File: filtering.rst

package info (click to toggle)
opencv 2.4.9.1%2Bdfsg-1%2Bdeb8u1
  • links: PTS, VCS
  • area: main
  • in suites: jessie
  • size: 126,800 kB
  • ctags: 62,729
  • sloc: xml: 509,055; cpp: 490,794; lisp: 23,208; python: 21,174; java: 19,317; ansic: 1,038; sh: 128; makefile: 72
file content (1665 lines) | stat: -rwxr-xr-x 79,026 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
Image Filtering
===============

.. highlight:: cpp

Functions and classes described in this section are used to perform various linear or non-linear filtering operations on 2D images (represented as
:ocv:func:`Mat`'s). It means that for each pixel location
:math:`(x,y)` in the source image (normally, rectangular), its neighborhood is considered and used to compute the response. In case of a linear filter, it is a weighted sum of pixel values. In case of morphological operations, it is the minimum or maximum values, and so on. The computed response is stored in the destination image at the same location
:math:`(x,y)` . It means that the output image will be of the same size as the input image. Normally, the functions support multi-channel arrays, in which case every channel is processed independently. Therefore, the output image will also have the same number of channels as the input one.

Another common feature of the functions and classes described in this section is that, unlike simple arithmetic functions, they need to extrapolate values of some non-existing pixels. For example, if you want to smooth an image using a Gaussian
:math:`3 \times 3` filter, then, when processing the left-most pixels in each row, you need pixels to the left of them, that is, outside of the image. You can let these pixels be the same as the left-most image pixels ("replicated border" extrapolation method), or assume that all the non-existing pixels are zeros ("constant border" extrapolation method), and so on.
OpenCV enables you to specify the extrapolation method. For details, see the function  :ocv:func:`borderInterpolate`  and discussion of the  ``borderType``  parameter in the section and various functions below. ::

   /*
    Various border types, image boundaries are denoted with '|'

    * BORDER_REPLICATE:     aaaaaa|abcdefgh|hhhhhhh
    * BORDER_REFLECT:       fedcba|abcdefgh|hgfedcb
    * BORDER_REFLECT_101:   gfedcb|abcdefgh|gfedcba
    * BORDER_WRAP:          cdefgh|abcdefgh|abcdefg
    * BORDER_CONSTANT:      iiiiii|abcdefgh|iiiiiii  with some specified 'i'
    */

.. note::

   * (Python) A complete example illustrating different morphological operations like erode/dilate, open/close, blackhat/tophat ... can be found at opencv_source_code/samples/python2/morphology.py

BaseColumnFilter
----------------
.. ocv:class:: BaseColumnFilter

Base class for filters with single-column kernels. ::

    class BaseColumnFilter
    {
    public:
        virtual ~BaseColumnFilter();

        // To be overriden by the user.
        //
        // runs a filtering operation on the set of rows,
        // "dstcount + ksize - 1" rows on input,
        // "dstcount" rows on output,
        // each input and output row has "width" elements
        // the filtered rows are written into "dst" buffer.
        virtual void operator()(const uchar** src, uchar* dst, int dststep,
                                int dstcount, int width) = 0;
        // resets the filter state (may be needed for IIR filters)
        virtual void reset();

        int ksize; // the aperture size
        int anchor; // position of the anchor point,
                    // normally not used during the processing
    };


The class ``BaseColumnFilter`` is a base class for filtering data using single-column kernels. Filtering does not have to be a linear operation. In general, it could be written as follows:

.. math::

    \texttt{dst} (x,y) = F( \texttt{src} [y](x), \; \texttt{src} [y+1](x), \; ..., \; \texttt{src} [y+ \texttt{ksize} -1](x)

where
:math:`F` is a filtering function but, as it is represented as a class, it can produce any side effects, memorize previously processed data, and so on. The class only defines an interface and is not used directly. Instead, there are several functions in OpenCV (and you can add more) that return pointers to the derived classes that implement specific filtering operations. Those pointers are then passed to the
:ocv:class:`FilterEngine` constructor. While the filtering operation interface uses the ``uchar`` type, a particular implementation is not limited to 8-bit data.

.. seealso::

   :ocv:class:`BaseRowFilter`,
   :ocv:class:`BaseFilter`,
   :ocv:class:`FilterEngine`,
   :ocv:func:`getColumnSumFilter`,
   :ocv:func:`getLinearColumnFilter`,
   :ocv:func:`getMorphologyColumnFilter`


BaseFilter
----------
.. ocv:class:: BaseFilter

Base class for 2D image filters. ::

    class BaseFilter
    {
    public:
        virtual ~BaseFilter();

        // To be overriden by the user.
        //
        // runs a filtering operation on the set of rows,
        // "dstcount + ksize.height - 1" rows on input,
        // "dstcount" rows on output,
        // each input row has "(width + ksize.width-1)*cn" elements
        // each output row has "width*cn" elements.
        // the filtered rows are written into "dst" buffer.
        virtual void operator()(const uchar** src, uchar* dst, int dststep,
                                int dstcount, int width, int cn) = 0;
        // resets the filter state (may be needed for IIR filters)
        virtual void reset();
        Size ksize;
        Point anchor;
    };


The class ``BaseFilter`` is a base class for filtering data using 2D kernels. Filtering does not have to be a linear operation. In general, it could be written as follows:

.. math::

    \begin{array}{l} \texttt{dst} (x,y) = F(  \texttt{src} [y](x), \; \texttt{src} [y](x+1), \; ..., \; \texttt{src} [y](x+ \texttt{ksize.width} -1),  \\ \texttt{src} [y+1](x), \; \texttt{src} [y+1](x+1), \; ..., \; \texttt{src} [y+1](x+ \texttt{ksize.width} -1),  \\ .........................................................................................  \\ \texttt{src} [y+ \texttt{ksize.height-1} ](x), \\ \texttt{src} [y+ \texttt{ksize.height-1} ](x+1), \\ ...
       \texttt{src} [y+ \texttt{ksize.height-1} ](x+ \texttt{ksize.width} -1))
       \end{array}

where
:math:`F` is a filtering function. The class only defines an interface and is not used directly. Instead, there are several functions in OpenCV (and you can add more) that return pointers to the derived classes that implement specific filtering operations. Those pointers are then passed to the
:ocv:class:`FilterEngine` constructor. While the filtering operation interface uses the ``uchar`` type, a particular implementation is not limited to 8-bit data.

.. seealso::

    :ocv:class:`BaseColumnFilter`,
    :ocv:class:`BaseRowFilter`,
    :ocv:class:`FilterEngine`,
    :ocv:func:`getLinearFilter`,
    :ocv:func:`getMorphologyFilter`



BaseRowFilter
-------------
.. ocv:class:: BaseRowFilter

Base class for filters with single-row kernels. ::

    class BaseRowFilter
    {
    public:
        virtual ~BaseRowFilter();

        // To be overriden by the user.
        //
        // runs filtering operation on the single input row
        // of "width" element, each element is has "cn" channels.
        // the filtered row is written into "dst" buffer.
        virtual void operator()(const uchar* src, uchar* dst,
                                int width, int cn) = 0;
        int ksize, anchor;
    };


The class ``BaseRowFilter`` is a base class for filtering data using single-row kernels. Filtering does not have to be a linear operation. In general, it could be written as follows:

.. math::

    \texttt{dst} (x,y) = F( \texttt{src} [y](x), \; \texttt{src} [y](x+1), \; ..., \; \texttt{src} [y](x+ \texttt{ksize.width} -1))

where
:math:`F` is a filtering function. The class only defines an interface and is not used directly. Instead, there are several functions in OpenCV (and you can add more) that return pointers to the derived classes that implement specific filtering operations. Those pointers are then passed to the
:ocv:class:`FilterEngine` constructor. While the filtering operation interface uses the ``uchar`` type, a particular implementation is not limited to 8-bit data.

.. seealso::

    :ocv:class:`BaseColumnFilter`,
    :ocv:class:`BaseFilter`,
    :ocv:class:`FilterEngine`,
    :ocv:func:`getLinearRowFilter`,
    :ocv:func:`getMorphologyRowFilter`,
    :ocv:func:`getRowSumFilter`



FilterEngine
------------
.. ocv:class:: FilterEngine

Generic image filtering class. ::

    class FilterEngine
    {
    public:
        // empty constructor
        FilterEngine();
        // builds a 2D non-separable filter (!_filter2D.empty()) or
        // a separable filter (!_rowFilter.empty() && !_columnFilter.empty())
        // the input data type will be "srcType", the output data type will be "dstType",
        // the intermediate data type is "bufType".
        // _rowBorderType and _columnBorderType determine how the image
        // will be extrapolated beyond the image boundaries.
        // _borderValue is only used when _rowBorderType and/or _columnBorderType
        // == BORDER_CONSTANT
        FilterEngine(const Ptr<BaseFilter>& _filter2D,
                     const Ptr<BaseRowFilter>& _rowFilter,
                     const Ptr<BaseColumnFilter>& _columnFilter,
                     int srcType, int dstType, int bufType,
                     int _rowBorderType=BORDER_REPLICATE,
                     int _columnBorderType=-1, // use _rowBorderType by default
                     const Scalar& _borderValue=Scalar());
        virtual ~FilterEngine();
        // separate function for the engine initialization
        void init(const Ptr<BaseFilter>& _filter2D,
                  const Ptr<BaseRowFilter>& _rowFilter,
                  const Ptr<BaseColumnFilter>& _columnFilter,
                  int srcType, int dstType, int bufType,
                  int _rowBorderType=BORDER_REPLICATE, int _columnBorderType=-1,
                  const Scalar& _borderValue=Scalar());
        // starts filtering of the ROI in an image of size "wholeSize".
        // returns the starting y-position in the source image.
        virtual int start(Size wholeSize, Rect roi, int maxBufRows=-1);
        // alternative form of start that takes the image
        // itself instead of "wholeSize". Set isolated to true to pretend that
        // there are no real pixels outside of the ROI
        // (so that the pixels are extrapolated using the specified border modes)
        virtual int start(const Mat& src, const Rect& srcRoi=Rect(0,0,-1,-1),
                          bool isolated=false, int maxBufRows=-1);
        // processes the next portion of the source image,
        // "srcCount" rows starting from "src" and
        // stores the results in "dst".
        // returns the number of produced rows
        virtual int proceed(const uchar* src, int srcStep, int srcCount,
                            uchar* dst, int dstStep);
        // higher-level function that processes the whole
        // ROI or the whole image with a single call
        virtual void apply( const Mat& src, Mat& dst,
                            const Rect& srcRoi=Rect(0,0,-1,-1),
                            Point dstOfs=Point(0,0),
                            bool isolated=false);
        bool isSeparable() const { return filter2D.empty(); }
        // how many rows from the input image are not yet processed
        int remainingInputRows() const;
        // how many output rows are not yet produced
        int remainingOutputRows() const;
        ...
        // the starting and the ending rows in the source image
        int startY, endY;

        // pointers to the filters
        Ptr<BaseFilter> filter2D;
        Ptr<BaseRowFilter> rowFilter;
        Ptr<BaseColumnFilter> columnFilter;
    };


The class ``FilterEngine`` can be used to apply an arbitrary filtering operation to an image.
It contains all the necessary intermediate buffers, computes extrapolated values
of the "virtual" pixels outside of the image, and so on. Pointers to the initialized ``FilterEngine`` instances
are returned by various ``create*Filter`` functions (see below) and they are used inside high-level functions such as
:ocv:func:`filter2D`,
:ocv:func:`erode`,
:ocv:func:`dilate`, and others. Thus, the class plays a key role in many of OpenCV filtering functions.

This class makes it easier to combine filtering operations with other operations, such as color space conversions, thresholding, arithmetic operations, and others. By combining several operations together you can get much better performance because your data will stay in cache. For example, see below the implementation of the Laplace operator for floating-point images, which is a simplified implementation of
:ocv:func:`Laplacian` : ::

    void laplace_f(const Mat& src, Mat& dst)
    {
        CV_Assert( src.type() == CV_32F );
        dst.create(src.size(), src.type());

        // get the derivative and smooth kernels for d2I/dx2.
        // for d2I/dy2 consider using the same kernels, just swapped
        Mat kd, ks;
        getSobelKernels( kd, ks, 2, 0, ksize, false, ktype );

        // process 10 source rows at once
        int DELTA = std::min(10, src.rows);
        Ptr<FilterEngine> Fxx = createSeparableLinearFilter(src.type(),
            dst.type(), kd, ks, Point(-1,-1), 0, borderType, borderType, Scalar() );
        Ptr<FilterEngine> Fyy = createSeparableLinearFilter(src.type(),
            dst.type(), ks, kd, Point(-1,-1), 0, borderType, borderType, Scalar() );

        int y = Fxx->start(src), dsty = 0, dy = 0;
        Fyy->start(src);
        const uchar* sptr = src.data + y*src.step;

        // allocate the buffers for the spatial image derivatives;
        // the buffers need to have more than DELTA rows, because at the
        // last iteration the output may take max(kd.rows-1,ks.rows-1)
        // rows more than the input.
        Mat Ixx( DELTA + kd.rows - 1, src.cols, dst.type() );
        Mat Iyy( DELTA + kd.rows - 1, src.cols, dst.type() );

        // inside the loop always pass DELTA rows to the filter
        // (note that the "proceed" method takes care of possibe overflow, since
        // it was given the actual image height in the "start" method)
        // on output you can get:
        //  * < DELTA rows (initial buffer accumulation stage)
        //  * = DELTA rows (settled state in the middle)
        //  * > DELTA rows (when the input image is over, generate
        //                  "virtual" rows using the border mode and filter them)
        // this variable number of output rows is dy.
        // dsty is the current output row.
        // sptr is the pointer to the first input row in the portion to process
        for( ; dsty < dst.rows; sptr += DELTA*src.step, dsty += dy )
        {
            Fxx->proceed( sptr, (int)src.step, DELTA, Ixx.data, (int)Ixx.step );
            dy = Fyy->proceed( sptr, (int)src.step, DELTA, d2y.data, (int)Iyy.step );
            if( dy > 0 )
            {
                Mat dstripe = dst.rowRange(dsty, dsty + dy);
                add(Ixx.rowRange(0, dy), Iyy.rowRange(0, dy), dstripe);
            }
        }
    }


If you do not need that much control of the filtering process, you can simply use the ``FilterEngine::apply`` method. The method is implemented as follows: ::

    void FilterEngine::apply(const Mat& src, Mat& dst,
        const Rect& srcRoi, Point dstOfs, bool isolated)
    {
        // check matrix types
        CV_Assert( src.type() == srcType && dst.type() == dstType );

        // handle the "whole image" case
        Rect _srcRoi = srcRoi;
        if( _srcRoi == Rect(0,0,-1,-1) )
            _srcRoi = Rect(0,0,src.cols,src.rows);

        // check if the destination ROI is inside dst.
        // and FilterEngine::start will check if the source ROI is inside src.
        CV_Assert( dstOfs.x >= 0 && dstOfs.y >= 0 &&
            dstOfs.x + _srcRoi.width <= dst.cols &&
            dstOfs.y + _srcRoi.height <= dst.rows );

        // start filtering
        int y = start(src, _srcRoi, isolated);

        // process the whole ROI. Note that "endY - startY" is the total number
        // of the source rows to process
        // (including the possible rows outside of srcRoi but inside the source image)
        proceed( src.data + y*src.step,
                 (int)src.step, endY - startY,
                 dst.data + dstOfs.y*dst.step +
                 dstOfs.x*dst.elemSize(), (int)dst.step );
    }


Unlike the earlier versions of OpenCV, now the filtering operations fully support the notion of image ROI, that is, pixels outside of the ROI but inside the image can be used in the filtering operations. For example, you can take a ROI of a single pixel and filter it. This will be a filter response at that particular pixel. However, it is possible to emulate the old behavior by passing ``isolated=false`` to ``FilterEngine::start`` or ``FilterEngine::apply`` . You can pass the ROI explicitly to ``FilterEngine::apply``  or construct new matrix headers: ::

    // compute dI/dx derivative at src(x,y)

    // method 1:
    // form a matrix header for a single value
    float val1 = 0;
    Mat dst1(1,1,CV_32F,&val1);

    Ptr<FilterEngine> Fx = createDerivFilter(CV_32F, CV_32F,
                            1, 0, 3, BORDER_REFLECT_101);
    Fx->apply(src, Rect(x,y,1,1), Point(), dst1);

    // method 2:
    // form a matrix header for a single value
    float val2 = 0;
    Mat dst2(1,1,CV_32F,&val2);

    Mat pix_roi(src, Rect(x,y,1,1));
    Sobel(pix_roi, dst2, dst2.type(), 1, 0, 3, 1, 0, BORDER_REFLECT_101);

    printf("method1 =


Explore the data types. As it was mentioned in the
:ocv:class:`BaseFilter` description, the specific filters can process data of any type, despite that ``Base*Filter::operator()`` only takes ``uchar`` pointers and no information about the actual types. To make it all work, the following rules are used:

*
    In case of separable filtering, ``FilterEngine::rowFilter``   is  applied first. It transforms the input image data (of type ``srcType``  ) to the intermediate results stored in the internal buffers (of type ``bufType``   ). Then, these intermediate results are processed as
    *single-channel data*
    with ``FilterEngine::columnFilter``     and stored in the output image (of type ``dstType``     ). Thus, the input type for ``rowFilter``     is ``srcType``     and the output type is ``bufType``  . The input type for ``columnFilter``     is ``CV_MAT_DEPTH(bufType)``     and the output type is ``CV_MAT_DEPTH(dstType)``     .

*
    In case of non-separable filtering, ``bufType``     must be the same as ``srcType``     . The source data is copied to the temporary buffer, if needed, and then just passed to ``FilterEngine::filter2D``     . That is, the input type for ``filter2D``     is ``srcType``     (= ``bufType``     ) and the output type is ``dstType``     .

.. seealso::

   :ocv:class:`BaseColumnFilter`,
   :ocv:class:`BaseFilter`,
   :ocv:class:`BaseRowFilter`,
   :ocv:func:`createBoxFilter`,
   :ocv:func:`createDerivFilter`,
   :ocv:func:`createGaussianFilter`,
   :ocv:func:`createLinearFilter`,
   :ocv:func:`createMorphologyFilter`,
   :ocv:func:`createSeparableLinearFilter`



bilateralFilter
-------------------
Applies the bilateral filter to an image.

.. ocv:function:: void bilateralFilter( InputArray src, OutputArray dst, int d, double sigmaColor, double sigmaSpace, int borderType=BORDER_DEFAULT )

.. ocv:pyfunction:: cv2.bilateralFilter(src, d, sigmaColor, sigmaSpace[, dst[, borderType]]) -> dst

    :param src: Source 8-bit or floating-point, 1-channel or 3-channel image.

    :param dst: Destination image of the same size and type as  ``src`` .

    :param d: Diameter of each pixel neighborhood that is used during filtering. If it is non-positive, it is computed from  ``sigmaSpace`` .

    :param sigmaColor: Filter sigma in the color space. A larger value of the parameter means that farther colors within the pixel neighborhood (see  ``sigmaSpace`` ) will be mixed together, resulting in larger areas of semi-equal color.

    :param sigmaSpace: Filter sigma in the coordinate space. A larger value of the parameter means that farther pixels will influence each other as long as their colors are close enough (see  ``sigmaColor`` ). When  ``d>0`` , it specifies the neighborhood size regardless of  ``sigmaSpace`` . Otherwise,  ``d``  is proportional to  ``sigmaSpace`` .

The function applies bilateral filtering to the input image, as described in
http://www.dai.ed.ac.uk/CVonline/LOCAL\_COPIES/MANDUCHI1/Bilateral\_Filtering.html
``bilateralFilter`` can reduce unwanted noise very well while keeping edges fairly sharp. However, it is very slow compared to most filters.

*Sigma values*: For simplicity, you can set the 2 sigma values to be the same. If they are small (< 10), the filter will not have much effect, whereas if they are large (> 150), they will have a very strong effect, making the image look "cartoonish".

*Filter size*: Large filters (d > 5) are very slow, so it is recommended to use d=5 for real-time applications, and perhaps d=9 for offline applications that need heavy noise filtering.

This filter does not work inplace.


adaptiveBilateralFilter
-----------------------
Applies the adaptive bilateral filter to an image.

.. ocv:function:: void adaptiveBilateralFilter( InputArray src, OutputArray dst, Size ksize, double sigmaSpace, double maxSigmaColor = 20.0, Point anchor=Point(-1, -1), int borderType=BORDER_DEFAULT )

.. ocv:pyfunction:: cv2.adaptiveBilateralFilter(src, ksize, sigmaSpace[, dst[, anchor[, borderType]]]) -> dst

    :param src: The source image

    :param dst: The destination image; will have the same size and the same type as src

    :param ksize: The kernel size. This is the neighborhood where the local variance will be calculated, and where pixels will contribute (in a weighted manner).

    :param sigmaSpace: Filter sigma in the coordinate space. Larger value of the parameter means that farther pixels will influence each other (as long as their colors are close enough; see sigmaColor). Then d>0, it specifies the neighborhood size regardless of sigmaSpace, otherwise d is proportional to sigmaSpace.

    :param maxSigmaColor: Maximum allowed sigma color (will clamp the value calculated in the ksize neighborhood. Larger value of the parameter means that more dissimilar pixels will influence each other (as long as their colors are close enough; see sigmaColor). Then d>0, it specifies the neighborhood size regardless of sigmaSpace, otherwise d is proportional to sigmaSpace.

    :param borderType: Pixel extrapolation method.

A main part of our strategy will be to load each raw pixel once, and reuse it to calculate all pixels in the output (filtered) image that need this pixel value. The math of the filter is that of the usual bilateral filter, except that the sigma color is calculated in the neighborhood, and clamped by the optional input value.


blur
----
Blurs an image using the normalized box filter.

.. ocv:function:: void blur( InputArray src, OutputArray dst, Size ksize, Point anchor=Point(-1,-1),           int borderType=BORDER_DEFAULT )

.. ocv:pyfunction:: cv2.blur(src, ksize[, dst[, anchor[, borderType]]]) -> dst

    :param src: input image; it can have any number of channels, which are processed independently, but the depth should be ``CV_8U``, ``CV_16U``, ``CV_16S``, ``CV_32F`` or ``CV_64F``.

    :param dst: output image of the same size and type as ``src``.

    :param ksize: blurring kernel size.

    :param anchor: anchor point; default value ``Point(-1,-1)`` means that the anchor is at the kernel center.

    :param borderType: border mode used to extrapolate pixels outside of the image.

The function smoothes an image using the kernel:

.. math::

    \texttt{K} =  \frac{1}{\texttt{ksize.width*ksize.height}} \begin{bmatrix} 1 & 1 & 1 &  \cdots & 1 & 1  \\ 1 & 1 & 1 &  \cdots & 1 & 1  \\ \hdotsfor{6} \\ 1 & 1 & 1 &  \cdots & 1 & 1  \\ \end{bmatrix}

The call ``blur(src, dst, ksize, anchor, borderType)`` is equivalent to ``boxFilter(src, dst, src.type(), anchor, true, borderType)`` .

.. seealso::

   :ocv:func:`boxFilter`,
   :ocv:func:`bilateralFilter`,
   :ocv:func:`GaussianBlur`,
   :ocv:func:`medianBlur`


borderInterpolate
-----------------
Computes the source location of an extrapolated pixel.

.. ocv:function:: int borderInterpolate( int p, int len, int borderType )

.. ocv:pyfunction:: cv2.borderInterpolate(p, len, borderType) -> retval

    :param p: 0-based coordinate of the extrapolated pixel along one of the axes, likely <0 or >= ``len`` .

    :param len: Length of the array along the corresponding axis.

    :param borderType: Border type, one of the  ``BORDER_*`` , except for  ``BORDER_TRANSPARENT``  and  ``BORDER_ISOLATED`` . When  ``borderType==BORDER_CONSTANT`` , the function always returns -1, regardless of  ``p``  and  ``len`` .

The function computes and returns the coordinate of a donor pixel corresponding to the specified extrapolated pixel when using the specified extrapolation border mode. For example, if you use ``BORDER_WRAP`` mode in the horizontal direction, ``BORDER_REFLECT_101`` in the vertical direction and want to compute value of the "virtual" pixel ``Point(-5, 100)`` in a floating-point image ``img`` , it looks like: ::

    float val = img.at<float>(borderInterpolate(100, img.rows, BORDER_REFLECT_101),
                              borderInterpolate(-5, img.cols, BORDER_WRAP));


Normally, the function is not called directly. It is used inside
:ocv:class:`FilterEngine` and
:ocv:func:`copyMakeBorder` to compute tables for quick extrapolation.

.. seealso::

    :ocv:class:`FilterEngine`,
    :ocv:func:`copyMakeBorder`



boxFilter
---------
Blurs an image using the box filter.

.. ocv:function:: void boxFilter( InputArray src, OutputArray dst, int ddepth, Size ksize, Point anchor=Point(-1,-1), bool normalize=true, int borderType=BORDER_DEFAULT )

.. ocv:pyfunction:: cv2.boxFilter(src, ddepth, ksize[, dst[, anchor[, normalize[, borderType]]]]) -> dst

    :param src: input image.

    :param dst: output image of the same size and type as ``src``.

    :param ddepth: the output image depth (-1 to use ``src.depth()``).

    :param ksize: blurring kernel size.

    :param anchor: anchor point; default value ``Point(-1,-1)`` means that the anchor is at the kernel center.

    :param normalize: flag, specifying whether the kernel is normalized by its area or not.

    :param borderType: border mode used to extrapolate pixels outside of the image.

The function smoothes an image using the kernel:

.. math::

    \texttt{K} =  \alpha \begin{bmatrix} 1 & 1 & 1 &  \cdots & 1 & 1  \\ 1 & 1 & 1 &  \cdots & 1 & 1  \\ \hdotsfor{6} \\ 1 & 1 & 1 &  \cdots & 1 & 1 \end{bmatrix}

where

.. math::

    \alpha = \fork{\frac{1}{\texttt{ksize.width*ksize.height}}}{when \texttt{normalize=true}}{1}{otherwise}

Unnormalized box filter is useful for computing various integral characteristics over each pixel neighborhood, such as covariance matrices of image derivatives (used in dense optical flow algorithms, and so on). If you need to compute pixel sums over variable-size windows, use :ocv:func:`integral` .

.. seealso::

    :ocv:func:`blur`,
    :ocv:func:`bilateralFilter`,
    :ocv:func:`GaussianBlur`,
    :ocv:func:`medianBlur`,
    :ocv:func:`integral`



buildPyramid
------------
Constructs the Gaussian pyramid for an image.

.. ocv:function:: void buildPyramid( InputArray src, OutputArrayOfArrays dst, int maxlevel, int borderType=BORDER_DEFAULT )

    :param src: Source image. Check  :ocv:func:`pyrDown`  for the list of supported types.

    :param dst: Destination vector of  ``maxlevel+1``  images of the same type as  ``src`` . ``dst[0]``  will be the same as  ``src`` .  ``dst[1]``  is the next pyramid layer, a smoothed and down-sized  ``src``  , and so on.

    :param maxlevel: 0-based index of the last (the smallest) pyramid layer. It must be non-negative.

The function constructs a vector of images and builds the Gaussian pyramid by recursively applying
:ocv:func:`pyrDown` to the previously built pyramid layers, starting from ``dst[0]==src`` .



copyMakeBorder
--------------
Forms a border around an image.

.. ocv:function:: void copyMakeBorder( InputArray src, OutputArray dst, int top, int bottom, int left, int right, int borderType, const Scalar& value=Scalar() )

.. ocv:pyfunction:: cv2.copyMakeBorder(src, top, bottom, left, right, borderType[, dst[, value]]) -> dst

.. ocv:cfunction:: void cvCopyMakeBorder( const CvArr* src, CvArr* dst, CvPoint offset, int bordertype, CvScalar value=cvScalarAll(0) )
.. ocv:pyoldfunction:: cv.CopyMakeBorder(src, dst, offset, bordertype, value=(0, 0, 0, 0))-> None

    :param src: Source image.

    :param dst: Destination image of the same type as  ``src``  and the size  ``Size(src.cols+left+right, src.rows+top+bottom)`` .

    :param top:

    :param bottom:

    :param left:

    :param right: Parameter specifying how many pixels in each direction from the source image rectangle to extrapolate. For example,  ``top=1, bottom=1, left=1, right=1``  mean that 1 pixel-wide border needs to be built.

    :param borderType: Border type. See  :ocv:func:`borderInterpolate` for details.

    :param value: Border value if  ``borderType==BORDER_CONSTANT`` .

The function copies the source image into the middle of the destination image. The areas to the left, to the right, above and below the copied source image will be filled with extrapolated pixels. This is not what
:ocv:class:`FilterEngine` or filtering functions based on it do (they extrapolate pixels on-fly), but what other more complex functions, including your own, may do to simplify image boundary handling.

The function supports the mode when ``src`` is already in the middle of ``dst`` . In this case, the function does not copy ``src`` itself but simply constructs the border, for example: ::

    // let border be the same in all directions
    int border=2;
    // constructs a larger image to fit both the image and the border
    Mat gray_buf(rgb.rows + border*2, rgb.cols + border*2, rgb.depth());
    // select the middle part of it w/o copying data
    Mat gray(gray_canvas, Rect(border, border, rgb.cols, rgb.rows));
    // convert image from RGB to grayscale
    cvtColor(rgb, gray, CV_RGB2GRAY);
    // form a border in-place
    copyMakeBorder(gray, gray_buf, border, border,
                   border, border, BORDER_REPLICATE);
    // now do some custom filtering ...
    ...


.. note::

    When the source image is a part (ROI) of a bigger image, the function will try to use the pixels outside of the ROI to form a border. To disable this feature and always do extrapolation, as if ``src`` was not a ROI, use ``borderType | BORDER_ISOLATED``.

.. seealso::

    :ocv:func:`borderInterpolate`


createBoxFilter
-------------------
Returns a box filter engine.

.. ocv:function:: Ptr<FilterEngine> createBoxFilter( int srcType, int dstType,                                 Size ksize, Point anchor=Point(-1,-1), bool normalize=true, int borderType=BORDER_DEFAULT)

.. ocv:function:: Ptr<BaseRowFilter> getRowSumFilter(int srcType, int sumType,                                   int ksize, int anchor=-1)

.. ocv:function:: Ptr<BaseColumnFilter> getColumnSumFilter(int sumType, int dstType,                                   int ksize, int anchor=-1, double scale=1)

    :param srcType: Source image type.

    :param sumType: Intermediate horizontal sum type that must have as many channels as  ``srcType`` .

    :param dstType: Destination image type that must have as many channels as  ``srcType`` .

    :param ksize: Aperture size.

    :param anchor: Anchor position with the kernel. Negative values mean that the anchor is at the kernel center.

    :param normalize: Flag specifying whether the sums are normalized or not. See  :ocv:func:`boxFilter` for details.

    :param scale: Another way to specify normalization in lower-level  ``getColumnSumFilter`` .

    :param borderType: Border type to use. See  :ocv:func:`borderInterpolate` .

The function is a convenience function that retrieves the horizontal sum primitive filter with
:ocv:func:`getRowSumFilter` , vertical sum filter with
:ocv:func:`getColumnSumFilter` , constructs new
:ocv:class:`FilterEngine` , and passes both of the primitive filters there. The constructed filter engine can be used for image filtering with normalized or unnormalized box filter.

The function itself is used by
:ocv:func:`blur` and
:ocv:func:`boxFilter` .

.. seealso::

    :ocv:class:`FilterEngine`,
    :ocv:func:`blur`,
    :ocv:func:`boxFilter`



createDerivFilter
---------------------
Returns an engine for computing image derivatives.

.. ocv:function:: Ptr<FilterEngine> createDerivFilter( int srcType, int dstType,                                     int dx, int dy, int ksize, int borderType=BORDER_DEFAULT )

    :param srcType: Source image type.

    :param dstType: Destination image type that must have as many channels as  ``srcType`` .

    :param dx: Derivative order in respect of x.

    :param dy: Derivative order in respect of y.

    :param ksize: Aperture size See  :ocv:func:`getDerivKernels` .

    :param borderType: Border type to use. See  :ocv:func:`borderInterpolate` .

The function :ocv:func:`createDerivFilter` is a small convenience function that retrieves linear filter coefficients for computing image derivatives using
:ocv:func:`getDerivKernels` and then creates a separable linear filter with
:ocv:func:`createSeparableLinearFilter` . The function is used by
:ocv:func:`Sobel` and
:ocv:func:`Scharr` .

.. seealso::

    :ocv:func:`createSeparableLinearFilter`,
    :ocv:func:`getDerivKernels`,
    :ocv:func:`Scharr`,
    :ocv:func:`Sobel`



createGaussianFilter
------------------------
Returns an engine for smoothing images with the Gaussian filter.

.. ocv:function:: Ptr<FilterEngine> createGaussianFilter( int type, Size ksize, double sigma1, double sigma2=0, int borderType=BORDER_DEFAULT )

    :param type: Source and destination image type.

    :param ksize: Aperture size. See  :ocv:func:`getGaussianKernel` .

    :param sigma1: Gaussian sigma in the horizontal direction. See  :ocv:func:`getGaussianKernel` .

    :param sigma2: Gaussian sigma in the vertical direction. If 0, then  :math:`\texttt{sigma2}\leftarrow\texttt{sigma1}` .

    :param borderType: Border type to use. See  :ocv:func:`borderInterpolate` .

The function :ocv:func:`createGaussianFilter` computes Gaussian kernel coefficients and then returns a separable linear filter for that kernel. The function is used by
:ocv:func:`GaussianBlur` . Note that while the function takes just one data type, both for input and output, you can pass this limitation by calling
:ocv:func:`getGaussianKernel` and then
:ocv:func:`createSeparableLinearFilter` directly.

.. seealso::

    :ocv:func:`createSeparableLinearFilter`,
    :ocv:func:`getGaussianKernel`,
    :ocv:func:`GaussianBlur`



createLinearFilter
----------------------
Creates a non-separable linear filter engine.

.. ocv:function:: Ptr<FilterEngine> createLinearFilter( int srcType, int dstType, InputArray kernel, Point _anchor=Point(-1,-1), double delta=0, int rowBorderType=BORDER_DEFAULT, int columnBorderType=-1, const Scalar& borderValue=Scalar() )

.. ocv:function:: Ptr<BaseFilter> getLinearFilter(int srcType, int dstType, InputArray kernel, Point anchor=Point(-1,-1), double delta=0, int bits=0)

    :param srcType: Source image type.

    :param dstType: Destination image type that must have as many channels as  ``srcType`` .

    :param kernel: 2D array of filter coefficients.

    :param anchor: Anchor point within the kernel. Special value  ``Point(-1,-1)``  means that the anchor is at the kernel center.

    :param delta: Value added to the filtered results before storing them.

    :param bits: Number of the fractional bits. The parameter is used when the kernel is an integer matrix representing fixed-point filter coefficients.

    :param rowBorderType: Pixel extrapolation method in the vertical direction. For details, see  :ocv:func:`borderInterpolate`.

    :param columnBorderType: Pixel extrapolation method in the horizontal direction.

    :param borderValue: Border value used in case of a constant border.

The function returns a pointer to a 2D linear filter for the specified kernel, the source array type, and the destination array type. The function is a higher-level function that calls ``getLinearFilter`` and passes the retrieved 2D filter to the
:ocv:class:`FilterEngine` constructor.

.. seealso::

    :ocv:func:`createSeparableLinearFilter`,
    :ocv:class:`FilterEngine`,
    :ocv:func:`filter2D`


createMorphologyFilter
--------------------------
Creates an engine for non-separable morphological operations.

.. ocv:function:: Ptr<FilterEngine> createMorphologyFilter( int op, int type, InputArray kernel, Point anchor=Point(-1,-1), int rowBorderType=BORDER_CONSTANT, int columnBorderType=-1, const Scalar& borderValue=morphologyDefaultBorderValue() )

.. ocv:function:: Ptr<BaseFilter> getMorphologyFilter( int op, int type, InputArray kernel, Point anchor=Point(-1,-1) )

.. ocv:function:: Ptr<BaseRowFilter> getMorphologyRowFilter( int op, int type, int ksize, int anchor=-1 )

.. ocv:function:: Ptr<BaseColumnFilter> getMorphologyColumnFilter( int op, int type, int ksize, int anchor=-1 )

.. ocv:function:: Scalar morphologyDefaultBorderValue()

    :param op: Morphology operation ID,  ``MORPH_ERODE``  or  ``MORPH_DILATE`` .

    :param type: Input/output image type. The number of channels can be arbitrary. The depth should be one of ``CV_8U``, ``CV_16U``, ``CV_16S``,  ``CV_32F` or ``CV_64F``.

    :param kernel: 2D 8-bit structuring element for a morphological operation. Non-zero elements indicate the pixels that belong to the element.

    :param ksize: Horizontal or vertical structuring element size for separable morphological operations.

    :param anchor: Anchor position within the structuring element. Negative values mean that the anchor is at the kernel center.

    :param rowBorderType: Pixel extrapolation method in the vertical direction. For details, see  :ocv:func:`borderInterpolate`.

    :param columnBorderType: Pixel extrapolation method in the horizontal direction.

    :param borderValue: Border value in case of a constant border. The default value, \   ``morphologyDefaultBorderValue`` , has a special meaning. It is transformed  :math:`+\inf`  for the erosion and to  :math:`-\inf`  for the dilation, which means that the minimum (maximum) is effectively computed only over the pixels that are inside the image.

The functions construct primitive morphological filtering operations or a filter engine based on them. Normally it is enough to use
:ocv:func:`createMorphologyFilter` or even higher-level
:ocv:func:`erode`,
:ocv:func:`dilate` , or
:ocv:func:`morphologyEx` .
Note that
:ocv:func:`createMorphologyFilter` analyzes the structuring element shape and builds a separable morphological filter engine when the structuring element is square.

.. seealso::

    :ocv:func:`erode`,
    :ocv:func:`dilate`,
    :ocv:func:`morphologyEx`,
    :ocv:class:`FilterEngine`


createSeparableLinearFilter
-------------------------------
Creates an engine for a separable linear filter.

.. ocv:function:: Ptr<FilterEngine> createSeparableLinearFilter( int srcType, int dstType, InputArray rowKernel, InputArray columnKernel, Point anchor=Point(-1,-1), double delta=0, int rowBorderType=BORDER_DEFAULT, int columnBorderType=-1, const Scalar& borderValue=Scalar() )

.. ocv:function:: Ptr<BaseColumnFilter> getLinearColumnFilter( int bufType, int dstType, InputArray kernel, int anchor, int symmetryType, double delta=0, int bits=0 )

.. ocv:function:: Ptr<BaseRowFilter> getLinearRowFilter( int srcType, int bufType, InputArray kernel, int anchor, int symmetryType )

    :param srcType: Source array type.

    :param dstType: Destination image type that must have as many channels as  ``srcType`` .

    :param bufType: Intermediate buffer type that must have as many channels as  ``srcType`` .

    :param rowKernel: Coefficients for filtering each row.

    :param columnKernel: Coefficients for filtering each column.

    :param anchor: Anchor position within the kernel. Negative values mean that anchor is positioned at the aperture center.

    :param delta: Value added to the filtered results before storing them.

    :param bits: Number of the fractional bits. The parameter is used when the kernel is an integer matrix representing fixed-point filter coefficients.

    :param rowBorderType: Pixel extrapolation method in the vertical direction. For details, see  :ocv:func:`borderInterpolate`.

    :param columnBorderType: Pixel extrapolation method in the horizontal direction.

    :param borderValue: Border value used in case of a constant border.

    :param symmetryType: Type of each row and column kernel. See  :ocv:func:`getKernelType` .

The functions construct primitive separable linear filtering operations or a filter engine based on them. Normally it is enough to use
:ocv:func:`createSeparableLinearFilter` or even higher-level
:ocv:func:`sepFilter2D` . The function
:ocv:func:`createMorphologyFilter` is smart enough to figure out the ``symmetryType`` for each of the two kernels, the intermediate ``bufType``  and, if filtering can be done in integer arithmetics, the number of ``bits`` to encode the filter coefficients. If it does not work for you, it is possible to call ``getLinearColumnFilter``,``getLinearRowFilter`` directly and then pass them to the
:ocv:class:`FilterEngine` constructor.

.. seealso::

    :ocv:func:`sepFilter2D`,
    :ocv:func:`createLinearFilter`,
    :ocv:class:`FilterEngine`,
    :ocv:func:`getKernelType`


dilate
------
Dilates an image by using a specific structuring element.

.. ocv:function:: void dilate( InputArray src, OutputArray dst, InputArray kernel, Point anchor=Point(-1,-1), int iterations=1, int borderType=BORDER_CONSTANT, const Scalar& borderValue=morphologyDefaultBorderValue() )

.. ocv:pyfunction:: cv2.dilate(src, kernel[, dst[, anchor[, iterations[, borderType[, borderValue]]]]]) -> dst

.. ocv:cfunction:: void cvDilate( const CvArr* src, CvArr* dst, IplConvKernel* element=NULL, int iterations=1 )
.. ocv:pyoldfunction:: cv.Dilate(src, dst, element=None, iterations=1)-> None

    :param src: input image; the number of channels can be arbitrary, but the depth should be one of ``CV_8U``, ``CV_16U``, ``CV_16S``,  ``CV_32F` or ``CV_64F``.

    :param dst: output image of the same size and type as ``src``.

    :param element: structuring element used for dilation; if  ``element=Mat()`` , a  ``3 x 3`` rectangular structuring element is used.

    :param anchor: position of the anchor within the element; default value ``(-1, -1)`` means that the anchor is at the element center.

    :param iterations: number of times dilation is applied.

    :param borderType: pixel extrapolation method (see  :ocv:func:`borderInterpolate` for details).

    :param borderValue: border value in case of a constant border (see  :ocv:func:`createMorphologyFilter` for details).

The function dilates the source image using the specified structuring element that determines the shape of a pixel neighborhood over which the maximum is taken:

.. math::

    \texttt{dst} (x,y) =  \max _{(x',y'):  \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')

The function supports the in-place mode. Dilation can be applied several ( ``iterations`` ) times. In case of multi-channel images, each channel is processed independently.

.. seealso::

    :ocv:func:`erode`,
    :ocv:func:`morphologyEx`,
    :ocv:func:`createMorphologyFilter`

.. note::

   * An example using the morphological dilate operation can be found at opencv_source_code/samples/cpp/morphology2.cpp

erode
-----
Erodes an image by using a specific structuring element.

.. ocv:function:: void erode( InputArray src, OutputArray dst, InputArray kernel, Point anchor=Point(-1,-1), int iterations=1, int borderType=BORDER_CONSTANT, const Scalar& borderValue=morphologyDefaultBorderValue() )

.. ocv:pyfunction:: cv2.erode(src, kernel[, dst[, anchor[, iterations[, borderType[, borderValue]]]]]) -> dst

.. ocv:cfunction:: void cvErode( const CvArr* src, CvArr* dst, IplConvKernel* element=NULL, int iterations=1)
.. ocv:pyoldfunction:: cv.Erode(src, dst, element=None, iterations=1)-> None

    :param src: input image; the number of channels can be arbitrary, but the depth should be one of ``CV_8U``, ``CV_16U``, ``CV_16S``,  ``CV_32F` or ``CV_64F``.

    :param dst: output image of the same size and type as ``src``.

    :param element: structuring element used for erosion; if  ``element=Mat()`` , a  ``3 x 3``  rectangular structuring element is used.

    :param anchor: position of the anchor within the element; default value  ``(-1, -1)``  means that the anchor is at the element center.

    :param iterations: number of times erosion is applied.

    :param borderType: pixel extrapolation method (see  :ocv:func:`borderInterpolate` for details).

    :param borderValue: border value in case of a constant border (see :ocv:func:`createMorphologyFilter` for details).

The function erodes the source image using the specified structuring element that determines the shape of a pixel neighborhood over which the minimum is taken:

.. math::

    \texttt{dst} (x,y) =  \min _{(x',y'):  \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')

The function supports the in-place mode. Erosion can be applied several ( ``iterations`` ) times. In case of multi-channel images, each channel is processed independently.

.. seealso::

    :ocv:func:`dilate`,
    :ocv:func:`morphologyEx`,
    :ocv:func:`createMorphologyFilter`

.. note::

   * An example using the morphological erode operation can be found at opencv_source_code/samples/cpp/morphology2.cpp

filter2D
--------
Convolves an image with the kernel.

.. ocv:function:: void filter2D( InputArray src, OutputArray dst, int ddepth, InputArray kernel, Point anchor=Point(-1,-1), double delta=0, int borderType=BORDER_DEFAULT )

.. ocv:pyfunction:: cv2.filter2D(src, ddepth, kernel[, dst[, anchor[, delta[, borderType]]]]) -> dst

.. ocv:cfunction:: void cvFilter2D( const CvArr* src, CvArr* dst, const CvMat* kernel, CvPoint anchor=cvPoint(-1,-1) )

.. ocv:pyoldfunction:: cv.Filter2D(src, dst, kernel, anchor=(-1, -1))-> None

    :param src: input image.

    :param dst: output image of the same size and the same number of channels as ``src``.


    :param ddepth: desired depth of the destination image; if it is negative, it will be the same as ``src.depth()``; the following combinations of ``src.depth()`` and ``ddepth`` are supported:
         * ``src.depth()`` = ``CV_8U``, ``ddepth`` = -1/``CV_16S``/``CV_32F``/``CV_64F``
         * ``src.depth()`` = ``CV_16U``/``CV_16S``, ``ddepth`` = -1/``CV_32F``/``CV_64F``
         * ``src.depth()`` = ``CV_32F``, ``ddepth`` = -1/``CV_32F``/``CV_64F``
         * ``src.depth()`` = ``CV_64F``, ``ddepth`` = -1/``CV_64F``

        when ``ddepth=-1``, the output image will have the same depth as the source.

    :param kernel: convolution kernel (or rather a correlation kernel), a single-channel floating point matrix; if you want to apply different kernels to different channels, split the image into separate color planes using  :ocv:func:`split`  and process them individually.

    :param anchor: anchor of the kernel that indicates the relative position of a filtered point within the kernel; the anchor should lie within the kernel; default value (-1,-1) means that the anchor is at the kernel center.

    :param delta: optional value added to the filtered pixels before storing them in ``dst``.

    :param borderType: pixel extrapolation method (see  :ocv:func:`borderInterpolate` for details).

The function applies an arbitrary linear filter to an image. In-place operation is supported. When the aperture is partially outside the image, the function interpolates outlier pixel values according to the specified border mode.

The function does actually compute correlation, not the convolution:

.. math::

    \texttt{dst} (x,y) =  \sum _{ \stackrel{0\leq x' < \texttt{kernel.cols},}{0\leq y' < \texttt{kernel.rows}} }  \texttt{kernel} (x',y')* \texttt{src} (x+x'- \texttt{anchor.x} ,y+y'- \texttt{anchor.y} )

That is, the kernel is not mirrored around the anchor point. If you need a real convolution, flip the kernel using
:ocv:func:`flip` and set the new anchor to ``(kernel.cols - anchor.x - 1, kernel.rows - anchor.y - 1)`` .

The function uses the DFT-based algorithm in case of sufficiently large kernels (~``11 x 11`` or larger) and the direct algorithm (that uses the engine retrieved by :ocv:func:`createLinearFilter` ) for small kernels.

.. seealso::

    :ocv:func:`sepFilter2D`,
    :ocv:func:`createLinearFilter`,
    :ocv:func:`dft`,
    :ocv:func:`matchTemplate`



GaussianBlur
------------
Blurs an image using a Gaussian filter.

.. ocv:function:: void GaussianBlur( InputArray src, OutputArray dst, Size ksize, double sigmaX, double sigmaY=0, int borderType=BORDER_DEFAULT )

.. ocv:pyfunction:: cv2.GaussianBlur(src, ksize, sigmaX[, dst[, sigmaY[, borderType]]]) -> dst

    :param src: input image; the image can have any number of channels, which are processed independently, but the depth should be ``CV_8U``, ``CV_16U``, ``CV_16S``, ``CV_32F`` or ``CV_64F``.

    :param dst: output image of the same size and type as ``src``.

    :param ksize: Gaussian kernel size.  ``ksize.width``  and  ``ksize.height``  can differ but they both must be positive and odd. Or, they can be zero's and then they are computed from  ``sigma*`` .

    :param sigmaX: Gaussian kernel standard deviation in X direction.

    :param sigmaY: Gaussian kernel standard deviation in Y direction; if  ``sigmaY``  is zero, it is set to be equal to  ``sigmaX``, if both sigmas are zeros, they are computed from  ``ksize.width``  and  ``ksize.height`` , respectively (see  :ocv:func:`getGaussianKernel` for details); to fully control the result regardless of possible future modifications of all this semantics, it is recommended to specify all of ``ksize``, ``sigmaX``, and ``sigmaY``.

    :param borderType: pixel extrapolation method (see  :ocv:func:`borderInterpolate` for details).

The function convolves the source image with the specified Gaussian kernel. In-place filtering is supported.

.. seealso::

   :ocv:func:`sepFilter2D`,
   :ocv:func:`filter2D`,
   :ocv:func:`blur`,
   :ocv:func:`boxFilter`,
   :ocv:func:`bilateralFilter`,
   :ocv:func:`medianBlur`


getDerivKernels
---------------
Returns filter coefficients for computing spatial image derivatives.

.. ocv:function:: void getDerivKernels( OutputArray kx, OutputArray ky, int dx, int dy, int ksize,                      bool normalize=false, int ktype=CV_32F )

.. ocv:pyfunction:: cv2.getDerivKernels(dx, dy, ksize[, kx[, ky[, normalize[, ktype]]]]) -> kx, ky

    :param kx: Output matrix of row filter coefficients. It has the type  ``ktype`` .

    :param ky: Output matrix of column filter coefficients. It has the type  ``ktype`` .

    :param dx: Derivative order in respect of x.

    :param dy: Derivative order in respect of y.

    :param ksize: Aperture size. It can be  ``CV_SCHARR`` , 1, 3, 5, or 7.

    :param normalize: Flag indicating whether to normalize (scale down) the filter coefficients or not. Theoretically, the coefficients should have the denominator  :math:`=2^{ksize*2-dx-dy-2}` . If you are going to filter floating-point images, you are likely to use the normalized kernels. But if you compute derivatives of an 8-bit image, store the results in a 16-bit image, and wish to preserve all the fractional bits, you may want to set  ``normalize=false`` .

    :param ktype: Type of filter coefficients. It can be  ``CV_32f``  or  ``CV_64F`` .

The function computes and returns the filter coefficients for spatial image derivatives. When ``ksize=CV_SCHARR`` , the Scharr
:math:`3 \times 3` kernels are generated (see
:ocv:func:`Scharr` ). Otherwise, Sobel kernels are generated (see
:ocv:func:`Sobel` ). The filters are normally passed to
:ocv:func:`sepFilter2D` or to
:ocv:func:`createSeparableLinearFilter` .



getGaussianKernel
-----------------
Returns Gaussian filter coefficients.

.. ocv:function:: Mat getGaussianKernel( int ksize, double sigma, int ktype=CV_64F )

.. ocv:pyfunction:: cv2.getGaussianKernel(ksize, sigma[, ktype]) -> retval

    :param ksize: Aperture size. It should be odd ( :math:`\texttt{ksize} \mod 2 = 1` ) and positive.

    :param sigma: Gaussian standard deviation. If it is non-positive, it is computed from  ``ksize``  as  \ ``sigma = 0.3*((ksize-1)*0.5 - 1) + 0.8`` .
    :param ktype: Type of filter coefficients. It can be  ``CV_32f``  or  ``CV_64F`` .

The function computes and returns the
:math:`\texttt{ksize} \times 1` matrix of Gaussian filter coefficients:

.. math::

    G_i= \alpha *e^{-(i-( \texttt{ksize} -1)/2)^2/(2* \texttt{sigma} )^2},

where
:math:`i=0..\texttt{ksize}-1` and
:math:`\alpha` is the scale factor chosen so that
:math:`\sum_i G_i=1`.

Two of such generated kernels can be passed to
:ocv:func:`sepFilter2D` or to
:ocv:func:`createSeparableLinearFilter`. Those functions automatically recognize smoothing kernels (a symmetrical kernel with sum of weights equal to 1) and handle them accordingly. You may also use the higher-level
:ocv:func:`GaussianBlur`.

.. seealso::

   :ocv:func:`sepFilter2D`,
   :ocv:func:`createSeparableLinearFilter`,
   :ocv:func:`getDerivKernels`,
   :ocv:func:`getStructuringElement`,
   :ocv:func:`GaussianBlur`



getKernelType
-------------
Returns the kernel type.

.. ocv:function:: int getKernelType(InputArray kernel, Point anchor)

    :param kernel: 1D array of the kernel coefficients to analyze.

    :param anchor: Anchor position within the kernel.

The function analyzes the kernel coefficients and returns the corresponding kernel type:

    * **KERNEL_GENERAL** The kernel is generic. It is used when there is no any type of symmetry or other properties.

    * **KERNEL_SYMMETRICAL** The kernel is symmetrical:  :math:`\texttt{kernel}_i == \texttt{kernel}_{ksize-i-1}` , and the anchor is at the center.

    * **KERNEL_ASYMMETRICAL** The kernel is asymmetrical:  :math:`\texttt{kernel}_i == -\texttt{kernel}_{ksize-i-1}` , and the anchor is at the center.

    * **KERNEL_SMOOTH** All the kernel elements are non-negative and summed to 1. For example, the Gaussian kernel is both smooth kernel and symmetrical, so the function returns  ``KERNEL_SMOOTH | KERNEL_SYMMETRICAL`` .
    * **KERNEL_INTEGER** All the kernel coefficients are integer numbers. This flag can be combined with  ``KERNEL_SYMMETRICAL``  or  ``KERNEL_ASYMMETRICAL`` .



getStructuringElement
---------------------
Returns a structuring element of the specified size and shape for morphological operations.

.. ocv:function:: Mat getStructuringElement(int shape, Size ksize, Point anchor=Point(-1,-1))

.. ocv:pyfunction:: cv2.getStructuringElement(shape, ksize[, anchor]) -> retval

.. ocv:cfunction:: IplConvKernel* cvCreateStructuringElementEx( int cols, int rows, int anchor_x, int anchor_y, int shape, int* values=NULL )

.. ocv:pyoldfunction:: cv.CreateStructuringElementEx(cols, rows, anchorX, anchorY, shape, values=None)-> kernel

    :param shape: Element shape that could be one of the following:

      * **MORPH_RECT**         - a rectangular structuring element:

        .. math::

            E_{ij}=1

      * **MORPH_ELLIPSE**         - an elliptic structuring element, that is, a filled ellipse inscribed into the rectangle ``Rect(0, 0, esize.width, 0.esize.height)``

      * **MORPH_CROSS**         - a cross-shaped structuring element:

        .. math::

            E_{ij} =  \fork{1}{if i=\texttt{anchor.y} or j=\texttt{anchor.x}}{0}{otherwise}

      * **CV_SHAPE_CUSTOM**     - custom structuring element (OpenCV 1.x API)

    :param ksize: Size of the structuring element.

    :param cols: Width of the structuring element

    :param rows: Height of the structuring element

    :param anchor: Anchor position within the element. The default value  :math:`(-1, -1)`  means that the anchor is at the center. Note that only the shape of a cross-shaped element depends on the anchor position. In other cases the anchor just regulates how much the result of the morphological operation is shifted.

    :param anchor_x: x-coordinate of the anchor

    :param anchor_y: y-coordinate of the anchor

    :param values: integer array of ``cols``*``rows`` elements that specifies the custom shape of the structuring element, when ``shape=CV_SHAPE_CUSTOM``.

The function constructs and returns the structuring element that can be further passed to
:ocv:func:`createMorphologyFilter`,
:ocv:func:`erode`,
:ocv:func:`dilate` or
:ocv:func:`morphologyEx` . But you can also construct an arbitrary binary mask yourself and use it as the structuring element.

.. note:: When using OpenCV 1.x C API, the created structuring element ``IplConvKernel* element`` must be released in the end using ``cvReleaseStructuringElement(&element)``.


medianBlur
----------
Blurs an image using the median filter.

.. ocv:function:: void medianBlur( InputArray src, OutputArray dst, int ksize )

.. ocv:pyfunction:: cv2.medianBlur(src, ksize[, dst]) -> dst

    :param src: input 1-, 3-, or 4-channel image; when  ``ksize``  is 3 or 5, the image depth should be ``CV_8U``, ``CV_16U``, or ``CV_32F``, for larger aperture sizes, it can only be ``CV_8U``.

    :param dst: destination array of the same size and type as ``src``.

    :param ksize: aperture linear size; it must be odd and greater than 1, for example: 3, 5, 7 ...

The function smoothes an image using the median filter with the
:math:`\texttt{ksize} \times \texttt{ksize}` aperture. Each channel of a multi-channel image is processed independently. In-place operation is supported.

.. seealso::

    :ocv:func:`bilateralFilter`,
    :ocv:func:`blur`,
    :ocv:func:`boxFilter`,
    :ocv:func:`GaussianBlur`



morphologyEx
------------
Performs advanced morphological transformations.

.. ocv:function:: void morphologyEx( InputArray src, OutputArray dst, int op, InputArray kernel, Point anchor=Point(-1,-1), int iterations=1, int borderType=BORDER_CONSTANT, const Scalar& borderValue=morphologyDefaultBorderValue() )

.. ocv:pyfunction:: cv2.morphologyEx(src, op, kernel[, dst[, anchor[, iterations[, borderType[, borderValue]]]]]) -> dst

.. ocv:cfunction:: void cvMorphologyEx( const CvArr* src, CvArr* dst, CvArr* temp, IplConvKernel* element, int operation, int iterations=1 )
.. ocv:pyoldfunction:: cv.MorphologyEx(src, dst, temp, element, operation, iterations=1)-> None

    :param src: Source image. The number of channels can be arbitrary. The depth should be one of ``CV_8U``, ``CV_16U``, ``CV_16S``,  ``CV_32F` or ``CV_64F``.

    :param dst: Destination image of the same size and type as  ``src`` .

    :param element: Structuring element.

    :param op: Type of a morphological operation that can be one of the following:

            * **MORPH_OPEN** - an opening operation

            * **MORPH_CLOSE** - a closing operation

            * **MORPH_GRADIENT** - a morphological gradient

            * **MORPH_TOPHAT** - "top hat"

            * **MORPH_BLACKHAT** - "black hat"

    :param iterations: Number of times erosion and dilation are applied.

    :param borderType: Pixel extrapolation method. See  :ocv:func:`borderInterpolate` for details.

    :param borderValue: Border value in case of a constant border. The default value has a special meaning. See  :ocv:func:`createMorphologyFilter` for details.

The function can perform advanced morphological transformations using an erosion and dilation as basic operations.

Opening operation:

.. math::

    \texttt{dst} = \mathrm{open} ( \texttt{src} , \texttt{element} )= \mathrm{dilate} ( \mathrm{erode} ( \texttt{src} , \texttt{element} ))

Closing operation:

.. math::

    \texttt{dst} = \mathrm{close} ( \texttt{src} , \texttt{element} )= \mathrm{erode} ( \mathrm{dilate} ( \texttt{src} , \texttt{element} ))

Morphological gradient:

.. math::

    \texttt{dst} = \mathrm{morph\_grad} ( \texttt{src} , \texttt{element} )= \mathrm{dilate} ( \texttt{src} , \texttt{element} )- \mathrm{erode} ( \texttt{src} , \texttt{element} )

"Top hat":

.. math::

    \texttt{dst} = \mathrm{tophat} ( \texttt{src} , \texttt{element} )= \texttt{src} - \mathrm{open} ( \texttt{src} , \texttt{element} )

"Black hat":

.. math::

    \texttt{dst} = \mathrm{blackhat} ( \texttt{src} , \texttt{element} )= \mathrm{close} ( \texttt{src} , \texttt{element} )- \texttt{src}

Any of the operations can be done in-place. In case of multi-channel images, each channel is processed independently.

.. seealso::

    :ocv:func:`dilate`,
    :ocv:func:`erode`,
    :ocv:func:`createMorphologyFilter`

.. note::

   * An example using the morphologyEx function for the morphological opening and closing operations can be found at opencv_source_code/samples/cpp/morphology2.cpp

Laplacian
---------
Calculates the Laplacian of an image.

.. ocv:function:: void Laplacian( InputArray src, OutputArray dst, int ddepth, int ksize=1, double scale=1, double delta=0, int borderType=BORDER_DEFAULT )

.. ocv:pyfunction:: cv2.Laplacian(src, ddepth[, dst[, ksize[, scale[, delta[, borderType]]]]]) -> dst

.. ocv:cfunction:: void cvLaplace( const CvArr* src, CvArr* dst, int aperture_size=3 )

.. ocv:pyoldfunction:: cv.Laplace(src, dst, apertureSize=3) -> None

    :param src: Source image.

    :param dst: Destination image of the same size and the same number of channels as  ``src`` .

    :param ddepth: Desired depth of the destination image.

    :param ksize: Aperture size used to compute the second-derivative filters. See  :ocv:func:`getDerivKernels` for details. The size must be positive and odd.

    :param scale: Optional scale factor for the computed Laplacian values. By default, no scaling is applied. See  :ocv:func:`getDerivKernels` for details.

    :param delta: Optional delta value that is added to the results prior to storing them in  ``dst`` .

    :param borderType: Pixel extrapolation method. See  :ocv:func:`borderInterpolate` for details.

The function calculates the Laplacian of the source image by adding up the second x and y derivatives calculated using the Sobel operator:

.. math::

    \texttt{dst} =  \Delta \texttt{src} =  \frac{\partial^2 \texttt{src}}{\partial x^2} +  \frac{\partial^2 \texttt{src}}{\partial y^2}

This is done when ``ksize > 1`` . When ``ksize == 1`` , the Laplacian is computed by filtering the image with the following
:math:`3 \times 3` aperture:

.. math::

    \vecthreethree {0}{1}{0}{1}{-4}{1}{0}{1}{0}

.. seealso::

    :ocv:func:`Sobel`,
    :ocv:func:`Scharr`

.. note::

   * An example using the Laplace transformation for edge detection can be found at opencv_source_code/samples/cpp/laplace.cpp

pyrDown
-------
Blurs an image and downsamples it.

.. ocv:function:: void pyrDown( InputArray src, OutputArray dst, const Size& dstsize=Size(), int borderType=BORDER_DEFAULT )

.. ocv:pyfunction:: cv2.pyrDown(src[, dst[, dstsize[, borderType]]]) -> dst

.. ocv:cfunction:: void cvPyrDown( const CvArr* src, CvArr* dst, int filter=CV_GAUSSIAN_5x5 )

.. ocv:pyoldfunction:: cv.PyrDown(src, dst, filter=CV_GAUSSIAN_5X5) -> None

    :param src: input image.

    :param dst: output image; it has the specified size and the same type as ``src``.

    :param dstsize: size of the output image; by default, it is computed as ``Size((src.cols+1)/2, (src.rows+1)/2)``, but in any case, the following conditions should be satisfied:

        .. math::

            \begin{array}{l}
            | \texttt{dstsize.width} *2-src.cols| \leq  2  \\ | \texttt{dstsize.height} *2-src.rows| \leq  2 \end{array}

The function performs the downsampling step of the Gaussian pyramid construction. First, it convolves the source image with the kernel:

.. math::

    \frac{1}{256} \begin{bmatrix} 1 & 4 & 6 & 4 & 1  \\ 4 & 16 & 24 & 16 & 4  \\ 6 & 24 & 36 & 24 & 6  \\ 4 & 16 & 24 & 16 & 4  \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix}

Then, it downsamples the image by rejecting even rows and columns.



pyrUp
-----
Upsamples an image and then blurs it.

.. ocv:function:: void pyrUp( InputArray src, OutputArray dst, const Size& dstsize=Size(), int borderType=BORDER_DEFAULT )

.. ocv:pyfunction:: cv2.pyrUp(src[, dst[, dstsize[, borderType]]]) -> dst

.. ocv:cfunction:: cvPyrUp( const CvArr* src, CvArr* dst, int filter=CV_GAUSSIAN_5x5 )

.. ocv:pyoldfunction:: cv.PyrUp(src, dst, filter=CV_GAUSSIAN_5X5) -> None

    :param src: input image.

    :param dst: output image. It has the specified size and the same type as  ``src`` .

    :param dstsize: size of the output image; by default, it is computed as ``Size(src.cols*2, (src.rows*2)``, but in any case, the following conditions should be satisfied:

        .. math::

            \begin{array}{l}
            | \texttt{dstsize.width} -src.cols*2| \leq  ( \texttt{dstsize.width}   \mod  2)  \\ | \texttt{dstsize.height} -src.rows*2| \leq  ( \texttt{dstsize.height}   \mod  2) \end{array}

The function performs the upsampling step of the Gaussian pyramid construction, though it can actually be used to construct the Laplacian pyramid. First, it upsamples the source image by injecting even zero rows and columns and then convolves the result with the same kernel as in
:ocv:func:`pyrDown`  multiplied by 4.

.. note::

   * (Python) An example of Laplacian Pyramid construction and merging can be found at opencv_source_code/samples/python2/lappyr.py


pyrMeanShiftFiltering
---------------------
Performs initial step of meanshift segmentation of an image.

.. ocv:function:: void pyrMeanShiftFiltering( InputArray src, OutputArray dst, double sp, double sr, int maxLevel=1, TermCriteria termcrit=TermCriteria( TermCriteria::MAX_ITER+TermCriteria::EPS,5,1) )

.. ocv:pyfunction:: cv2.pyrMeanShiftFiltering(src, sp, sr[, dst[, maxLevel[, termcrit]]]) -> dst

.. ocv:cfunction:: void cvPyrMeanShiftFiltering( const CvArr* src, CvArr* dst, double sp,  double sr,  int max_level=1, CvTermCriteria termcrit= cvTermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,5,1))

.. ocv:pyoldfunction:: cv.PyrMeanShiftFiltering(src, dst, sp, sr, max_level=1, termcrit=(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 5, 1)) -> None

    :param src: The source 8-bit, 3-channel image.

    :param dst: The destination image of the same format and the same size as the source.

    :param sp: The spatial window radius.

    :param sr: The color window radius.

    :param maxLevel: Maximum level of the pyramid for the segmentation.

    :param termcrit: Termination criteria: when to stop meanshift iterations.


The function implements the filtering stage of meanshift segmentation, that is, the output of the function is the filtered "posterized" image with color gradients and fine-grain texture flattened. At every pixel
``(X,Y)`` of the input image (or down-sized input image, see below) the function executes meanshift
iterations, that is, the pixel ``(X,Y)`` neighborhood in the joint space-color hyperspace is considered:

    .. math::

        (x,y): X- \texttt{sp} \le x  \le X+ \texttt{sp} , Y- \texttt{sp} \le y  \le Y+ \texttt{sp} , ||(R,G,B)-(r,g,b)||   \le \texttt{sr}


where  ``(R,G,B)`` and  ``(r,g,b)`` are the vectors of color components at ``(X,Y)`` and  ``(x,y)``, respectively (though, the algorithm does not depend on the color space used, so any 3-component color space can be used instead). Over the neighborhood the average spatial value  ``(X',Y')`` and average color vector  ``(R',G',B')`` are found and they act as the neighborhood center on the next iteration:

    .. math::

        (X,Y)~(X',Y'), (R,G,B)~(R',G',B').

After the iterations over, the color components of the initial pixel (that is, the pixel from where the iterations started) are set to the final value (average color at the last iteration):

    .. math::

        I(X,Y) <- (R*,G*,B*)

When ``maxLevel > 0``, the gaussian pyramid of ``maxLevel+1`` levels is built, and the above procedure is run on the smallest layer first. After that, the results are propagated to the larger layer and the iterations are run again only on those pixels where the layer colors differ by more than ``sr`` from the lower-resolution layer of the pyramid. That makes boundaries of color regions sharper. Note that the results will be actually different from the ones obtained by running the meanshift procedure on the whole original image (i.e. when ``maxLevel==0``).

.. note::

   * An example using mean-shift image segmentation can be found at opencv_source_code/samples/cpp/meanshift_segmentation.cpp

sepFilter2D
-----------
Applies a separable linear filter to an image.

.. ocv:function:: void sepFilter2D( InputArray src, OutputArray dst, int ddepth, InputArray kernelX, InputArray kernelY, Point anchor=Point(-1,-1), double delta=0, int borderType=BORDER_DEFAULT )

.. ocv:pyfunction:: cv2.sepFilter2D(src, ddepth, kernelX, kernelY[, dst[, anchor[, delta[, borderType]]]]) -> dst

    :param src: Source image.

    :param dst: Destination image of the same size and the same number of channels as  ``src`` .

    :param ddepth: Destination image depth. The following combination of ``src.depth()`` and ``ddepth`` are supported:
         * ``src.depth()`` = ``CV_8U``, ``ddepth`` = -1/``CV_16S``/``CV_32F``/``CV_64F``
         * ``src.depth()`` = ``CV_16U``/``CV_16S``, ``ddepth`` = -1/``CV_32F``/``CV_64F``
         * ``src.depth()`` = ``CV_32F``, ``ddepth`` = -1/``CV_32F``/``CV_64F``
         * ``src.depth()`` = ``CV_64F``, ``ddepth`` = -1/``CV_64F``

        when ``ddepth=-1``, the destination image will have the same depth as the source.

    :param kernelX: Coefficients for filtering each row.

    :param kernelY: Coefficients for filtering each column.

    :param anchor: Anchor position within the kernel. The default value  :math:`(-1,-1)`  means that the anchor is at the kernel center.

    :param delta: Value added to the filtered results before storing them.

    :param borderType: Pixel extrapolation method. See  :ocv:func:`borderInterpolate` for details.

The function applies a separable linear filter to the image. That is, first, every row of ``src`` is filtered with the 1D kernel ``kernelX`` . Then, every column of the result is filtered with the 1D kernel ``kernelY`` . The final result shifted by ``delta`` is stored in ``dst`` .

.. seealso::

   :ocv:func:`createSeparableLinearFilter`,
   :ocv:func:`filter2D`,
   :ocv:func:`Sobel`,
   :ocv:func:`GaussianBlur`,
   :ocv:func:`boxFilter`,
   :ocv:func:`blur`


Smooth
------
Smooths the image in one of several ways.

.. ocv:cfunction:: void cvSmooth( const CvArr* src, CvArr* dst, int smoothtype=CV_GAUSSIAN, int size1=3, int size2=0, double sigma1=0, double sigma2=0 )

.. ocv:pyoldfunction:: cv.Smooth(src, dst, smoothtype=CV_GAUSSIAN, param1=3, param2=0, param3=0, param4=0)-> None

    :param src: The source image

    :param dst: The destination image

    :param smoothtype: Type of the smoothing:

            * **CV_BLUR_NO_SCALE** linear convolution with  :math:`\texttt{size1}\times\texttt{size2}`  box kernel (all 1's). If you want to smooth different pixels with different-size box kernels, you can use the integral image that is computed using  :ocv:func:`integral`


            * **CV_BLUR** linear convolution with  :math:`\texttt{size1}\times\texttt{size2}`  box kernel (all 1's) with subsequent scaling by  :math:`1/(\texttt{size1}\cdot\texttt{size2})`


            * **CV_GAUSSIAN** linear convolution with a  :math:`\texttt{size1}\times\texttt{size2}`  Gaussian kernel


            * **CV_MEDIAN** median filter with a  :math:`\texttt{size1}\times\texttt{size1}`  square aperture


            * **CV_BILATERAL** bilateral filter with a  :math:`\texttt{size1}\times\texttt{size1}`  square aperture, color sigma= ``sigma1``  and spatial sigma= ``sigma2`` . If  ``size1=0`` , the aperture square side is set to  ``cvRound(sigma2*1.5)*2+1`` . Information about bilateral filtering can be found at  http://www.dai.ed.ac.uk/CVonline/LOCAL\_COPIES/MANDUCHI1/Bilateral\_Filtering.html


    :param size1: The first parameter of the smoothing operation, the aperture width. Must be a positive odd number (1, 3, 5, ...)

    :param size2: The second parameter of the smoothing operation, the aperture height. Ignored by  ``CV_MEDIAN``  and  ``CV_BILATERAL``  methods. In the case of simple scaled/non-scaled and Gaussian blur if  ``size2``  is zero, it is set to  ``size1`` . Otherwise it must be a positive odd number.

    :param sigma1: In the case of a Gaussian parameter this parameter may specify Gaussian  :math:`\sigma`  (standard deviation). If it is zero, it is calculated from the kernel size:

        .. math::

            \sigma  = 0.3 (n/2 - 1) + 0.8  \quad   \text{where}   \quad  n= \begin{array}{l l} \mbox{\texttt{size1} for horizontal kernel} \\ \mbox{\texttt{size2} for vertical kernel} \end{array}

        Using standard sigma for small kernels ( :math:`3\times 3`  to  :math:`7\times 7` ) gives better speed. If  ``sigma1``  is not zero, while  ``size1``  and  ``size2``  are zeros, the kernel size is calculated from the sigma (to provide accurate enough operation).

The function smooths an image using one of several methods. Every of the methods has some features and restrictions listed below:

 * Blur with no scaling works with single-channel images only and supports accumulation of 8-bit to 16-bit format (similar to :ocv:func:`Sobel` and :ocv:func:`Laplacian`) and 32-bit floating point to 32-bit floating-point format.

 * Simple blur and Gaussian blur support 1- or 3-channel, 8-bit and 32-bit floating point images. These two methods can process images in-place.

 * Median and bilateral filters work with 1- or 3-channel 8-bit images and can not process images in-place.

.. note:: The function is now obsolete. Use :ocv:func:`GaussianBlur`, :ocv:func:`blur`, :ocv:func:`medianBlur` or :ocv:func:`bilateralFilter`.


Sobel
-----
Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator.

.. ocv:function:: void Sobel( InputArray src, OutputArray dst, int ddepth, int dx, int dy, int ksize=3, double scale=1, double delta=0, int borderType=BORDER_DEFAULT )

.. ocv:pyfunction:: cv2.Sobel(src, ddepth, dx, dy[, dst[, ksize[, scale[, delta[, borderType]]]]]) -> dst

.. ocv:cfunction:: void cvSobel( const CvArr* src, CvArr* dst, int xorder, int yorder, int aperture_size=3 )

.. ocv:pyoldfunction:: cv.Sobel(src, dst, xorder, yorder, apertureSize=3)-> None

    :param src: input image.

    :param dst: output image of the same size and the same number of channels as  ``src`` .

    :param ddepth: output image depth; the following combinations of ``src.depth()`` and ``ddepth`` are supported:
         * ``src.depth()`` = ``CV_8U``, ``ddepth`` = -1/``CV_16S``/``CV_32F``/``CV_64F``
         * ``src.depth()`` = ``CV_16U``/``CV_16S``, ``ddepth`` = -1/``CV_32F``/``CV_64F``
         * ``src.depth()`` = ``CV_32F``, ``ddepth`` = -1/``CV_32F``/``CV_64F``
         * ``src.depth()`` = ``CV_64F``, ``ddepth`` = -1/``CV_64F``

        when ``ddepth=-1``, the destination image will have the same depth as the source; in the case of 8-bit input images it will result in truncated derivatives.

    :param xorder: order of the derivative x.

    :param yorder: order of the derivative y.

    :param ksize: size of the extended Sobel kernel; it must be 1, 3, 5, or 7.

    :param scale: optional scale factor for the computed derivative values; by default, no scaling is applied (see  :ocv:func:`getDerivKernels` for details).

    :param delta: optional delta value that is added to the results prior to storing them in ``dst``.

    :param borderType: pixel extrapolation method (see  :ocv:func:`borderInterpolate` for details).

In all cases except one, the
:math:`\texttt{ksize} \times
\texttt{ksize}` separable kernel is used to calculate the
derivative. When
:math:`\texttt{ksize = 1}` , the
:math:`3 \times 1` or
:math:`1 \times 3` kernel is used (that is, no Gaussian smoothing is done). ``ksize = 1`` can only be used for the first or the second x- or y- derivatives.

There is also the special value ``ksize = CV_SCHARR`` (-1) that corresponds to the
:math:`3\times3` Scharr
filter that may give more accurate results than the
:math:`3\times3` Sobel. The Scharr aperture is

.. math::

    \vecthreethree{-3}{0}{3}{-10}{0}{10}{-3}{0}{3}

for the x-derivative, or transposed for the y-derivative.

The function calculates an image derivative by convolving the image with the appropriate kernel:

.. math::

    \texttt{dst} =  \frac{\partial^{xorder+yorder} \texttt{src}}{\partial x^{xorder} \partial y^{yorder}}

The Sobel operators combine Gaussian smoothing and differentiation,
so the result is more or less resistant to the noise. Most often,
the function is called with ( ``xorder`` = 1, ``yorder`` = 0, ``ksize`` = 3) or ( ``xorder`` = 0, ``yorder`` = 1, ``ksize`` = 3) to calculate the first x- or y- image
derivative. The first case corresponds to a kernel of:

.. math::

    \vecthreethree{-1}{0}{1}{-2}{0}{2}{-1}{0}{1}

The second case corresponds to a kernel of:

.. math::

    \vecthreethree{-1}{-2}{-1}{0}{0}{0}{1}{2}{1}

.. seealso::

    :ocv:func:`Scharr`,
    :ocv:func:`Laplacian`,
    :ocv:func:`sepFilter2D`,
    :ocv:func:`filter2D`,
    :ocv:func:`GaussianBlur`,
    :ocv:func:`cartToPolar`



Scharr
------
Calculates the first x- or y- image derivative using Scharr operator.

.. ocv:function:: void Scharr( InputArray src, OutputArray dst, int ddepth, int dx, int dy, double scale=1, double delta=0, int borderType=BORDER_DEFAULT )

.. ocv:pyfunction:: cv2.Scharr(src, ddepth, dx, dy[, dst[, scale[, delta[, borderType]]]]) -> dst

    :param src: input image.

    :param dst: output image of the same size and the same number of channels as ``src``.

    :param ddepth: output image depth (see :ocv:func:`Sobel` for the list of supported combination of ``src.depth()`` and ``ddepth``).

    :param dx: order of the derivative x.

    :param dy: order of the derivative y.

    :param scale: optional scale factor for the computed derivative values; by default, no scaling is applied (see  :ocv:func:`getDerivKernels` for details).

    :param delta: optional delta value that is added to the results prior to storing them in ``dst``.

    :param borderType: pixel extrapolation method (see  :ocv:func:`borderInterpolate` for details).

The function computes the first x- or y- spatial image derivative using the Scharr operator. The call

.. math::

    \texttt{Scharr(src, dst, ddepth, dx, dy, scale, delta, borderType)}

is equivalent to

.. math::

    \texttt{Sobel(src, dst, ddepth, dx, dy, CV\_SCHARR, scale, delta, borderType)} .

.. seealso::

    :ocv:func:`cartToPolar`