvtColor`
sqrt
----
Calculates a square root of array elements.
.. ocv:function:: void sqrt(InputArray src, OutputArray dst)
.. ocv:pyfunction:: cv2.sqrt(src[, dst]) -> dst
.. ocv:cfunction:: float cvSqrt(float value)
.. ocv:pyoldfunction:: cv.Sqrt(value)-> float
:param src: input floating-point array.
:param dst: output array of the same size and type as ``src``.
The functions ``sqrt`` calculate a square root of each input array element. In case of multi-channel arrays, each channel is processed independently. The accuracy is approximately the same as of the built-in ``std::sqrt`` .
.. seealso::
:ocv:func:`pow`,
:ocv:func:`magnitude`
subtract
--------
Calculates the per-element difference between two arrays or array and a scalar.
.. ocv:function:: void subtract(InputArray src1, InputArray src2, OutputArray dst, InputArray mask=noArray(), int dtype=-1)
.. ocv:pyfunction:: cv2.subtract(src1, src2[, dst[, mask[, dtype]]]) -> dst
.. ocv:cfunction:: void cvSub(const CvArr* src1, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL)
.. ocv:cfunction:: void cvSubRS( const CvArr* src, CvScalar value, CvArr* dst, const CvArr* mask=NULL )
.. ocv:cfunction:: void cvSubS( const CvArr* src, CvScalar value, CvArr* dst, const CvArr* mask=NULL )
.. ocv:pyoldfunction:: cv.Sub(src1, src2, dst, mask=None) -> None
.. ocv:pyoldfunction:: cv.SubRS(src, value, dst, mask=None) -> None
.. ocv:pyoldfunction:: cv.SubS(src, value, dst, mask=None) -> None
:param src1: first input array or a scalar.
:param src2: second input array or a scalar.
:param dst: output array of the same size and the same number of channels as the input array.
:param mask: optional operation mask; this is an 8-bit single channel array that specifies elements of the output array to be changed.
:param dtype: optional depth of the output array (see the details below).
The function ``subtract`` calculates:
*
Difference between two arrays, when both input arrays have the same size and the same number of channels:
.. math::
\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}(I) - \texttt{src2}(I)) \quad \texttt{if mask}(I) \ne0
*
Difference between an array and a scalar, when ``src2`` is constructed from ``Scalar`` or has the same number of elements as ``src1.channels()``:
.. math::
\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}(I) - \texttt{src2} ) \quad \texttt{if mask}(I) \ne0
*
Difference between a scalar and an array, when ``src1`` is constructed from ``Scalar`` or has the same number of elements as ``src2.channels()``:
.. math::
\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1} - \texttt{src2}(I) ) \quad \texttt{if mask}(I) \ne0
*
The reverse difference between a scalar and an array in the case of ``SubRS``:
.. math::
\texttt{dst}(I) = \texttt{saturate} ( \texttt{src2} - \texttt{src1}(I) ) \quad \texttt{if mask}(I) \ne0
where ``I`` is a multi-dimensional index of array elements. In case of multi-channel arrays, each channel is processed independently.
The first function in the list above can be replaced with matrix expressions: ::
dst = src1 - src2;
dst -= src1; // equivalent to subtract(dst, src1, dst);
The input arrays and the output array can all have the same or different depths. For example, you can subtract to 8-bit unsigned arrays and store the difference in a 16-bit signed array. Depth of the output array is determined by ``dtype`` parameter. In the second and third cases above, as well as in the first case, when ``src1.depth() == src2.depth()``, ``dtype`` can be set to the default ``-1``. In this case the output array will have the same depth as the input array, be it ``src1``, ``src2`` or both.
.. note:: Saturation is not applied when the output array has the depth ``CV_32S``. You may even get result of an incorrect sign in the case of overflow.
.. seealso::
:ocv:func:`add`,
:ocv:func:`addWeighted`,
:ocv:func:`scaleAdd`,
:ocv:func:`Mat::convertTo`,
:ref:`MatrixExpressions`
SVD
---
.. ocv:class:: SVD
Class for computing Singular Value Decomposition of a floating-point matrix. The Singular Value Decomposition is used to solve least-square problems, under-determined linear systems, invert matrices, compute condition numbers, and so on.
For a faster operation, you can pass ``flags=SVD::MODIFY_A|...`` to modify the decomposed matrix when it is not necessary to preserve it. If you want to compute a condition number of a matrix or an absolute value of its determinant, you do not need ``u`` and ``vt`` . You can pass ``flags=SVD::NO_UV|...`` . Another flag ``FULL_UV`` indicates that full-size ``u`` and ``vt`` must be computed, which is not necessary most of the time.
.. seealso::
:ocv:func:`invert`,
:ocv:func:`solve`,
:ocv:func:`eigen`,
:ocv:func:`determinant`
SVD::SVD
--------
The constructors.
.. ocv:function:: SVD::SVD()
.. ocv:function:: SVD::SVD( InputArray src, int flags=0 )
:param src: decomposed matrix.
:param flags: operation flags.
* **SVD::MODIFY_A** use the algorithm to modify the decomposed matrix; it can save space and speed up processing.
* **SVD::NO_UV** indicates that only a vector of singular values ``w`` is to be processed, while ``u`` and ``vt`` will be set to empty matrices.
* **SVD::FULL_UV** when the matrix is not square, by default the algorithm produces ``u`` and ``vt`` matrices of sufficiently large size for the further ``A`` reconstruction; if, however, ``FULL_UV`` flag is specified, ``u`` and ``vt`` will be full-size square orthogonal matrices.
The first constructor initializes an empty ``SVD`` structure. The second constructor initializes an empty ``SVD`` structure and then calls
:ocv:funcx:`SVD::operator()` .
SVD::operator ()
----------------
Performs SVD of a matrix.
.. ocv:function:: SVD& SVD::operator()( InputArray src, int flags=0 )
:param src: decomposed matrix.
:param flags: operation flags.
* **SVD::MODIFY_A** use the algorithm to modify the decomposed matrix; it can save space and speed up processing.
* **SVD::NO_UV** use only singular values; the algorithm does not compute ``u`` and ``vt`` matrices.
* **SVD::FULL_UV** when the matrix is not square, by default the algorithm produces ``u`` and ``vt`` matrices of sufficiently large size for the further ``A`` reconstruction; if, however, the ``FULL_UV`` flag is specified, ``u`` and ``vt`` are full-size square orthogonal matrices.
The operator performs the singular value decomposition of the supplied matrix. The ``u``,``vt`` , and the vector of singular values ``w`` are stored in the structure. The same ``SVD`` structure can be reused many times with different matrices. Each time, if needed, the previous ``u``,``vt`` , and ``w`` are reclaimed and the new matrices are created, which is all handled by
:ocv:func:`Mat::create` .
SVD::compute
------------
Performs SVD of a matrix
.. ocv:function:: static void SVD::compute( InputArray src, OutputArray w, OutputArray u, OutputArray vt, int flags=0 )
.. ocv:function:: static void SVD::compute( InputArray src, OutputArray w, int flags=0 )
.. ocv:pyfunction:: cv2.SVDecomp(src[, w[, u[, vt[, flags]]]]) -> w, u, vt
.. ocv:cfunction:: void cvSVD( CvArr* A, CvArr* W, CvArr* U=NULL, CvArr* V=NULL, int flags=0 )
.. ocv:pyoldfunction:: cv.SVD(A, W, U=None, V=None, flags=0) -> None
:param src: decomposed matrix
:param w: calculated singular values
:param u: calculated left singular vectors
:param V: calculated right singular vectors
:param vt: transposed matrix of right singular values
:param flags: operation flags - see :ocv:func:`SVD::SVD`.
The methods/functions perform SVD of matrix. Unlike ``SVD::SVD`` constructor and ``SVD::operator()``, they store the results to the user-provided matrices. ::
Mat A, w, u, vt;
SVD::compute(A, w, u, vt);
SVD::solveZ
-----------
Solves an under-determined singular linear system.
.. ocv:function:: static void SVD::solveZ( InputArray src, OutputArray dst )
:param src: left-hand-side matrix.
:param dst: found solution.
The method finds a unit-length solution ``x`` of a singular linear system
``A*x = 0``. Depending on the rank of ``A``, there can be no solutions, a single solution or an infinite number of solutions. In general, the algorithm solves the following problem:
.. math::
dst = \arg \min _{x: \| x \| =1} \| src \cdot x \|
SVD::backSubst
--------------
Performs a singular value back substitution.
.. ocv:function:: void SVD::backSubst( InputArray rhs, OutputArray dst ) const
.. ocv:function:: static void SVD::backSubst( InputArray w, InputArray u, InputArray vt, InputArray rhs, OutputArray dst )
.. ocv:pyfunction:: cv2.SVBackSubst(w, u, vt, rhs[, dst]) -> dst
.. ocv:cfunction:: void cvSVBkSb( const CvArr* W, const CvArr* U, const CvArr* V, const CvArr* B, CvArr* X, int flags )
.. ocv:pyoldfunction:: cv.SVBkSb(W, U, V, B, X, flags) -> None
:param w: singular values
:param u: left singular vectors
:param V: right singular vectors
:param vt: transposed matrix of right singular vectors.
:param rhs: right-hand side of a linear system ``(u*w*v')*dst = rhs`` to be solved, where ``A`` has been previously decomposed.
:param dst: found solution of the system.
The method calculates a back substitution for the specified right-hand side:
.. math::
\texttt{x} = \texttt{vt} ^T \cdot diag( \texttt{w} )^{-1} \cdot \texttt{u} ^T \cdot \texttt{rhs} \sim \texttt{A} ^{-1} \cdot \texttt{rhs}
Using this technique you can either get a very accurate solution of the convenient linear system, or the best (in the least-squares terms) pseudo-solution of an overdetermined linear system.
.. note:: Explicit SVD with the further back substitution only makes sense if you need to solve many linear systems with the same left-hand side (for example, ``src`` ). If all you need is to solve a single system (possibly with multiple ``rhs`` immediately available), simply call :ocv:func:`solve` add pass ``DECOMP_SVD`` there. It does absolutely the same thing.
sum
---
Calculates the sum of array elements.
.. ocv:function:: Scalar sum( InputArray src )
.. ocv:pyfunction:: cv2.sumElems(src) -> retval
.. ocv:cfunction:: CvScalar cvSum(const CvArr* arr)
.. ocv:pyoldfunction:: cv.Sum(arr) -> scalar
:param arr: input array that must have from 1 to 4 channels.
The functions ``sum`` calculate and return the sum of array elements, independently for each channel.
.. seealso::
:ocv:func:`countNonZero`,
:ocv:func:`mean`,
:ocv:func:`meanStdDev`,
:ocv:func:`norm`,
:ocv:func:`minMaxLoc`,
:ocv:func:`reduce`
theRNG
------
Returns the default random number generator.
.. ocv:function:: RNG& theRNG()
The function ``theRNG`` returns the default random number generator. For each thread, there is a separate random number generator, so you can use the function safely in multi-thread environments. If you just need to get a single random number using this generator or initialize an array, you can use
:ocv:func:`randu` or
:ocv:func:`randn` instead. But if you are going to generate many random numbers inside a loop, it is much faster to use this function to retrieve the generator and then use ``RNG::operator _Tp()`` .
.. seealso::
:ocv:class:`RNG`,
:ocv:func:`randu`,
:ocv:func:`randn`
trace
-----
Returns the trace of a matrix.
.. ocv:function:: Scalar trace( InputArray mtx )
.. ocv:pyfunction:: cv2.trace(mtx) -> retval
.. ocv:cfunction:: CvScalar cvTrace(const CvArr* mat)
.. ocv:pyoldfunction:: cv.Trace(mat) -> scalar
:param mat: input matrix.
The function ``trace`` returns the sum of the diagonal elements of the matrix ``mtx`` .
.. math::
\mathrm{tr} ( \texttt{mtx} ) = \sum _i \texttt{mtx} (i,i)
transform
---------
Performs the matrix transformation of every array element.
.. ocv:function:: void transform( InputArray src, OutputArray dst, InputArray m )
.. ocv:pyfunction:: cv2.transform(src, m[, dst]) -> dst
.. ocv:cfunction:: void cvTransform( const CvArr* src, CvArr* dst, const CvMat* transmat, const CvMat* shiftvec=NULL )
.. ocv:pyoldfunction:: cv.Transform(src, dst, transmat, shiftvec=None)-> None
:param src: input array that must have as many channels (1 to 4) as ``m.cols`` or ``m.cols-1``.
:param dst: output array of the same size and depth as ``src``; it has as many channels as ``m.rows``.
:param m: transformation ``2x2`` or ``2x3`` floating-point matrix.
:param shiftvec: optional translation vector (when ``m`` is ``2x2``)
The function ``transform`` performs the matrix transformation of every element of the array ``src`` and stores the results in ``dst`` :
.. math::
\texttt{dst} (I) = \texttt{m} \cdot \texttt{src} (I)
(when ``m.cols=src.channels()`` ), or
.. math::
\texttt{dst} (I) = \texttt{m} \cdot [ \texttt{src} (I); 1]
(when ``m.cols=src.channels()+1`` )
Every element of the ``N`` -channel array ``src`` is interpreted as ``N`` -element vector that is transformed using
the ``M x N`` or ``M x (N+1)`` matrix ``m``
to ``M``-element vector - the corresponding element of the output array ``dst`` .
The function may be used for geometrical transformation of
``N`` -dimensional
points, arbitrary linear color space transformation (such as various kinds of RGB to YUV transforms), shuffling the image channels, and so forth.
.. seealso::
:ocv:func:`perspectiveTransform`,
:ocv:func:`getAffineTransform`,
:ocv:func:`estimateRigidTransform`,
:ocv:func:`warpAffine`,
:ocv:func:`warpPerspective`
transpose
---------
Transposes a matrix.
.. ocv:function:: void transpose(InputArray src, OutputArray dst)
.. ocv:pyfunction:: cv2.transpose(src[, dst]) -> dst
.. ocv:cfunction:: void cvTranspose(const CvArr* src, CvArr* dst)
.. ocv:pyoldfunction:: cv.Transpose(src, dst)-> None
:param src: input array.
:param dst: output array of the same type as ``src``.
The function :ocv:func:`transpose` transposes the matrix ``src`` :
.. math::
\texttt{dst} (i,j) = \texttt{src} (j,i)
.. note:: No complex conjugation is done in case of a complex matrix. It it should be done separately if needed.
|