File: common_interfaces_of_feature_detectors.rst

package info (click to toggle)
opencv 2.4.9.1%2Bdfsg-1%2Bdeb8u1
  • links: PTS, VCS
  • area: main
  • in suites: jessie
  • size: 126,800 kB
  • ctags: 62,729
  • sloc: xml: 509,055; cpp: 490,794; lisp: 23,208; python: 21,174; java: 19,317; ansic: 1,038; sh: 128; makefile: 72
file content (558 lines) | stat: -rw-r--r-- 20,452 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
Common Interfaces of Feature Detectors
======================================

.. highlight:: cpp

Feature detectors in OpenCV have wrappers with a common interface that enables you to easily switch
between different algorithms solving the same problem. All objects that implement keypoint detectors
inherit the
:ocv:class:`FeatureDetector` interface.

.. note::

   * An example explaining keypoint detection can be found at opencv_source_code/samples/cpp/descriptor_extractor_matcher.cpp


KeyPoint
--------
.. ocv:class:: KeyPoint

  Data structure for salient point detectors.

  .. ocv:member:: Point2f pt

     coordinates of the keypoint

  .. ocv:member:: float size

     diameter of the meaningful keypoint neighborhood

  .. ocv:member:: float angle

     computed orientation of the keypoint (-1 if not applicable). Its possible values are in a range [0,360) degrees. It is measured relative to image coordinate system (y-axis is directed downward), ie in clockwise.

  .. ocv:member:: float response

     the response by which the most strong keypoints have been selected. Can be used for further sorting or subsampling

  .. ocv:member:: int octave

     octave (pyramid layer) from which the keypoint has been extracted

  .. ocv:member:: int class_id

     object id that can be used to clustered keypoints by an object they belong to

KeyPoint::KeyPoint
------------------
The keypoint constructors

.. ocv:function:: KeyPoint::KeyPoint()

.. ocv:function:: KeyPoint::KeyPoint(Point2f _pt, float _size, float _angle=-1, float _response=0, int _octave=0, int _class_id=-1)

.. ocv:function:: KeyPoint::KeyPoint(float x, float y, float _size, float _angle=-1, float _response=0, int _octave=0, int _class_id=-1)

.. ocv:pyfunction:: cv2.KeyPoint([x, y, _size[, _angle[, _response[, _octave[, _class_id]]]]]) -> <KeyPoint object>

    :param x: x-coordinate of the keypoint

    :param y: y-coordinate of the keypoint

    :param _pt: x & y coordinates of the keypoint

    :param _size: keypoint diameter

    :param _angle: keypoint orientation

    :param _response: keypoint detector response on the keypoint (that is, strength of the keypoint)

    :param _octave: pyramid octave in which the keypoint has been detected

    :param _class_id: object id


FeatureDetector
---------------
.. ocv:class:: FeatureDetector : public Algorithm

Abstract base class for 2D image feature detectors. ::

    class CV_EXPORTS FeatureDetector
    {
    public:
        virtual ~FeatureDetector();

        void detect( const Mat& image, vector<KeyPoint>& keypoints,
                     const Mat& mask=Mat() ) const;

        void detect( const vector<Mat>& images,
                     vector<vector<KeyPoint> >& keypoints,
                     const vector<Mat>& masks=vector<Mat>() ) const;

        virtual void read(const FileNode&);
        virtual void write(FileStorage&) const;

        static Ptr<FeatureDetector> create( const string& detectorType );

    protected:
    ...
    };

FeatureDetector::detect
---------------------------
Detects keypoints in an image (first variant) or image set (second variant).

.. ocv:function:: void FeatureDetector::detect( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const

.. ocv:function:: void FeatureDetector::detect( const vector<Mat>& images, vector<vector<KeyPoint> >& keypoints, const vector<Mat>& masks=vector<Mat>() ) const

    :param image: Image.

    :param images: Image set.

    :param keypoints: The detected keypoints. In the second variant of the method ``keypoints[i]`` is a set of keypoints detected in ``images[i]`` .

    :param mask: Mask specifying where to look for keypoints (optional). It must be a 8-bit integer matrix with non-zero values in the region of interest.

    :param masks: Masks for each input image specifying where to look for keypoints (optional). ``masks[i]`` is a mask for ``images[i]``.

FeatureDetector::create
-----------------------
Creates a feature detector by its name.

.. ocv:function:: Ptr<FeatureDetector> FeatureDetector::create( const string& detectorType )

    :param detectorType: Feature detector type.

The following detector types are supported:

* ``"FAST"`` -- :ocv:class:`FastFeatureDetector`
* ``"STAR"`` -- :ocv:class:`StarFeatureDetector`
* ``"SIFT"`` -- :ocv:class:`SIFT` (nonfree module)
* ``"SURF"`` -- :ocv:class:`SURF` (nonfree module)
* ``"ORB"`` -- :ocv:class:`ORB`
* ``"BRISK"`` -- :ocv:class:`BRISK`
* ``"MSER"`` -- :ocv:class:`MSER`
* ``"GFTT"`` -- :ocv:class:`GoodFeaturesToTrackDetector`
* ``"HARRIS"`` -- :ocv:class:`GoodFeaturesToTrackDetector` with Harris detector enabled
* ``"Dense"`` -- :ocv:class:`DenseFeatureDetector`
* ``"SimpleBlob"`` -- :ocv:class:`SimpleBlobDetector`

Also a combined format is supported: feature detector adapter name ( ``"Grid"`` --
:ocv:class:`GridAdaptedFeatureDetector`, ``"Pyramid"`` --
:ocv:class:`PyramidAdaptedFeatureDetector` ) + feature detector name (see above),
for example: ``"GridFAST"``, ``"PyramidSTAR"`` .

FastFeatureDetector
-------------------
.. ocv:class:: FastFeatureDetector : public FeatureDetector

Wrapping class for feature detection using the
:ocv:func:`FAST` method. ::

    class FastFeatureDetector : public FeatureDetector
    {
    public:
        FastFeatureDetector( int threshold=1, bool nonmaxSuppression=true, type=FastFeatureDetector::TYPE_9_16 );
        virtual void read( const FileNode& fn );
        virtual void write( FileStorage& fs ) const;
    protected:
        ...
    };

GoodFeaturesToTrackDetector
---------------------------
.. ocv:class:: GoodFeaturesToTrackDetector : public FeatureDetector

Wrapping class for feature detection using the
:ocv:func:`goodFeaturesToTrack` function. ::

    class GoodFeaturesToTrackDetector : public FeatureDetector
    {
    public:
        class Params
        {
        public:
            Params( int maxCorners=1000, double qualityLevel=0.01,
                    double minDistance=1., int blockSize=3,
                    bool useHarrisDetector=false, double k=0.04 );
            void read( const FileNode& fn );
            void write( FileStorage& fs ) const;

            int maxCorners;
            double qualityLevel;
            double minDistance;
            int blockSize;
            bool useHarrisDetector;
            double k;
        };

        GoodFeaturesToTrackDetector( const GoodFeaturesToTrackDetector::Params& params=
                                                GoodFeaturesToTrackDetector::Params() );
        GoodFeaturesToTrackDetector( int maxCorners, double qualityLevel,
                                     double minDistance, int blockSize=3,
                                     bool useHarrisDetector=false, double k=0.04 );
        virtual void read( const FileNode& fn );
        virtual void write( FileStorage& fs ) const;
    protected:
        ...
    };

MserFeatureDetector
-------------------
.. ocv:class:: MserFeatureDetector : public FeatureDetector

Wrapping class for feature detection using the
:ocv:class:`MSER` class. ::

    class MserFeatureDetector : public FeatureDetector
    {
    public:
        MserFeatureDetector( CvMSERParams params=cvMSERParams() );
        MserFeatureDetector( int delta, int minArea, int maxArea,
                             double maxVariation, double minDiversity,
                             int maxEvolution, double areaThreshold,
                             double minMargin, int edgeBlurSize );
        virtual void read( const FileNode& fn );
        virtual void write( FileStorage& fs ) const;
    protected:
        ...
    };


StarFeatureDetector
-------------------
.. ocv:class:: StarFeatureDetector : public FeatureDetector

The class implements the keypoint detector introduced by [Agrawal08]_, synonym of ``StarDetector``.  ::

    class StarFeatureDetector : public FeatureDetector
    {
    public:
        StarFeatureDetector( int maxSize=16, int responseThreshold=30,
                             int lineThresholdProjected = 10,
                             int lineThresholdBinarized=8, int suppressNonmaxSize=5 );
        virtual void read( const FileNode& fn );
        virtual void write( FileStorage& fs ) const;
    protected:
        ...
    };

.. [Agrawal08] Agrawal, M., Konolige, K., & Blas, M. R. (2008). Censure: Center surround extremas for realtime feature detection and matching. In Computer Vision–ECCV 2008 (pp. 102-115). Springer Berlin Heidelberg.


DenseFeatureDetector
--------------------
.. ocv:class:: DenseFeatureDetector : public FeatureDetector

Class for generation of image features which are distributed densely and regularly over the image. ::

        class DenseFeatureDetector : public FeatureDetector
        {
        public:
                DenseFeatureDetector( float initFeatureScale=1.f, int featureScaleLevels=1,
                              float featureScaleMul=0.1f,
                              int initXyStep=6, int initImgBound=0,
                              bool varyXyStepWithScale=true,
                              bool varyImgBoundWithScale=false );
        protected:
        ...
    };

The detector generates several levels (in the amount of ``featureScaleLevels``) of features. Features of each level are located in the nodes of a regular grid over the image (excluding the image boundary of given size). The level parameters (a feature scale, a node size, a size of boundary) are multiplied by ``featureScaleMul`` with level index growing depending on input flags, viz.:

* Feature scale is multiplied always.

* The grid node size is multiplied if ``varyXyStepWithScale`` is ``true``.

* Size of image boundary is multiplied if ``varyImgBoundWithScale`` is ``true``.


SimpleBlobDetector
-------------------
.. ocv:class:: SimpleBlobDetector : public FeatureDetector

Class for extracting blobs from an image. ::

    class SimpleBlobDetector : public FeatureDetector
    {
    public:
    struct Params
    {
        Params();
        float thresholdStep;
        float minThreshold;
        float maxThreshold;
        size_t minRepeatability;
        float minDistBetweenBlobs;

        bool filterByColor;
        uchar blobColor;

        bool filterByArea;
        float minArea, maxArea;

        bool filterByCircularity;
        float minCircularity, maxCircularity;

        bool filterByInertia;
        float minInertiaRatio, maxInertiaRatio;

        bool filterByConvexity;
        float minConvexity, maxConvexity;
    };

    SimpleBlobDetector(const SimpleBlobDetector::Params &parameters = SimpleBlobDetector::Params());

    protected:
        ...
    };

The class implements a simple algorithm for extracting blobs from an image:

#. Convert the source image to binary images by applying thresholding with several thresholds from ``minThreshold`` (inclusive) to ``maxThreshold`` (exclusive) with distance ``thresholdStep`` between neighboring thresholds.

#. Extract connected components from every binary image by  :ocv:func:`findContours`  and calculate their centers.

#. Group centers from several binary images by their coordinates. Close centers form one group that corresponds to one blob, which is controlled by the ``minDistBetweenBlobs`` parameter.

#. From the groups, estimate final centers of blobs and their radiuses and return as locations and sizes of keypoints.

This class performs several filtrations of returned blobs. You should set ``filterBy*`` to true/false to turn on/off corresponding filtration. Available filtrations:

 * **By color**. This filter compares the intensity of a binary image at the center of a blob to ``blobColor``. If they differ, the blob is filtered out. Use ``blobColor = 0`` to extract dark blobs and ``blobColor = 255`` to extract light blobs.

 * **By area**. Extracted blobs have an area between ``minArea`` (inclusive) and ``maxArea`` (exclusive).

 * **By circularity**. Extracted blobs have circularity (:math:`\frac{4*\pi*Area}{perimeter * perimeter}`) between ``minCircularity`` (inclusive) and ``maxCircularity`` (exclusive).

 * **By ratio of the minimum inertia to maximum inertia**. Extracted blobs have this ratio between ``minInertiaRatio`` (inclusive) and ``maxInertiaRatio`` (exclusive).

 * **By convexity**. Extracted blobs have convexity (area / area of blob convex hull) between ``minConvexity`` (inclusive) and ``maxConvexity`` (exclusive).


Default values of parameters are tuned to extract dark circular blobs.

GridAdaptedFeatureDetector
--------------------------
.. ocv:class:: GridAdaptedFeatureDetector : public FeatureDetector

Class adapting a detector to partition the source image into a grid and detect points in each cell. ::

    class GridAdaptedFeatureDetector : public FeatureDetector
    {
    public:
        /*
         * detector            Detector that will be adapted.
         * maxTotalKeypoints   Maximum count of keypoints detected on the image.
         *                     Only the strongest keypoints will be kept.
         * gridRows            Grid row count.
         * gridCols            Grid column count.
         */
        GridAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector,
                                    int maxTotalKeypoints, int gridRows=4,
                                    int gridCols=4 );
        virtual void read( const FileNode& fn );
        virtual void write( FileStorage& fs ) const;
    protected:
        ...
    };

PyramidAdaptedFeatureDetector
-----------------------------
.. ocv:class:: PyramidAdaptedFeatureDetector : public FeatureDetector

Class adapting a detector to detect points over multiple levels of a Gaussian pyramid. Consider using this class for detectors that are not inherently scaled. ::

    class PyramidAdaptedFeatureDetector : public FeatureDetector
    {
    public:
        PyramidAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector,
                                       int levels=2 );
        virtual void read( const FileNode& fn );
        virtual void write( FileStorage& fs ) const;
    protected:
        ...
    };


DynamicAdaptedFeatureDetector
-----------------------------
.. ocv:class:: DynamicAdaptedFeatureDetector : public FeatureDetector

Adaptively adjusting detector that iteratively detects features until the desired number is found. ::

       class DynamicAdaptedFeatureDetector: public FeatureDetector
       {
       public:
           DynamicAdaptedFeatureDetector( const Ptr<AdjusterAdapter>& adjuster,
               int min_features=400, int max_features=500, int max_iters=5 );
           ...
       };

If the detector is persisted, it "remembers" the parameters
used for the last detection. In this case, the detector may be used for consistent numbers
of keypoints in a set of temporally related images, such as video streams or
panorama series.

``DynamicAdaptedFeatureDetector``  uses another detector, such as FAST or SURF, to do the dirty work,
with the help of ``AdjusterAdapter`` .
If the detected number of features is not large enough,
``AdjusterAdapter`` adjusts the detection parameters so that the next detection
results in a bigger or smaller number of features.  This is repeated until either the number of desired features are found
or the parameters are maxed out.

Adapters can be easily implemented for any detector via the
``AdjusterAdapter`` interface.

Beware that this is not thread-safe since the adjustment of parameters requires modification of the feature detector class instance.

Example of creating ``DynamicAdaptedFeatureDetector`` : ::

    //sample usage:
    //will create a detector that attempts to find
    //100 - 110 FAST Keypoints, and will at most run
    //FAST feature detection 10 times until that
    //number of keypoints are found
    Ptr<FeatureDetector> detector(new DynamicAdaptedFeatureDetector (100, 110, 10,
                                  new FastAdjuster(20,true)));


DynamicAdaptedFeatureDetector::DynamicAdaptedFeatureDetector
------------------------------------------------------------
The constructor

.. ocv:function:: DynamicAdaptedFeatureDetector::DynamicAdaptedFeatureDetector( const Ptr<AdjusterAdapter>& adjuster, int min_features=400, int max_features=500, int max_iters=5 )

    :param adjuster:  :ocv:class:`AdjusterAdapter`  that detects features and adjusts parameters.

    :param min_features: Minimum desired number of features.

    :param max_features: Maximum desired number of features.

    :param max_iters: Maximum number of times to try adjusting the feature detector parameters. For :ocv:class:`FastAdjuster` , this number can be high, but with ``Star`` or ``Surf``  many iterations can be time-consuming.  At each iteration the detector is rerun.

AdjusterAdapter
---------------
.. ocv:class:: AdjusterAdapter : public FeatureDetector

Class providing an interface for adjusting parameters of a feature detector. This interface is used by :ocv:class:`DynamicAdaptedFeatureDetector` . It is a wrapper for :ocv:class:`FeatureDetector` that enables adjusting parameters after feature detection. ::

     class AdjusterAdapter: public FeatureDetector
     {
     public:
        virtual ~AdjusterAdapter() {}
        virtual void tooFew(int min, int n_detected) = 0;
        virtual void tooMany(int max, int n_detected) = 0;
        virtual bool good() const = 0;
        virtual Ptr<AdjusterAdapter> clone() const = 0;
        static Ptr<AdjusterAdapter> create( const string& detectorType );
     };


See
:ocv:class:`FastAdjuster`,
:ocv:class:`StarAdjuster`, and
:ocv:class:`SurfAdjuster` for concrete implementations.

AdjusterAdapter::tooFew
---------------------------
Adjusts the detector parameters to detect more features.

.. ocv:function:: void AdjusterAdapter::tooFew(int min, int n_detected)

    :param min: Minimum desired number of features.

    :param n_detected: Number of features detected during the latest run.

Example: ::

    void FastAdjuster::tooFew(int min, int n_detected)
    {
            thresh_--;
    }

AdjusterAdapter::tooMany
----------------------------
Adjusts the detector parameters to detect less features.

.. ocv:function:: void AdjusterAdapter::tooMany(int max, int n_detected)

    :param max: Maximum desired number of features.

    :param n_detected: Number of features detected during the latest run.

Example: ::

    void FastAdjuster::tooMany(int min, int n_detected)
    {
            thresh_++;
    }


AdjusterAdapter::good
---------------------
Returns false if the detector parameters cannot be adjusted any more.

.. ocv:function:: bool AdjusterAdapter::good() const

Example: ::

        bool FastAdjuster::good() const
        {
                return (thresh_ > 1) && (thresh_ < 200);
        }

AdjusterAdapter::create
-----------------------
Creates an adjuster adapter by name

.. ocv:function:: Ptr<AdjusterAdapter> AdjusterAdapter::create( const string& detectorType )

    Creates an adjuster adapter by name ``detectorType``. The detector name is the same as in :ocv:func:`FeatureDetector::create`, but now supports ``"FAST"``, ``"STAR"``, and ``"SURF"`` only.

FastAdjuster
------------
.. ocv:class:: FastAdjuster : public AdjusterAdapter

:ocv:class:`AdjusterAdapter` for :ocv:class:`FastFeatureDetector`. This class decreases or increases the threshold value by 1. ::

        class FastAdjuster FastAdjuster: public AdjusterAdapter
        {
        public:
                FastAdjuster(int init_thresh = 20, bool nonmax = true);
                ...
        };

StarAdjuster
------------
.. ocv:class:: StarAdjuster : public AdjusterAdapter

:ocv:class:`AdjusterAdapter` for :ocv:class:`StarFeatureDetector`. This class adjusts the ``responseThreshhold`` of ``StarFeatureDetector``.  ::

        class StarAdjuster: public AdjusterAdapter
        {
                StarAdjuster(double initial_thresh = 30.0);
                ...
        };

SurfAdjuster
------------
.. ocv:class:: SurfAdjuster : public AdjusterAdapter

:ocv:class:`AdjusterAdapter` for ``SurfFeatureDetector``.  ::

    class CV_EXPORTS SurfAdjuster: public AdjusterAdapter
    {
    public:
        SurfAdjuster( double initial_thresh=400.f, double min_thresh=2, double max_thresh=1000 );

        virtual void tooFew(int minv, int n_detected);
        virtual void tooMany(int maxv, int n_detected);
        virtual bool good() const;

        virtual Ptr<AdjusterAdapter> clone() const;

        ...
    };