1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
|
Image Filtering
===============
.. highlight:: cpp
Functions and classes described in this section are used to perform various linear or non-linear filtering operations on 2D images (represented as
:ocv:func:`Mat`'s). It means that for each pixel location
:math:`(x,y)` in the source image (normally, rectangular), its neighborhood is considered and used to compute the response. In case of a linear filter, it is a weighted sum of pixel values. In case of morphological operations, it is the minimum or maximum values, and so on. The computed response is stored in the destination image at the same location
:math:`(x,y)` . It means that the output image will be of the same size as the input image. Normally, the functions support multi-channel arrays, in which case every channel is processed independently. Therefore, the output image will also have the same number of channels as the input one.
Another common feature of the functions and classes described in this section is that, unlike simple arithmetic functions, they need to extrapolate values of some non-existing pixels. For example, if you want to smooth an image using a Gaussian
:math:`3 \times 3` filter, then, when processing the left-most pixels in each row, you need pixels to the left of them, that is, outside of the image. You can let these pixels be the same as the left-most image pixels ("replicated border" extrapolation method), or assume that all the non-existing pixels are zeros ("constant border" extrapolation method), and so on.
OpenCV enables you to specify the extrapolation method. For details, see the function :ocv:func:`borderInterpolate` and discussion of the ``borderType`` parameter in the section and various functions below. ::
/*
Various border types, image boundaries are denoted with '|'
* BORDER_REPLICATE: aaaaaa|abcdefgh|hhhhhhh
* BORDER_REFLECT: fedcba|abcdefgh|hgfedcb
* BORDER_REFLECT_101: gfedcb|abcdefgh|gfedcba
* BORDER_WRAP: cdefgh|abcdefgh|abcdefg
* BORDER_CONSTANT: iiiiii|abcdefgh|iiiiiii with some specified 'i'
*/
.. note::
* (Python) A complete example illustrating different morphological operations like erode/dilate, open/close, blackhat/tophat ... can be found at opencv_source_code/samples/python2/morphology.py
BaseColumnFilter
----------------
.. ocv:class:: BaseColumnFilter
Base class for filters with single-column kernels. ::
class BaseColumnFilter
{
public:
virtual ~BaseColumnFilter();
// To be overriden by the user.
//
// runs a filtering operation on the set of rows,
// "dstcount + ksize - 1" rows on input,
// "dstcount" rows on output,
// each input and output row has "width" elements
// the filtered rows are written into "dst" buffer.
virtual void operator()(const uchar** src, uchar* dst, int dststep,
int dstcount, int width) = 0;
// resets the filter state (may be needed for IIR filters)
virtual void reset();
int ksize; // the aperture size
int anchor; // position of the anchor point,
// normally not used during the processing
};
The class ``BaseColumnFilter`` is a base class for filtering data using single-column kernels. Filtering does not have to be a linear operation. In general, it could be written as follows:
.. math::
\texttt{dst} (x,y) = F( \texttt{src} [y](x), \; \texttt{src} [y+1](x), \; ..., \; \texttt{src} [y+ \texttt{ksize} -1](x)
where
:math:`F` is a filtering function but, as it is represented as a class, it can produce any side effects, memorize previously processed data, and so on. The class only defines an interface and is not used directly. Instead, there are several functions in OpenCV (and you can add more) that return pointers to the derived classes that implement specific filtering operations. Those pointers are then passed to the
:ocv:class:`FilterEngine` constructor. While the filtering operation interface uses the ``uchar`` type, a particular implementation is not limited to 8-bit data.
.. seealso::
:ocv:class:`BaseRowFilter`,
:ocv:class:`BaseFilter`,
:ocv:class:`FilterEngine`,
:ocv:func:`getColumnSumFilter`,
:ocv:func:`getLinearColumnFilter`,
:ocv:func:`getMorphologyColumnFilter`
BaseFilter
----------
.. ocv:class:: BaseFilter
Base class for 2D image filters. ::
class BaseFilter
{
public:
virtual ~BaseFilter();
// To be overriden by the user.
//
// runs a filtering operation on the set of rows,
// "dstcount + ksize.height - 1" rows on input,
// "dstcount" rows on output,
// each input row has "(width + ksize.width-1)*cn" elements
// each output row has "width*cn" elements.
// the filtered rows are written into "dst" buffer.
virtual void operator()(const uchar** src, uchar* dst, int dststep,
int dstcount, int width, int cn) = 0;
// resets the filter state (may be needed for IIR filters)
virtual void reset();
Size ksize;
Point anchor;
};
The class ``BaseFilter`` is a base class for filtering data using 2D kernels. Filtering does not have to be a linear operation. In general, it could be written as follows:
.. math::
\begin{array}{l} \texttt{dst} (x,y) = F( \texttt{src} [y](x), \; \texttt{src} [y](x+1), \; ..., \; \texttt{src} [y](x+ \texttt{ksize.width} -1), \\ \texttt{src} [y+1](x), \; \texttt{src} [y+1](x+1), \; ..., \; \texttt{src} [y+1](x+ \texttt{ksize.width} -1), \\ ......................................................................................... \\ \texttt{src} [y+ \texttt{ksize.height-1} ](x), \\ \texttt{src} [y+ \texttt{ksize.height-1} ](x+1), \\ ...
\texttt{src} [y+ \texttt{ksize.height-1} ](x+ \texttt{ksize.width} -1))
\end{array}
where
:math:`F` is a filtering function. The class only defines an interface and is not used directly. Instead, there are several functions in OpenCV (and you can add more) that return pointers to the derived classes that implement specific filtering operations. Those pointers are then passed to the
:ocv:class:`FilterEngine` constructor. While the filtering operation interface uses the ``uchar`` type, a particular implementation is not limited to 8-bit data.
.. seealso::
:ocv:class:`BaseColumnFilter`,
:ocv:class:`BaseRowFilter`,
:ocv:class:`FilterEngine`,
:ocv:func:`getLinearFilter`,
:ocv:func:`getMorphologyFilter`
BaseRowFilter
-------------
.. ocv:class:: BaseRowFilter
Base class for filters with single-row kernels. ::
class BaseRowFilter
{
public:
virtual ~BaseRowFilter();
// To be overriden by the user.
//
// runs filtering operation on the single input row
// of "width" element, each element is has "cn" channels.
// the filtered row is written into "dst" buffer.
virtual void operator()(const uchar* src, uchar* dst,
int width, int cn) = 0;
int ksize, anchor;
};
The class ``BaseRowFilter`` is a base class for filtering data using single-row kernels. Filtering does not have to be a linear operation. In general, it could be written as follows:
.. math::
\texttt{dst} (x,y) = F( \texttt{src} [y](x), \; \texttt{src} [y](x+1), \; ..., \; \texttt{src} [y](x+ \texttt{ksize.width} -1))
where
:math:`F` is a filtering function. The class only defines an interface and is not used directly. Instead, there are several functions in OpenCV (and you can add more) that return pointers to the derived classes that implement specific filtering operations. Those pointers are then passed to the
:ocv:class:`FilterEngine` constructor. While the filtering operation interface uses the ``uchar`` type, a particular implementation is not limited to 8-bit data.
.. seealso::
:ocv:class:`BaseColumnFilter`,
:ocv:class:`BaseFilter`,
:ocv:class:`FilterEngine`,
:ocv:func:`getLinearRowFilter`,
:ocv:func:`getMorphologyRowFilter`,
:ocv:func:`getRowSumFilter`
FilterEngine
------------
.. ocv:class:: FilterEngine
Generic image filtering class. ::
class FilterEngine
{
public:
// empty constructor
FilterEngine();
// builds a 2D non-separable filter (!_filter2D.empty()) or
// a separable filter (!_rowFilter.empty() && !_columnFilter.empty())
// the input data type will be "srcType", the output data type will be "dstType",
// the intermediate data type is "bufType".
// _rowBorderType and _columnBorderType determine how the image
// will be extrapolated beyond the image boundaries.
// _borderValue is only used when _rowBorderType and/or _columnBorderType
// == BORDER_CONSTANT
FilterEngine(const Ptr<BaseFilter>& _filter2D,
const Ptr<BaseRowFilter>& _rowFilter,
const Ptr<BaseColumnFilter>& _columnFilter,
int srcType, int dstType, int bufType,
int _rowBorderType=BORDER_REPLICATE,
int _columnBorderType=-1, // use _rowBorderType by default
const Scalar& _borderValue=Scalar());
virtual ~FilterEngine();
// separate function for the engine initialization
void init(const Ptr<BaseFilter>& _filter2D,
const Ptr<BaseRowFilter>& _rowFilter,
const Ptr<BaseColumnFilter>& _columnFilter,
int srcType, int dstType, int bufType,
int _rowBorderType=BORDER_REPLICATE, int _columnBorderType=-1,
const Scalar& _borderValue=Scalar());
// starts filtering of the ROI in an image of size "wholeSize".
// returns the starting y-position in the source image.
virtual int start(Size wholeSize, Rect roi, int maxBufRows=-1);
// alternative form of start that takes the image
// itself instead of "wholeSize". Set isolated to true to pretend that
// there are no real pixels outside of the ROI
// (so that the pixels are extrapolated using the specified border modes)
virtual int start(const Mat& src, const Rect& srcRoi=Rect(0,0,-1,-1),
bool isolated=false, int maxBufRows=-1);
// processes the next portion of the source image,
// "srcCount" rows starting from "src" and
// stores the results in "dst".
// returns the number of produced rows
virtual int proceed(const uchar* src, int srcStep, int srcCount,
uchar* dst, int dstStep);
// higher-level function that processes the whole
// ROI or the whole image with a single call
virtual void apply( const Mat& src, Mat& dst,
const Rect& srcRoi=Rect(0,0,-1,-1),
Point dstOfs=Point(0,0),
bool isolated=false);
bool isSeparable() const { return filter2D.empty(); }
// how many rows from the input image are not yet processed
int remainingInputRows() const;
// how many output rows are not yet produced
int remainingOutputRows() const;
...
// the starting and the ending rows in the source image
int startY, endY;
// pointers to the filters
Ptr<BaseFilter> filter2D;
Ptr<BaseRowFilter> rowFilter;
Ptr<BaseColumnFilter> columnFilter;
};
The class ``FilterEngine`` can be used to apply an arbitrary filtering operation to an image.
It contains all the necessary intermediate buffers, computes extrapolated values
of the "virtual" pixels outside of the image, and so on. Pointers to the initialized ``FilterEngine`` instances
are returned by various ``create*Filter`` functions (see below) and they are used inside high-level functions such as
:ocv:func:`filter2D`,
:ocv:func:`erode`,
:ocv:func:`dilate`, and others. Thus, the class plays a key role in many of OpenCV filtering functions.
This class makes it easier to combine filtering operations with other operations, such as color space conversions, thresholding, arithmetic operations, and others. By combining several operations together you can get much better performance because your data will stay in cache. For example, see below the implementation of the Laplace operator for floating-point images, which is a simplified implementation of
:ocv:func:`Laplacian` : ::
void laplace_f(const Mat& src, Mat& dst)
{
CV_Assert( src.type() == CV_32F );
dst.create(src.size(), src.type());
// get the derivative and smooth kernels for d2I/dx2.
// for d2I/dy2 consider using the same kernels, just swapped
Mat kd, ks;
getSobelKernels( kd, ks, 2, 0, ksize, false, ktype );
// process 10 source rows at once
int DELTA = std::min(10, src.rows);
Ptr<FilterEngine> Fxx = createSeparableLinearFilter(src.type(),
dst.type(), kd, ks, Point(-1,-1), 0, borderType, borderType, Scalar() );
Ptr<FilterEngine> Fyy = createSeparableLinearFilter(src.type(),
dst.type(), ks, kd, Point(-1,-1), 0, borderType, borderType, Scalar() );
int y = Fxx->start(src), dsty = 0, dy = 0;
Fyy->start(src);
const uchar* sptr = src.data + y*src.step;
// allocate the buffers for the spatial image derivatives;
// the buffers need to have more than DELTA rows, because at the
// last iteration the output may take max(kd.rows-1,ks.rows-1)
// rows more than the input.
Mat Ixx( DELTA + kd.rows - 1, src.cols, dst.type() );
Mat Iyy( DELTA + kd.rows - 1, src.cols, dst.type() );
// inside the loop always pass DELTA rows to the filter
// (note that the "proceed" method takes care of possibe overflow, since
// it was given the actual image height in the "start" method)
// on output you can get:
// * < DELTA rows (initial buffer accumulation stage)
// * = DELTA rows (settled state in the middle)
// * > DELTA rows (when the input image is over, generate
// "virtual" rows using the border mode and filter them)
// this variable number of output rows is dy.
// dsty is the current output row.
// sptr is the pointer to the first input row in the portion to process
for( ; dsty < dst.rows; sptr += DELTA*src.step, dsty += dy )
{
Fxx->proceed( sptr, (int)src.step, DELTA, Ixx.data, (int)Ixx.step );
dy = Fyy->proceed( sptr, (int)src.step, DELTA, d2y.data, (int)Iyy.step );
if( dy > 0 )
{
Mat dstripe = dst.rowRange(dsty, dsty + dy);
add(Ixx.rowRange(0, dy), Iyy.rowRange(0, dy), dstripe);
}
}
}
If you do not need that much control of the filtering process, you can simply use the ``FilterEngine::apply`` method. The method is implemented as follows: ::
void FilterEngine::apply(const Mat& src, Mat& dst,
const Rect& srcRoi, Point dstOfs, bool isolated)
{
// check matrix types
CV_Assert( src.type() == srcType && dst.type() == dstType );
// handle the "whole image" case
Rect _srcRoi = srcRoi;
if( _srcRoi == Rect(0,0,-1,-1) )
_srcRoi = Rect(0,0,src.cols,src.rows);
// check if the destination ROI is inside dst.
// and FilterEngine::start will check if the source ROI is inside src.
CV_Assert( dstOfs.x >= 0 && dstOfs.y >= 0 &&
dstOfs.x + _srcRoi.width <= dst.cols &&
dstOfs.y + _srcRoi.height <= dst.rows );
// start filtering
int y = start(src, _srcRoi, isolated);
// process the whole ROI. Note that "endY - startY" is the total number
// of the source rows to process
// (including the possible rows outside of srcRoi but inside the source image)
proceed( src.data + y*src.step,
(int)src.step, endY - startY,
dst.data + dstOfs.y*dst.step +
dstOfs.x*dst.elemSize(), (int)dst.step );
}
Unlike the earlier versions of OpenCV, now the filtering operations fully support the notion of image ROI, that is, pixels outside of the ROI but inside the image can be used in the filtering operations. For example, you can take a ROI of a single pixel and filter it. This will be a filter response at that particular pixel. However, it is possible to emulate the old behavior by passing ``isolated=false`` to ``FilterEngine::start`` or ``FilterEngine::apply`` . You can pass the ROI explicitly to ``FilterEngine::apply`` or construct new matrix headers: ::
// compute dI/dx derivative at src(x,y)
// method 1:
// form a matrix header for a single value
float val1 = 0;
Mat dst1(1,1,CV_32F,&val1);
Ptr<FilterEngine> Fx = createDerivFilter(CV_32F, CV_32F,
1, 0, 3, BORDER_REFLECT_101);
Fx->apply(src, Rect(x,y,1,1), Point(), dst1);
// method 2:
// form a matrix header for a single value
float val2 = 0;
Mat dst2(1,1,CV_32F,&val2);
Mat pix_roi(src, Rect(x,y,1,1));
Sobel(pix_roi, dst2, dst2.type(), 1, 0, 3, 1, 0, BORDER_REFLECT_101);
printf("method1 =
Explore the data types. As it was mentioned in the
:ocv:class:`BaseFilter` description, the specific filters can process data of any type, despite that ``Base*Filter::operator()`` only takes ``uchar`` pointers and no information about the actual types. To make it all work, the following rules are used:
*
In case of separable filtering, ``FilterEngine::rowFilter`` is applied first. It transforms the input image data (of type ``srcType`` ) to the intermediate results stored in the internal buffers (of type ``bufType`` ). Then, these intermediate results are processed as
*single-channel data*
with ``FilterEngine::columnFilter`` and stored in the output image (of type ``dstType`` ). Thus, the input type for ``rowFilter`` is ``srcType`` and the output type is ``bufType`` . The input type for ``columnFilter`` is ``CV_MAT_DEPTH(bufType)`` and the output type is ``CV_MAT_DEPTH(dstType)`` .
*
In case of non-separable filtering, ``bufType`` must be the same as ``srcType`` . The source data is copied to the temporary buffer, if needed, and then just passed to ``FilterEngine::filter2D`` . That is, the input type for ``filter2D`` is ``srcType`` (= ``bufType`` ) and the output type is ``dstType`` .
.. seealso::
:ocv:class:`BaseColumnFilter`,
:ocv:class:`BaseFilter`,
:ocv:class:`BaseRowFilter`,
:ocv:func:`createBoxFilter`,
:ocv:func:`createDerivFilter`,
:ocv:func:`createGaussianFilter`,
:ocv:func:`createLinearFilter`,
:ocv:func:`createMorphologyFilter`,
:ocv:func:`createSeparableLinearFilter`
bilateralFilter
-------------------
Applies the bilateral filter to an image.
.. ocv:function:: void bilateralFilter( InputArray src, OutputArray dst, int d, double sigmaColor, double sigmaSpace, int borderType=BORDER_DEFAULT )
.. ocv:pyfunction:: cv2.bilateralFilter(src, d, sigmaColor, sigmaSpace[, dst[, borderType]]) -> dst
:param src: Source 8-bit or floating-point, 1-channel or 3-channel image.
:param dst: Destination image of the same size and type as ``src`` .
:param d: Diameter of each pixel neighborhood that is used during filtering. If it is non-positive, it is computed from ``sigmaSpace`` .
:param sigmaColor: Filter sigma in the color space. A larger value of the parameter means that farther colors within the pixel neighborhood (see ``sigmaSpace`` ) will be mixed together, resulting in larger areas of semi-equal color.
:param sigmaSpace: Filter sigma in the coordinate space. A larger value of the parameter means that farther pixels will influence each other as long as their colors are close enough (see ``sigmaColor`` ). When ``d>0`` , it specifies the neighborhood size regardless of ``sigmaSpace`` . Otherwise, ``d`` is proportional to ``sigmaSpace`` .
The function applies bilateral filtering to the input image, as described in
http://www.dai.ed.ac.uk/CVonline/LOCAL\_COPIES/MANDUCHI1/Bilateral\_Filtering.html
``bilateralFilter`` can reduce unwanted noise very well while keeping edges fairly sharp. However, it is very slow compared to most filters.
*Sigma values*: For simplicity, you can set the 2 sigma values to be the same. If they are small (< 10), the filter will not have much effect, whereas if they are large (> 150), they will have a very strong effect, making the image look "cartoonish".
*Filter size*: Large filters (d > 5) are very slow, so it is recommended to use d=5 for real-time applications, and perhaps d=9 for offline applications that need heavy noise filtering.
This filter does not work inplace.
adaptiveBilateralFilter
-----------------------
Applies the adaptive bilateral filter to an image.
.. ocv:function:: void adaptiveBilateralFilter( InputArray src, OutputArray dst, Size ksize, double sigmaSpace, double maxSigmaColor = 20.0, Point anchor=Point(-1, -1), int borderType=BORDER_DEFAULT )
.. ocv:pyfunction:: cv2.adaptiveBilateralFilter(src, ksize, sigmaSpace[, dst[, anchor[, borderType]]]) -> dst
:param src: The source image
:param dst: The destination image; will have the same size and the same type as src
:param ksize: The kernel size. This is the neighborhood where the local variance will be calculated, and where pixels will contribute (in a weighted manner).
:param sigmaSpace: Filter sigma in the coordinate space. Larger value of the parameter means that farther pixels will influence each other (as long as their colors are close enough; see sigmaColor). Then d>0, it specifies the neighborhood size regardless of sigmaSpace, otherwise d is proportional to sigmaSpace.
:param maxSigmaColor: Maximum allowed sigma color (will clamp the value calculated in the ksize neighborhood. Larger value of the parameter means that more dissimilar pixels will influence each other (as long as their colors are close enough; see sigmaColor). Then d>0, it specifies the neighborhood size regardless of sigmaSpace, otherwise d is proportional to sigmaSpace.
:param borderType: Pixel extrapolation method.
A main part of our strategy will be to load each raw pixel once, and reuse it to calculate all pixels in the output (filtered) image that need this pixel value. The math of the filter is that of the usual bilateral filter, except that the sigma color is calculated in the neighborhood, and clamped by the optional input value.
blur
----
Blurs an image using the normalized box filter.
.. ocv:function:: void blur( InputArray src, OutputArray dst, Size ksize, Point anchor=Point(-1,-1), int borderType=BORDER_DEFAULT )
.. ocv:pyfunction:: cv2.blur(src, ksize[, dst[, anchor[, borderType]]]) -> dst
:param src: input image; it can have any number of channels, which are processed independently, but the depth should be ``CV_8U``, ``CV_16U``, ``CV_16S``, ``CV_32F`` or ``CV_64F``.
:param dst: output image of the same size and type as ``src``.
:param ksize: blurring kernel size.
:param anchor: anchor point; default value ``Point(-1,-1)`` means that the anchor is at the kernel center.
:param borderType: border mode used to extrapolate pixels outside of the image.
The function smoothes an image using the kernel:
.. math::
\texttt{K} = \frac{1}{\texttt{ksize.width*ksize.height}} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \hdotsfor{6} \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \end{bmatrix}
The call ``blur(src, dst, ksize, anchor, borderType)`` is equivalent to ``boxFilter(src, dst, src.type(), anchor, true, borderType)`` .
.. seealso::
:ocv:func:`boxFilter`,
:ocv:func:`bilateralFilter`,
:ocv:func:`GaussianBlur`,
:ocv:func:`medianBlur`
borderInterpolate
-----------------
Computes the source location of an extrapolated pixel.
.. ocv:function:: int borderInterpolate( int p, int len, int borderType )
.. ocv:pyfunction:: cv2.borderInterpolate(p, len, borderType) -> retval
:param p: 0-based coordinate of the extrapolated pixel along one of the axes, likely <0 or >= ``len`` .
:param len: Length of the array along the corresponding axis.
:param borderType: Border type, one of the ``BORDER_*`` , except for ``BORDER_TRANSPARENT`` and ``BORDER_ISOLATED`` . When ``borderType==BORDER_CONSTANT`` , the function always returns -1, regardless of ``p`` and ``len`` .
The function computes and returns the coordinate of a donor pixel corresponding to the specified extrapolated pixel when using the specified extrapolation border mode. For example, if you use ``BORDER_WRAP`` mode in the horizontal direction, ``BORDER_REFLECT_101`` in the vertical direction and want to compute value of the "virtual" pixel ``Point(-5, 100)`` in a floating-point image ``img`` , it looks like: ::
float val = img.at<float>(borderInterpolate(100, img.rows, BORDER_REFLECT_101),
borderInterpolate(-5, img.cols, BORDER_WRAP));
Normally, the function is not called directly. It is used inside
:ocv:class:`FilterEngine` and
:ocv:func:`copyMakeBorder` to compute tables for quick extrapolation.
.. seealso::
:ocv:class:`FilterEngine`,
:ocv:func:`copyMakeBorder`
boxFilter
---------
Blurs an image using the box filter.
.. ocv:function:: void boxFilter( InputArray src, OutputArray dst, int ddepth, Size ksize, Point anchor=Point(-1,-1), bool normalize=true, int borderType=BORDER_DEFAULT )
.. ocv:pyfunction:: cv2.boxFilter(src, ddepth, ksize[, dst[, anchor[, normalize[, borderType]]]]) -> dst
:param src: input image.
:param dst: output image of the same size and type as ``src``.
:param ddepth: the output image depth (-1 to use ``src.depth()``).
:param ksize: blurring kernel size.
:param anchor: anchor point; default value ``Point(-1,-1)`` means that the anchor is at the kernel center.
:param normalize: flag, specifying whether the kernel is normalized by its area or not.
:param borderType: border mode used to extrapolate pixels outside of the image.
The function smoothes an image using the kernel:
.. math::
\texttt{K} = \alpha \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \hdotsfor{6} \\ 1 & 1 & 1 & \cdots & 1 & 1 \end{bmatrix}
where
.. math::
\alpha = \fork{\frac{1}{\texttt{ksize.width*ksize.height}}}{when \texttt{normalize=true}}{1}{otherwise}
Unnormalized box filter is useful for computing various integral characteristics over each pixel neighborhood, such as covariance matrices of image derivatives (used in dense optical flow algorithms, and so on). If you need to compute pixel sums over variable-size windows, use :ocv:func:`integral` .
.. seealso::
:ocv:func:`blur`,
:ocv:func:`bilateralFilter`,
:ocv:func:`GaussianBlur`,
:ocv:func:`medianBlur`,
:ocv:func:`integral`
buildPyramid
------------
Constructs the Gaussian pyramid for an image.
.. ocv:function:: void buildPyramid( InputArray src, OutputArrayOfArrays dst, int maxlevel, int borderType=BORDER_DEFAULT )
:param src: Source image. Check :ocv:func:`pyrDown` for the list of supported types.
:param dst: Destination vector of ``maxlevel+1`` images of the same type as ``src`` . ``dst[0]`` will be the same as ``src`` . ``dst[1]`` is the next pyramid layer, a smoothed and down-sized ``src`` , and so on.
:param maxlevel: 0-based index of the last (the smallest) pyramid layer. It must be non-negative.
The function constructs a vector of images and builds the Gaussian pyramid by recursively applying
:ocv:func:`pyrDown` to the previously built pyramid layers, starting from ``dst[0]==src`` .
copyMakeBorder
--------------
Forms a border around an image.
.. ocv:function:: void copyMakeBorder( InputArray src, OutputArray dst, int top, int bottom, int left, int right, int borderType, const Scalar& value=Scalar() )
.. ocv:pyfunction:: cv2.copyMakeBorder(src, top, bottom, left, right, borderType[, dst[, value]]) -> dst
.. ocv:cfunction:: void cvCopyMakeBorder( const CvArr* src, CvArr* dst, CvPoint offset, int bordertype, CvScalar value=cvScalarAll(0) )
.. ocv:pyoldfunction:: cv.CopyMakeBorder(src, dst, offset, bordertype, value=(0, 0, 0, 0))-> None
:param src: Source image.
:param dst: Destination image of the same type as ``src`` and the size ``Size(src.cols+left+right, src.rows+top+bottom)`` .
:param top:
:param bottom:
:param left:
:param right: Parameter specifying how many pixels in each direction from the source image rectangle to extrapolate. For example, ``top=1, bottom=1, left=1, right=1`` mean that 1 pixel-wide border needs to be built.
:param borderType: Border type. See :ocv:func:`borderInterpolate` for details.
:param value: Border value if ``borderType==BORDER_CONSTANT`` .
The function copies the source image into the middle of the destination image. The areas to the left, to the right, above and below the copied source image will be filled with extrapolated pixels. This is not what
:ocv:class:`FilterEngine` or filtering functions based on it do (they extrapolate pixels on-fly), but what other more complex functions, including your own, may do to simplify image boundary handling.
The function supports the mode when ``src`` is already in the middle of ``dst`` . In this case, the function does not copy ``src`` itself but simply constructs the border, for example: ::
// let border be the same in all directions
int border=2;
// constructs a larger image to fit both the image and the border
Mat gray_buf(rgb.rows + border*2, rgb.cols + border*2, rgb.depth());
// select the middle part of it w/o copying data
Mat gray(gray_canvas, Rect(border, border, rgb.cols, rgb.rows));
// convert image from RGB to grayscale
cvtColor(rgb, gray, CV_RGB2GRAY);
// form a border in-place
copyMakeBorder(gray, gray_buf, border, border,
border, border, BORDER_REPLICATE);
// now do some custom filtering ...
...
.. note::
When the source image is a part (ROI) of a bigger image, the function will try to use the pixels outside of the ROI to form a border. To disable this feature and always do extrapolation, as if ``src`` was not a ROI, use ``borderType | BORDER_ISOLATED``.
.. seealso::
:ocv:func:`borderInterpolate`
createBoxFilter
-------------------
Returns a box filter engine.
.. ocv:function:: Ptr<FilterEngine> createBoxFilter( int srcType, int dstType, Size ksize, Point anchor=Point(-1,-1), bool normalize=true, int borderType=BORDER_DEFAULT)
.. ocv:function:: Ptr<BaseRowFilter> getRowSumFilter(int srcType, int sumType, int ksize, int anchor=-1)
.. ocv:function:: Ptr<BaseColumnFilter> getColumnSumFilter(int sumType, int dstType, int ksize, int anchor=-1, double scale=1)
:param srcType: Source image type.
:param sumType: Intermediate horizontal sum type that must have as many channels as ``srcType`` .
:param dstType: Destination image type that must have as many channels as ``srcType`` .
:param ksize: Aperture size.
:param anchor: Anchor position with the kernel. Negative values mean that the anchor is at the kernel center.
:param normalize: Flag specifying whether the sums are normalized or not. See :ocv:func:`boxFilter` for details.
:param scale: Another way to specify normalization in lower-level ``getColumnSumFilter`` .
:param borderType: Border type to use. See :ocv:func:`borderInterpolate` .
The function is a convenience function that retrieves the horizontal sum primitive filter with
:ocv:func:`getRowSumFilter` , vertical sum filter with
:ocv:func:`getColumnSumFilter` , constructs new
:ocv:class:`FilterEngine` , and passes both of the primitive filters there. The constructed filter engine can be used for image filtering with normalized or unnormalized box filter.
The function itself is used by
:ocv:func:`blur` and
:ocv:func:`boxFilter` .
.. seealso::
:ocv:class:`FilterEngine`,
:ocv:func:`blur`,
:ocv:func:`boxFilter`
createDerivFilter
---------------------
Returns an engine for computing image derivatives.
.. ocv:function:: Ptr<FilterEngine> createDerivFilter( int srcType, int dstType, int dx, int dy, int ksize, int borderType=BORDER_DEFAULT )
:param srcType: Source image type.
:param dstType: Destination image type that must have as many channels as ``srcType`` .
:param dx: Derivative order in respect of x.
:param dy: Derivative order in respect of y.
:param ksize: Aperture size See :ocv:func:`getDerivKernels` .
:param borderType: Border type to use. See :ocv:func:`borderInterpolate` .
The function :ocv:func:`createDerivFilter` is a small convenience function that retrieves linear filter coefficients for computing image derivatives using
:ocv:func:`getDerivKernels` and then creates a separable linear filter with
:ocv:func:`createSeparableLinearFilter` . The function is used by
:ocv:func:`Sobel` and
:ocv:func:`Scharr` .
.. seealso::
:ocv:func:`createSeparableLinearFilter`,
:ocv:func:`getDerivKernels`,
:ocv:func:`Scharr`,
:ocv:func:`Sobel`
createGaussianFilter
------------------------
Returns an engine for smoothing images with the Gaussian filter.
.. ocv:function:: Ptr<FilterEngine> createGaussianFilter( int type, Size ksize, double sigma1, double sigma2=0, int borderType=BORDER_DEFAULT )
:param type: Source and destination image type.
:param ksize: Aperture size. See :ocv:func:`getGaussianKernel` .
:param sigma1: Gaussian sigma in the horizontal direction. See :ocv:func:`getGaussianKernel` .
:param sigma2: Gaussian sigma in the vertical direction. If 0, then :math:`\texttt{sigma2}\leftarrow\texttt{sigma1}` .
:param borderType: Border type to use. See :ocv:func:`borderInterpolate` .
The function :ocv:func:`createGaussianFilter` computes Gaussian kernel coefficients and then returns a separable linear filter for that kernel. The function is used by
:ocv:func:`GaussianBlur` . Note that while the function takes just one data type, both for input and output, you can pass this limitation by calling
:ocv:func:`getGaussianKernel` and then
:ocv:func:`createSeparableLinearFilter` directly.
.. seealso::
:ocv:func:`createSeparableLinearFilter`,
:ocv:func:`getGaussianKernel`,
:ocv:func:`GaussianBlur`
createLinearFilter
----------------------
Creates a non-separable linear filter engine.
.. ocv:function:: Ptr<FilterEngine> createLinearFilter( int srcType, int dstType, InputArray kernel, Point _anchor=Point(-1,-1), double delta=0, int rowBorderType=BORDER_DEFAULT, int columnBorderType=-1, const Scalar& borderValue=Scalar() )
.. ocv:function:: Ptr<BaseFilter> getLinearFilter(int srcType, int dstType, InputArray kernel, Point anchor=Point(-1,-1), double delta=0, int bits=0)
:param srcType: Source image type.
:param dstType: Destination image type that must have as many channels as ``srcType`` .
:param kernel: 2D array of filter coefficients.
:param anchor: Anchor point within the kernel. Special value ``Point(-1,-1)`` means that the anchor is at the kernel center.
:param delta: Value added to the filtered results before storing them.
:param bits: Number of the fractional bits. The parameter is used when the kernel is an integer matrix representing fixed-point filter coefficients.
:param rowBorderType: Pixel extrapolation method in the vertical direction. For details, see :ocv:func:`borderInterpolate`.
:param columnBorderType: Pixel extrapolation method in the horizontal direction.
:param borderValue: Border value used in case of a constant border.
The function returns a pointer to a 2D linear filter for the specified kernel, the source array type, and the destination array type. The function is a higher-level function that calls ``getLinearFilter`` and passes the retrieved 2D filter to the
:ocv:class:`FilterEngine` constructor.
.. seealso::
:ocv:func:`createSeparableLinearFilter`,
:ocv:class:`FilterEngine`,
:ocv:func:`filter2D`
createMorphologyFilter
--------------------------
Creates an engine for non-separable morphological operations.
.. ocv:function:: Ptr<FilterEngine> createMorphologyFilter( int op, int type, InputArray kernel, Point anchor=Point(-1,-1), int rowBorderType=BORDER_CONSTANT, int columnBorderType=-1, const Scalar& borderValue=morphologyDefaultBorderValue() )
.. ocv:function:: Ptr<BaseFilter> getMorphologyFilter( int op, int type, InputArray kernel, Point anchor=Point(-1,-1) )
.. ocv:function:: Ptr<BaseRowFilter> getMorphologyRowFilter( int op, int type, int ksize, int anchor=-1 )
.. ocv:function:: Ptr<BaseColumnFilter> getMorphologyColumnFilter( int op, int type, int ksize, int anchor=-1 )
.. ocv:function:: Scalar morphologyDefaultBorderValue()
:param op: Morphology operation ID, ``MORPH_ERODE`` or ``MORPH_DILATE`` .
:param type: Input/output image type. The number of channels can be arbitrary. The depth should be one of ``CV_8U``, ``CV_16U``, ``CV_16S``, ``CV_32F` or ``CV_64F``.
:param kernel: 2D 8-bit structuring element for a morphological operation. Non-zero elements indicate the pixels that belong to the element.
:param ksize: Horizontal or vertical structuring element size for separable morphological operations.
:param anchor: Anchor position within the structuring element. Negative values mean that the anchor is at the kernel center.
:param rowBorderType: Pixel extrapolation method in the vertical direction. For details, see :ocv:func:`borderInterpolate`.
:param columnBorderType: Pixel extrapolation method in the horizontal direction.
:param borderValue: Border value in case of a constant border. The default value, \ ``morphologyDefaultBorderValue`` , has a special meaning. It is transformed :math:`+\inf` for the erosion and to :math:`-\inf` for the dilation, which means that the minimum (maximum) is effectively computed only over the pixels that are inside the image.
The functions construct primitive morphological filtering operations or a filter engine based on them. Normally it is enough to use
:ocv:func:`createMorphologyFilter` or even higher-level
:ocv:func:`erode`,
:ocv:func:`dilate` , or
:ocv:func:`morphologyEx` .
Note that
:ocv:func:`createMorphologyFilter` analyzes the structuring element shape and builds a separable morphological filter engine when the structuring element is square.
.. seealso::
:ocv:func:`erode`,
:ocv:func:`dilate`,
:ocv:func:`morphologyEx`,
:ocv:class:`FilterEngine`
createSeparableLinearFilter
-------------------------------
Creates an engine for a separable linear filter.
.. ocv:function:: Ptr<FilterEngine> createSeparableLinearFilter( int srcType, int dstType, InputArray rowKernel, InputArray columnKernel, Point anchor=Point(-1,-1), double delta=0, int rowBorderType=BORDER_DEFAULT, int columnBorderType=-1, const Scalar& borderValue=Scalar() )
.. ocv:function:: Ptr<BaseColumnFilter> getLinearColumnFilter( int bufType, int dstType, InputArray kernel, int anchor, int symmetryType, double delta=0, int bits=0 )
.. ocv:function:: Ptr<BaseRowFilter> getLinearRowFilter( int srcType, int bufType, InputArray kernel, int anchor, int symmetryType )
:param srcType: Source array type.
:param dstType: Destination image type that must have as many channels as ``srcType`` .
:param bufType: Intermediate buffer type that must have as many channels as ``srcType`` .
:param rowKernel: Coefficients for filtering each row.
:param columnKernel: Coefficients for filtering each column.
:param anchor: Anchor position within the kernel. Negative values mean that anchor is positioned at the aperture center.
:param delta: Value added to the filtered results before storing them.
:param bits: Number of the fractional bits. The parameter is used when the kernel is an integer matrix representing fixed-point filter coefficients.
:param rowBorderType: Pixel extrapolation method in the vertical direction. For details, see :ocv:func:`borderInterpolate`.
:param columnBorderType: Pixel extrapolation method in the horizontal direction.
:param borderValue: Border value used in case of a constant border.
:param symmetryType: Type of each row and column kernel. See :ocv:func:`getKernelType` .
The functions construct primitive separable linear filtering operations or a filter engine based on them. Normally it is enough to use
:ocv:func:`createSeparableLinearFilter` or even higher-level
:ocv:func:`sepFilter2D` . The function
:ocv:func:`createMorphologyFilter` is smart enough to figure out the ``symmetryType`` for each of the two kernels, the intermediate ``bufType`` and, if filtering can be done in integer arithmetics, the number of ``bits`` to encode the filter coefficients. If it does not work for you, it is possible to call ``getLinearColumnFilter``,``getLinearRowFilter`` directly and then pass them to the
:ocv:class:`FilterEngine` constructor.
.. seealso::
:ocv:func:`sepFilter2D`,
:ocv:func:`createLinearFilter`,
:ocv:class:`FilterEngine`,
:ocv:func:`getKernelType`
dilate
------
Dilates an image by using a specific structuring element.
.. ocv:function:: void dilate( InputArray src, OutputArray dst, InputArray kernel, Point anchor=Point(-1,-1), int iterations=1, int borderType=BORDER_CONSTANT, const Scalar& borderValue=morphologyDefaultBorderValue() )
.. ocv:pyfunction:: cv2.dilate(src, kernel[, dst[, anchor[, iterations[, borderType[, borderValue]]]]]) -> dst
.. ocv:cfunction:: void cvDilate( const CvArr* src, CvArr* dst, IplConvKernel* element=NULL, int iterations=1 )
.. ocv:pyoldfunction:: cv.Dilate(src, dst, element=None, iterations=1)-> None
:param src: input image; the number of channels can be arbitrary, but the depth should be one of ``CV_8U``, ``CV_16U``, ``CV_16S``, ``CV_32F` or ``CV_64F``.
:param dst: output image of the same size and type as ``src``.
:param element: structuring element used for dilation; if ``element=Mat()`` , a ``3 x 3`` rectangular structuring element is used.
:param anchor: position of the anchor within the element; default value ``(-1, -1)`` means that the anchor is at the element center.
:param iterations: number of times dilation is applied.
:param borderType: pixel extrapolation method (see :ocv:func:`borderInterpolate` for details).
:param borderValue: border value in case of a constant border (see :ocv:func:`createMorphologyFilter` for details).
The function dilates the source image using the specified structuring element that determines the shape of a pixel neighborhood over which the maximum is taken:
.. math::
\texttt{dst} (x,y) = \max _{(x',y'): \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')
The function supports the in-place mode. Dilation can be applied several ( ``iterations`` ) times. In case of multi-channel images, each channel is processed independently.
.. seealso::
:ocv:func:`erode`,
:ocv:func:`morphologyEx`,
:ocv:func:`createMorphologyFilter`
.. note::
* An example using the morphological dilate operation can be found at opencv_source_code/samples/cpp/morphology2.cpp
erode
-----
Erodes an image by using a specific structuring element.
.. ocv:function:: void erode( InputArray src, OutputArray dst, InputArray kernel, Point anchor=Point(-1,-1), int iterations=1, int borderType=BORDER_CONSTANT, const Scalar& borderValue=morphologyDefaultBorderValue() )
.. ocv:pyfunction:: cv2.erode(src, kernel[, dst[, anchor[, iterations[, borderType[, borderValue]]]]]) -> dst
.. ocv:cfunction:: void cvErode( const CvArr* src, CvArr* dst, IplConvKernel* element=NULL, int iterations=1)
.. ocv:pyoldfunction:: cv.Erode(src, dst, element=None, iterations=1)-> None
:param src: input image; the number of channels can be arbitrary, but the depth should be one of ``CV_8U``, ``CV_16U``, ``CV_16S``, ``CV_32F` or ``CV_64F``.
:param dst: output image of the same size and type as ``src``.
:param element: structuring element used for erosion; if ``element=Mat()`` , a ``3 x 3`` rectangular structuring element is used.
:param anchor: position of the anchor within the element; default value ``(-1, -1)`` means that the anchor is at the element center.
:param iterations: number of times erosion is applied.
:param borderType: pixel extrapolation method (see :ocv:func:`borderInterpolate` for details).
:param borderValue: border value in case of a constant border (see :ocv:func:`createMorphologyFilter` for details).
The function erodes the source image using the specified structuring element that determines the shape of a pixel neighborhood over which the minimum is taken:
.. math::
\texttt{dst} (x,y) = \min _{(x',y'): \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')
The function supports the in-place mode. Erosion can be applied several ( ``iterations`` ) times. In case of multi-channel images, each channel is processed independently.
.. seealso::
:ocv:func:`dilate`,
:ocv:func:`morphologyEx`,
:ocv:func:`createMorphologyFilter`
.. note::
* An example using the morphological erode operation can be found at opencv_source_code/samples/cpp/morphology2.cpp
filter2D
--------
Convolves an image with the kernel.
.. ocv:function:: void filter2D( InputArray src, OutputArray dst, int ddepth, InputArray kernel, Point anchor=Point(-1,-1), double delta=0, int borderType=BORDER_DEFAULT )
.. ocv:pyfunction:: cv2.filter2D(src, ddepth, kernel[, dst[, anchor[, delta[, borderType]]]]) -> dst
.. ocv:cfunction:: void cvFilter2D( const CvArr* src, CvArr* dst, const CvMat* kernel, CvPoint anchor=cvPoint(-1,-1) )
.. ocv:pyoldfunction:: cv.Filter2D(src, dst, kernel, anchor=(-1, -1))-> None
:param src: input image.
:param dst: output image of the same size and the same number of channels as ``src``.
:param ddepth: desired depth of the destination image; if it is negative, it will be the same as ``src.depth()``; the following combinations of ``src.depth()`` and ``ddepth`` are supported:
* ``src.depth()`` = ``CV_8U``, ``ddepth`` = -1/``CV_16S``/``CV_32F``/``CV_64F``
* ``src.depth()`` = ``CV_16U``/``CV_16S``, ``ddepth`` = -1/``CV_32F``/``CV_64F``
* ``src.depth()`` = ``CV_32F``, ``ddepth`` = -1/``CV_32F``/``CV_64F``
* ``src.depth()`` = ``CV_64F``, ``ddepth`` = -1/``CV_64F``
when ``ddepth=-1``, the output image will have the same depth as the source.
:param kernel: convolution kernel (or rather a correlation kernel), a single-channel floating point matrix; if you want to apply different kernels to different channels, split the image into separate color planes using :ocv:func:`split` and process them individually.
:param anchor: anchor of the kernel that indicates the relative position of a filtered point within the kernel; the anchor should lie within the kernel; default value (-1,-1) means that the anchor is at the kernel center.
:param delta: optional value added to the filtered pixels before storing them in ``dst``.
:param borderType: pixel extrapolation method (see :ocv:func:`borderInterpolate` for details).
The function applies an arbitrary linear filter to an image. In-place operation is supported. When the aperture is partially outside the image, the function interpolates outlier pixel values according to the specified border mode.
The function does actually compute correlation, not the convolution:
.. math::
\texttt{dst} (x,y) = \sum _{ \stackrel{0\leq x' < \texttt{kernel.cols},}{0\leq y' < \texttt{kernel.rows}} } \texttt{kernel} (x',y')* \texttt{src} (x+x'- \texttt{anchor.x} ,y+y'- \texttt{anchor.y} )
That is, the kernel is not mirrored around the anchor point. If you need a real convolution, flip the kernel using
:ocv:func:`flip` and set the new anchor to ``(kernel.cols - anchor.x - 1, kernel.rows - anchor.y - 1)`` .
The function uses the DFT-based algorithm in case of sufficiently large kernels (~``11 x 11`` or larger) and the direct algorithm (that uses the engine retrieved by :ocv:func:`createLinearFilter` ) for small kernels.
.. seealso::
:ocv:func:`sepFilter2D`,
:ocv:func:`createLinearFilter`,
:ocv:func:`dft`,
:ocv:func:`matchTemplate`
GaussianBlur
------------
Blurs an image using a Gaussian filter.
.. ocv:function:: void GaussianBlur( InputArray src, OutputArray dst, Size ksize, double sigmaX, double sigmaY=0, int borderType=BORDER_DEFAULT )
.. ocv:pyfunction:: cv2.GaussianBlur(src, ksize, sigmaX[, dst[, sigmaY[, borderType]]]) -> dst
:param src: input image; the image can have any number of channels, which are processed independently, but the depth should be ``CV_8U``, ``CV_16U``, ``CV_16S``, ``CV_32F`` or ``CV_64F``.
:param dst: output image of the same size and type as ``src``.
:param ksize: Gaussian kernel size. ``ksize.width`` and ``ksize.height`` can differ but they both must be positive and odd. Or, they can be zero's and then they are computed from ``sigma*`` .
:param sigmaX: Gaussian kernel standard deviation in X direction.
:param sigmaY: Gaussian kernel standard deviation in Y direction; if ``sigmaY`` is zero, it is set to be equal to ``sigmaX``, if both sigmas are zeros, they are computed from ``ksize.width`` and ``ksize.height`` , respectively (see :ocv:func:`getGaussianKernel` for details); to fully control the result regardless of possible future modifications of all this semantics, it is recommended to specify all of ``ksize``, ``sigmaX``, and ``sigmaY``.
:param borderType: pixel extrapolation method (see :ocv:func:`borderInterpolate` for details).
The function convolves the source image with the specified Gaussian kernel. In-place filtering is supported.
.. seealso::
:ocv:func:`sepFilter2D`,
:ocv:func:`filter2D`,
:ocv:func:`blur`,
:ocv:func:`boxFilter`,
:ocv:func:`bilateralFilter`,
:ocv:func:`medianBlur`
getDerivKernels
---------------
Returns filter coefficients for computing spatial image derivatives.
.. ocv:function:: void getDerivKernels( OutputArray kx, OutputArray ky, int dx, int dy, int ksize, bool normalize=false, int ktype=CV_32F )
.. ocv:pyfunction:: cv2.getDerivKernels(dx, dy, ksize[, kx[, ky[, normalize[, ktype]]]]) -> kx, ky
:param kx: Output matrix of row filter coefficients. It has the type ``ktype`` .
:param ky: Output matrix of column filter coefficients. It has the type ``ktype`` .
:param dx: Derivative order in respect of x.
:param dy: Derivative order in respect of y.
:param ksize: Aperture size. It can be ``CV_SCHARR`` , 1, 3, 5, or 7.
:param normalize: Flag indicating whether to normalize (scale down) the filter coefficients or not. Theoretically, the coefficients should have the denominator :math:`=2^{ksize*2-dx-dy-2}` . If you are going to filter floating-point images, you are likely to use the normalized kernels. But if you compute derivatives of an 8-bit image, store the results in a 16-bit image, and wish to preserve all the fractional bits, you may want to set ``normalize=false`` .
:param ktype: Type of filter coefficients. It can be ``CV_32f`` or ``CV_64F`` .
The function computes and returns the filter coefficients for spatial image derivatives. When ``ksize=CV_SCHARR`` , the Scharr
:math:`3 \times 3` kernels are generated (see
:ocv:func:`Scharr` ). Otherwise, Sobel kernels are generated (see
:ocv:func:`Sobel` ). The filters are normally passed to
:ocv:func:`sepFilter2D` or to
:ocv:func:`createSeparableLinearFilter` .
getGaussianKernel
-----------------
Returns Gaussian filter coefficients.
.. ocv:function:: Mat getGaussianKernel( int ksize, double sigma, int ktype=CV_64F )
.. ocv:pyfunction:: cv2.getGaussianKernel(ksize, sigma[, ktype]) -> retval
:param ksize: Aperture size. It should be odd ( :math:`\texttt{ksize} \mod 2 = 1` ) and positive.
:param sigma: Gaussian standard deviation. If it is non-positive, it is computed from ``ksize`` as \ ``sigma = 0.3*((ksize-1)*0.5 - 1) + 0.8`` .
:param ktype: Type of filter coefficients. It can be ``CV_32f`` or ``CV_64F`` .
The function computes and returns the
:math:`\texttt{ksize} \times 1` matrix of Gaussian filter coefficients:
.. math::
G_i= \alpha *e^{-(i-( \texttt{ksize} -1)/2)^2/(2* \texttt{sigma} )^2},
where
:math:`i=0..\texttt{ksize}-1` and
:math:`\alpha` is the scale factor chosen so that
:math:`\sum_i G_i=1`.
Two of such generated kernels can be passed to
:ocv:func:`sepFilter2D` or to
:ocv:func:`createSeparableLinearFilter`. Those functions automatically recognize smoothing kernels (a symmetrical kernel with sum of weights equal to 1) and handle them accordingly. You may also use the higher-level
:ocv:func:`GaussianBlur`.
.. seealso::
:ocv:func:`sepFilter2D`,
:ocv:func:`createSeparableLinearFilter`,
:ocv:func:`getDerivKernels`,
:ocv:func:`getStructuringElement`,
:ocv:func:`GaussianBlur`
getKernelType
-------------
Returns the kernel type.
.. ocv:function:: int getKernelType(InputArray kernel, Point anchor)
:param kernel: 1D array of the kernel coefficients to analyze.
:param anchor: Anchor position within the kernel.
The function analyzes the kernel coefficients and returns the corresponding kernel type:
* **KERNEL_GENERAL** The kernel is generic. It is used when there is no any type of symmetry or other properties.
* **KERNEL_SYMMETRICAL** The kernel is symmetrical: :math:`\texttt{kernel}_i == \texttt{kernel}_{ksize-i-1}` , and the anchor is at the center.
* **KERNEL_ASYMMETRICAL** The kernel is asymmetrical: :math:`\texttt{kernel}_i == -\texttt{kernel}_{ksize-i-1}` , and the anchor is at the center.
* **KERNEL_SMOOTH** All the kernel elements are non-negative and summed to 1. For example, the Gaussian kernel is both smooth kernel and symmetrical, so the function returns ``KERNEL_SMOOTH | KERNEL_SYMMETRICAL`` .
* **KERNEL_INTEGER** All the kernel coefficients are integer numbers. This flag can be combined with ``KERNEL_SYMMETRICAL`` or ``KERNEL_ASYMMETRICAL`` .
getStructuringElement
---------------------
Returns a structuring element of the specified size and shape for morphological operations.
.. ocv:function:: Mat getStructuringElement(int shape, Size ksize, Point anchor=Point(-1,-1))
.. ocv:pyfunction:: cv2.getStructuringElement(shape, ksize[, anchor]) -> retval
.. ocv:cfunction:: IplConvKernel* cvCreateStructuringElementEx( int cols, int rows, int anchor_x, int anchor_y, int shape, int* values=NULL )
.. ocv:pyoldfunction:: cv.CreateStructuringElementEx(cols, rows, anchorX, anchorY, shape, values=None)-> kernel
:param shape: Element shape that could be one of the following:
* **MORPH_RECT** - a rectangular structuring element:
.. math::
E_{ij}=1
* **MORPH_ELLIPSE** - an elliptic structuring element, that is, a filled ellipse inscribed into the rectangle ``Rect(0, 0, esize.width, 0.esize.height)``
* **MORPH_CROSS** - a cross-shaped structuring element:
.. math::
E_{ij} = \fork{1}{if i=\texttt{anchor.y} or j=\texttt{anchor.x}}{0}{otherwise}
* **CV_SHAPE_CUSTOM** - custom structuring element (OpenCV 1.x API)
:param ksize: Size of the structuring element.
:param cols: Width of the structuring element
:param rows: Height of the structuring element
:param anchor: Anchor position within the element. The default value :math:`(-1, -1)` means that the anchor is at the center. Note that only the shape of a cross-shaped element depends on the anchor position. In other cases the anchor just regulates how much the result of the morphological operation is shifted.
:param anchor_x: x-coordinate of the anchor
:param anchor_y: y-coordinate of the anchor
:param values: integer array of ``cols``*``rows`` elements that specifies the custom shape of the structuring element, when ``shape=CV_SHAPE_CUSTOM``.
The function constructs and returns the structuring element that can be further passed to
:ocv:func:`createMorphologyFilter`,
:ocv:func:`erode`,
:ocv:func:`dilate` or
:ocv:func:`morphologyEx` . But you can also construct an arbitrary binary mask yourself and use it as the structuring element.
.. note:: When using OpenCV 1.x C API, the created structuring element ``IplConvKernel* element`` must be released in the end using ``cvReleaseStructuringElement(&element)``.
medianBlur
----------
Blurs an image using the median filter.
.. ocv:function:: void medianBlur( InputArray src, OutputArray dst, int ksize )
.. ocv:pyfunction:: cv2.medianBlur(src, ksize[, dst]) -> dst
:param src: input 1-, 3-, or 4-channel image; when ``ksize`` is 3 or 5, the image depth should be ``CV_8U``, ``CV_16U``, or ``CV_32F``, for larger aperture sizes, it can only be ``CV_8U``.
:param dst: destination array of the same size and type as ``src``.
:param ksize: aperture linear size; it must be odd and greater than 1, for example: 3, 5, 7 ...
The function smoothes an image using the median filter with the
:math:`\texttt{ksize} \times \texttt{ksize}` aperture. Each channel of a multi-channel image is processed independently. In-place operation is supported.
.. seealso::
:ocv:func:`bilateralFilter`,
:ocv:func:`blur`,
:ocv:func:`boxFilter`,
:ocv:func:`GaussianBlur`
morphologyEx
------------
Performs advanced morphological transformations.
.. ocv:function:: void morphologyEx( InputArray src, OutputArray dst, int op, InputArray kernel, Point anchor=Point(-1,-1), int iterations=1, int borderType=BORDER_CONSTANT, const Scalar& borderValue=morphologyDefaultBorderValue() )
.. ocv:pyfunction:: cv2.morphologyEx(src, op, kernel[, dst[, anchor[, iterations[, borderType[, borderValue]]]]]) -> dst
.. ocv:cfunction:: void cvMorphologyEx( const CvArr* src, CvArr* dst, CvArr* temp, IplConvKernel* element, int operation, int iterations=1 )
.. ocv:pyoldfunction:: cv.MorphologyEx(src, dst, temp, element, operation, iterations=1)-> None
:param src: Source image. The number of channels can be arbitrary. The depth should be one of ``CV_8U``, ``CV_16U``, ``CV_16S``, ``CV_32F` or ``CV_64F``.
:param dst: Destination image of the same size and type as ``src`` .
:param element: Structuring element.
:param op: Type of a morphological operation that can be one of the following:
* **MORPH_OPEN** - an opening operation
* **MORPH_CLOSE** - a closing operation
* **MORPH_GRADIENT** - a morphological gradient
* **MORPH_TOPHAT** - "top hat"
* **MORPH_BLACKHAT** - "black hat"
:param iterations: Number of times erosion and dilation are applied.
:param borderType: Pixel extrapolation method. See :ocv:func:`borderInterpolate` for details.
:param borderValue: Border value in case of a constant border. The default value has a special meaning. See :ocv:func:`createMorphologyFilter` for details.
The function can perform advanced morphological transformations using an erosion and dilation as basic operations.
Opening operation:
.. math::
\texttt{dst} = \mathrm{open} ( \texttt{src} , \texttt{element} )= \mathrm{dilate} ( \mathrm{erode} ( \texttt{src} , \texttt{element} ))
Closing operation:
.. math::
\texttt{dst} = \mathrm{close} ( \texttt{src} , \texttt{element} )= \mathrm{erode} ( \mathrm{dilate} ( \texttt{src} , \texttt{element} ))
Morphological gradient:
.. math::
\texttt{dst} = \mathrm{morph\_grad} ( \texttt{src} , \texttt{element} )= \mathrm{dilate} ( \texttt{src} , \texttt{element} )- \mathrm{erode} ( \texttt{src} , \texttt{element} )
"Top hat":
.. math::
\texttt{dst} = \mathrm{tophat} ( \texttt{src} , \texttt{element} )= \texttt{src} - \mathrm{open} ( \texttt{src} , \texttt{element} )
"Black hat":
.. math::
\texttt{dst} = \mathrm{blackhat} ( \texttt{src} , \texttt{element} )= \mathrm{close} ( \texttt{src} , \texttt{element} )- \texttt{src}
Any of the operations can be done in-place. In case of multi-channel images, each channel is processed independently.
.. seealso::
:ocv:func:`dilate`,
:ocv:func:`erode`,
:ocv:func:`createMorphologyFilter`
.. note::
* An example using the morphologyEx function for the morphological opening and closing operations can be found at opencv_source_code/samples/cpp/morphology2.cpp
Laplacian
---------
Calculates the Laplacian of an image.
.. ocv:function:: void Laplacian( InputArray src, OutputArray dst, int ddepth, int ksize=1, double scale=1, double delta=0, int borderType=BORDER_DEFAULT )
.. ocv:pyfunction:: cv2.Laplacian(src, ddepth[, dst[, ksize[, scale[, delta[, borderType]]]]]) -> dst
.. ocv:cfunction:: void cvLaplace( const CvArr* src, CvArr* dst, int aperture_size=3 )
.. ocv:pyoldfunction:: cv.Laplace(src, dst, apertureSize=3) -> None
:param src: Source image.
:param dst: Destination image of the same size and the same number of channels as ``src`` .
:param ddepth: Desired depth of the destination image.
:param ksize: Aperture size used to compute the second-derivative filters. See :ocv:func:`getDerivKernels` for details. The size must be positive and odd.
:param scale: Optional scale factor for the computed Laplacian values. By default, no scaling is applied. See :ocv:func:`getDerivKernels` for details.
:param delta: Optional delta value that is added to the results prior to storing them in ``dst`` .
:param borderType: Pixel extrapolation method. See :ocv:func:`borderInterpolate` for details.
The function calculates the Laplacian of the source image by adding up the second x and y derivatives calculated using the Sobel operator:
.. math::
\texttt{dst} = \Delta \texttt{src} = \frac{\partial^2 \texttt{src}}{\partial x^2} + \frac{\partial^2 \texttt{src}}{\partial y^2}
This is done when ``ksize > 1`` . When ``ksize == 1`` , the Laplacian is computed by filtering the image with the following
:math:`3 \times 3` aperture:
.. math::
\vecthreethree {0}{1}{0}{1}{-4}{1}{0}{1}{0}
.. seealso::
:ocv:func:`Sobel`,
:ocv:func:`Scharr`
.. note::
* An example using the Laplace transformation for edge detection can be found at opencv_source_code/samples/cpp/laplace.cpp
pyrDown
-------
Blurs an image and downsamples it.
.. ocv:function:: void pyrDown( InputArray src, OutputArray dst, const Size& dstsize=Size(), int borderType=BORDER_DEFAULT )
.. ocv:pyfunction:: cv2.pyrDown(src[, dst[, dstsize[, borderType]]]) -> dst
.. ocv:cfunction:: void cvPyrDown( const CvArr* src, CvArr* dst, int filter=CV_GAUSSIAN_5x5 )
.. ocv:pyoldfunction:: cv.PyrDown(src, dst, filter=CV_GAUSSIAN_5X5) -> None
:param src: input image.
:param dst: output image; it has the specified size and the same type as ``src``.
:param dstsize: size of the output image; by default, it is computed as ``Size((src.cols+1)/2, (src.rows+1)/2)``, but in any case, the following conditions should be satisfied:
.. math::
\begin{array}{l}
| \texttt{dstsize.width} *2-src.cols| \leq 2 \\ | \texttt{dstsize.height} *2-src.rows| \leq 2 \end{array}
The function performs the downsampling step of the Gaussian pyramid construction. First, it convolves the source image with the kernel:
.. math::
\frac{1}{256} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix}
Then, it downsamples the image by rejecting even rows and columns.
pyrUp
-----
Upsamples an image and then blurs it.
.. ocv:function:: void pyrUp( InputArray src, OutputArray dst, const Size& dstsize=Size(), int borderType=BORDER_DEFAULT )
.. ocv:pyfunction:: cv2.pyrUp(src[, dst[, dstsize[, borderType]]]) -> dst
.. ocv:cfunction:: cvPyrUp( const CvArr* src, CvArr* dst, int filter=CV_GAUSSIAN_5x5 )
.. ocv:pyoldfunction:: cv.PyrUp(src, dst, filter=CV_GAUSSIAN_5X5) -> None
:param src: input image.
:param dst: output image. It has the specified size and the same type as ``src`` .
:param dstsize: size of the output image; by default, it is computed as ``Size(src.cols*2, (src.rows*2)``, but in any case, the following conditions should be satisfied:
.. math::
\begin{array}{l}
| \texttt{dstsize.width} -src.cols*2| \leq ( \texttt{dstsize.width} \mod 2) \\ | \texttt{dstsize.height} -src.rows*2| \leq ( \texttt{dstsize.height} \mod 2) \end{array}
The function performs the upsampling step of the Gaussian pyramid construction, though it can actually be used to construct the Laplacian pyramid. First, it upsamples the source image by injecting even zero rows and columns and then convolves the result with the same kernel as in
:ocv:func:`pyrDown` multiplied by 4.
.. note::
* (Python) An example of Laplacian Pyramid construction and merging can be found at opencv_source_code/samples/python2/lappyr.py
pyrMeanShiftFiltering
---------------------
Performs initial step of meanshift segmentation of an image.
.. ocv:function:: void pyrMeanShiftFiltering( InputArray src, OutputArray dst, double sp, double sr, int maxLevel=1, TermCriteria termcrit=TermCriteria( TermCriteria::MAX_ITER+TermCriteria::EPS,5,1) )
.. ocv:pyfunction:: cv2.pyrMeanShiftFiltering(src, sp, sr[, dst[, maxLevel[, termcrit]]]) -> dst
.. ocv:cfunction:: void cvPyrMeanShiftFiltering( const CvArr* src, CvArr* dst, double sp, double sr, int max_level=1, CvTermCriteria termcrit= cvTermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,5,1))
.. ocv:pyoldfunction:: cv.PyrMeanShiftFiltering(src, dst, sp, sr, max_level=1, termcrit=(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 5, 1)) -> None
:param src: The source 8-bit, 3-channel image.
:param dst: The destination image of the same format and the same size as the source.
:param sp: The spatial window radius.
:param sr: The color window radius.
:param maxLevel: Maximum level of the pyramid for the segmentation.
:param termcrit: Termination criteria: when to stop meanshift iterations.
The function implements the filtering stage of meanshift segmentation, that is, the output of the function is the filtered "posterized" image with color gradients and fine-grain texture flattened. At every pixel
``(X,Y)`` of the input image (or down-sized input image, see below) the function executes meanshift
iterations, that is, the pixel ``(X,Y)`` neighborhood in the joint space-color hyperspace is considered:
.. math::
(x,y): X- \texttt{sp} \le x \le X+ \texttt{sp} , Y- \texttt{sp} \le y \le Y+ \texttt{sp} , ||(R,G,B)-(r,g,b)|| \le \texttt{sr}
where ``(R,G,B)`` and ``(r,g,b)`` are the vectors of color components at ``(X,Y)`` and ``(x,y)``, respectively (though, the algorithm does not depend on the color space used, so any 3-component color space can be used instead). Over the neighborhood the average spatial value ``(X',Y')`` and average color vector ``(R',G',B')`` are found and they act as the neighborhood center on the next iteration:
.. math::
(X,Y)~(X',Y'), (R,G,B)~(R',G',B').
After the iterations over, the color components of the initial pixel (that is, the pixel from where the iterations started) are set to the final value (average color at the last iteration):
.. math::
I(X,Y) <- (R*,G*,B*)
When ``maxLevel > 0``, the gaussian pyramid of ``maxLevel+1`` levels is built, and the above procedure is run on the smallest layer first. After that, the results are propagated to the larger layer and the iterations are run again only on those pixels where the layer colors differ by more than ``sr`` from the lower-resolution layer of the pyramid. That makes boundaries of color regions sharper. Note that the results will be actually different from the ones obtained by running the meanshift procedure on the whole original image (i.e. when ``maxLevel==0``).
.. note::
* An example using mean-shift image segmentation can be found at opencv_source_code/samples/cpp/meanshift_segmentation.cpp
sepFilter2D
-----------
Applies a separable linear filter to an image.
.. ocv:function:: void sepFilter2D( InputArray src, OutputArray dst, int ddepth, InputArray kernelX, InputArray kernelY, Point anchor=Point(-1,-1), double delta=0, int borderType=BORDER_DEFAULT )
.. ocv:pyfunction:: cv2.sepFilter2D(src, ddepth, kernelX, kernelY[, dst[, anchor[, delta[, borderType]]]]) -> dst
:param src: Source image.
:param dst: Destination image of the same size and the same number of channels as ``src`` .
:param ddepth: Destination image depth. The following combination of ``src.depth()`` and ``ddepth`` are supported:
* ``src.depth()`` = ``CV_8U``, ``ddepth`` = -1/``CV_16S``/``CV_32F``/``CV_64F``
* ``src.depth()`` = ``CV_16U``/``CV_16S``, ``ddepth`` = -1/``CV_32F``/``CV_64F``
* ``src.depth()`` = ``CV_32F``, ``ddepth`` = -1/``CV_32F``/``CV_64F``
* ``src.depth()`` = ``CV_64F``, ``ddepth`` = -1/``CV_64F``
when ``ddepth=-1``, the destination image will have the same depth as the source.
:param kernelX: Coefficients for filtering each row.
:param kernelY: Coefficients for filtering each column.
:param anchor: Anchor position within the kernel. The default value :math:`(-1,-1)` means that the anchor is at the kernel center.
:param delta: Value added to the filtered results before storing them.
:param borderType: Pixel extrapolation method. See :ocv:func:`borderInterpolate` for details.
The function applies a separable linear filter to the image. That is, first, every row of ``src`` is filtered with the 1D kernel ``kernelX`` . Then, every column of the result is filtered with the 1D kernel ``kernelY`` . The final result shifted by ``delta`` is stored in ``dst`` .
.. seealso::
:ocv:func:`createSeparableLinearFilter`,
:ocv:func:`filter2D`,
:ocv:func:`Sobel`,
:ocv:func:`GaussianBlur`,
:ocv:func:`boxFilter`,
:ocv:func:`blur`
Smooth
------
Smooths the image in one of several ways.
.. ocv:cfunction:: void cvSmooth( const CvArr* src, CvArr* dst, int smoothtype=CV_GAUSSIAN, int size1=3, int size2=0, double sigma1=0, double sigma2=0 )
.. ocv:pyoldfunction:: cv.Smooth(src, dst, smoothtype=CV_GAUSSIAN, param1=3, param2=0, param3=0, param4=0)-> None
:param src: The source image
:param dst: The destination image
:param smoothtype: Type of the smoothing:
* **CV_BLUR_NO_SCALE** linear convolution with :math:`\texttt{size1}\times\texttt{size2}` box kernel (all 1's). If you want to smooth different pixels with different-size box kernels, you can use the integral image that is computed using :ocv:func:`integral`
* **CV_BLUR** linear convolution with :math:`\texttt{size1}\times\texttt{size2}` box kernel (all 1's) with subsequent scaling by :math:`1/(\texttt{size1}\cdot\texttt{size2})`
* **CV_GAUSSIAN** linear convolution with a :math:`\texttt{size1}\times\texttt{size2}` Gaussian kernel
* **CV_MEDIAN** median filter with a :math:`\texttt{size1}\times\texttt{size1}` square aperture
* **CV_BILATERAL** bilateral filter with a :math:`\texttt{size1}\times\texttt{size1}` square aperture, color sigma= ``sigma1`` and spatial sigma= ``sigma2`` . If ``size1=0`` , the aperture square side is set to ``cvRound(sigma2*1.5)*2+1`` . Information about bilateral filtering can be found at http://www.dai.ed.ac.uk/CVonline/LOCAL\_COPIES/MANDUCHI1/Bilateral\_Filtering.html
:param size1: The first parameter of the smoothing operation, the aperture width. Must be a positive odd number (1, 3, 5, ...)
:param size2: The second parameter of the smoothing operation, the aperture height. Ignored by ``CV_MEDIAN`` and ``CV_BILATERAL`` methods. In the case of simple scaled/non-scaled and Gaussian blur if ``size2`` is zero, it is set to ``size1`` . Otherwise it must be a positive odd number.
:param sigma1: In the case of a Gaussian parameter this parameter may specify Gaussian :math:`\sigma` (standard deviation). If it is zero, it is calculated from the kernel size:
.. math::
\sigma = 0.3 (n/2 - 1) + 0.8 \quad \text{where} \quad n= \begin{array}{l l} \mbox{\texttt{size1} for horizontal kernel} \\ \mbox{\texttt{size2} for vertical kernel} \end{array}
Using standard sigma for small kernels ( :math:`3\times 3` to :math:`7\times 7` ) gives better speed. If ``sigma1`` is not zero, while ``size1`` and ``size2`` are zeros, the kernel size is calculated from the sigma (to provide accurate enough operation).
The function smooths an image using one of several methods. Every of the methods has some features and restrictions listed below:
* Blur with no scaling works with single-channel images only and supports accumulation of 8-bit to 16-bit format (similar to :ocv:func:`Sobel` and :ocv:func:`Laplacian`) and 32-bit floating point to 32-bit floating-point format.
* Simple blur and Gaussian blur support 1- or 3-channel, 8-bit and 32-bit floating point images. These two methods can process images in-place.
* Median and bilateral filters work with 1- or 3-channel 8-bit images and can not process images in-place.
.. note:: The function is now obsolete. Use :ocv:func:`GaussianBlur`, :ocv:func:`blur`, :ocv:func:`medianBlur` or :ocv:func:`bilateralFilter`.
Sobel
-----
Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator.
.. ocv:function:: void Sobel( InputArray src, OutputArray dst, int ddepth, int dx, int dy, int ksize=3, double scale=1, double delta=0, int borderType=BORDER_DEFAULT )
.. ocv:pyfunction:: cv2.Sobel(src, ddepth, dx, dy[, dst[, ksize[, scale[, delta[, borderType]]]]]) -> dst
.. ocv:cfunction:: void cvSobel( const CvArr* src, CvArr* dst, int xorder, int yorder, int aperture_size=3 )
.. ocv:pyoldfunction:: cv.Sobel(src, dst, xorder, yorder, apertureSize=3)-> None
:param src: input image.
:param dst: output image of the same size and the same number of channels as ``src`` .
:param ddepth: output image depth; the following combinations of ``src.depth()`` and ``ddepth`` are supported:
* ``src.depth()`` = ``CV_8U``, ``ddepth`` = -1/``CV_16S``/``CV_32F``/``CV_64F``
* ``src.depth()`` = ``CV_16U``/``CV_16S``, ``ddepth`` = -1/``CV_32F``/``CV_64F``
* ``src.depth()`` = ``CV_32F``, ``ddepth`` = -1/``CV_32F``/``CV_64F``
* ``src.depth()`` = ``CV_64F``, ``ddepth`` = -1/``CV_64F``
when ``ddepth=-1``, the destination image will have the same depth as the source; in the case of 8-bit input images it will result in truncated derivatives.
:param xorder: order of the derivative x.
:param yorder: order of the derivative y.
:param ksize: size of the extended Sobel kernel; it must be 1, 3, 5, or 7.
:param scale: optional scale factor for the computed derivative values; by default, no scaling is applied (see :ocv:func:`getDerivKernels` for details).
:param delta: optional delta value that is added to the results prior to storing them in ``dst``.
:param borderType: pixel extrapolation method (see :ocv:func:`borderInterpolate` for details).
In all cases except one, the
:math:`\texttt{ksize} \times
\texttt{ksize}` separable kernel is used to calculate the
derivative. When
:math:`\texttt{ksize = 1}` , the
:math:`3 \times 1` or
:math:`1 \times 3` kernel is used (that is, no Gaussian smoothing is done). ``ksize = 1`` can only be used for the first or the second x- or y- derivatives.
There is also the special value ``ksize = CV_SCHARR`` (-1) that corresponds to the
:math:`3\times3` Scharr
filter that may give more accurate results than the
:math:`3\times3` Sobel. The Scharr aperture is
.. math::
\vecthreethree{-3}{0}{3}{-10}{0}{10}{-3}{0}{3}
for the x-derivative, or transposed for the y-derivative.
The function calculates an image derivative by convolving the image with the appropriate kernel:
.. math::
\texttt{dst} = \frac{\partial^{xorder+yorder} \texttt{src}}{\partial x^{xorder} \partial y^{yorder}}
The Sobel operators combine Gaussian smoothing and differentiation,
so the result is more or less resistant to the noise. Most often,
the function is called with ( ``xorder`` = 1, ``yorder`` = 0, ``ksize`` = 3) or ( ``xorder`` = 0, ``yorder`` = 1, ``ksize`` = 3) to calculate the first x- or y- image
derivative. The first case corresponds to a kernel of:
.. math::
\vecthreethree{-1}{0}{1}{-2}{0}{2}{-1}{0}{1}
The second case corresponds to a kernel of:
.. math::
\vecthreethree{-1}{-2}{-1}{0}{0}{0}{1}{2}{1}
.. seealso::
:ocv:func:`Scharr`,
:ocv:func:`Laplacian`,
:ocv:func:`sepFilter2D`,
:ocv:func:`filter2D`,
:ocv:func:`GaussianBlur`,
:ocv:func:`cartToPolar`
Scharr
------
Calculates the first x- or y- image derivative using Scharr operator.
.. ocv:function:: void Scharr( InputArray src, OutputArray dst, int ddepth, int dx, int dy, double scale=1, double delta=0, int borderType=BORDER_DEFAULT )
.. ocv:pyfunction:: cv2.Scharr(src, ddepth, dx, dy[, dst[, scale[, delta[, borderType]]]]) -> dst
:param src: input image.
:param dst: output image of the same size and the same number of channels as ``src``.
:param ddepth: output image depth (see :ocv:func:`Sobel` for the list of supported combination of ``src.depth()`` and ``ddepth``).
:param dx: order of the derivative x.
:param dy: order of the derivative y.
:param scale: optional scale factor for the computed derivative values; by default, no scaling is applied (see :ocv:func:`getDerivKernels` for details).
:param delta: optional delta value that is added to the results prior to storing them in ``dst``.
:param borderType: pixel extrapolation method (see :ocv:func:`borderInterpolate` for details).
The function computes the first x- or y- spatial image derivative using the Scharr operator. The call
.. math::
\texttt{Scharr(src, dst, ddepth, dx, dy, scale, delta, borderType)}
is equivalent to
.. math::
\texttt{Sobel(src, dst, ddepth, dx, dy, CV\_SCHARR, scale, delta, borderType)} .
.. seealso::
:ocv:func:`cartToPolar`
|