1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
|
Feature Detection and Description
=================================
.. highlight:: cpp
RandomizedTree
--------------
.. ocv:class:: RandomizedTree
Class containing a base structure for ``RTreeClassifier``. ::
class CV_EXPORTS RandomizedTree
{
public:
friend class RTreeClassifier;
RandomizedTree();
~RandomizedTree();
void train(std::vector<BaseKeypoint> const& base_set,
RNG &rng, int depth, int views,
size_t reduced_num_dim, int num_quant_bits);
void train(std::vector<BaseKeypoint> const& base_set,
RNG &rng, PatchGenerator &make_patch, int depth,
int views, size_t reduced_num_dim, int num_quant_bits);
// next two functions are EXPERIMENTAL
//(do not use unless you know exactly what you do)
static void quantizeVector(float *vec, int dim, int N, float bnds[2],
int clamp_mode=0);
static void quantizeVector(float *src, int dim, int N, float bnds[2],
uchar *dst);
// patch_data must be a 32x32 array (no row padding)
float* getPosterior(uchar* patch_data);
const float* getPosterior(uchar* patch_data) const;
uchar* getPosterior2(uchar* patch_data);
void read(const char* file_name, int num_quant_bits);
void read(std::istream &is, int num_quant_bits);
void write(const char* file_name) const;
void write(std::ostream &os) const;
int classes() { return classes_; }
int depth() { return depth_; }
void discardFloatPosteriors() { freePosteriors(1); }
inline void applyQuantization(int num_quant_bits)
{ makePosteriors2(num_quant_bits); }
private:
int classes_;
int depth_;
int num_leaves_;
std::vector<RTreeNode> nodes_;
float **posteriors_; // 16-byte aligned posteriors
uchar **posteriors2_; // 16-byte aligned posteriors
std::vector<int> leaf_counts_;
void createNodes(int num_nodes, RNG &rng);
void allocPosteriorsAligned(int num_leaves, int num_classes);
void freePosteriors(int which);
// which: 1=posteriors_, 2=posteriors2_, 3=both
void init(int classes, int depth, RNG &rng);
void addExample(int class_id, uchar* patch_data);
void finalize(size_t reduced_num_dim, int num_quant_bits);
int getIndex(uchar* patch_data) const;
inline float* getPosteriorByIndex(int index);
inline uchar* getPosteriorByIndex2(int index);
inline const float* getPosteriorByIndex(int index) const;
void convertPosteriorsToChar();
void makePosteriors2(int num_quant_bits);
void compressLeaves(size_t reduced_num_dim);
void estimateQuantPercForPosteriors(float perc[2]);
};
.. note::
* : PYTHON : An example using Randomized Tree training for letter recognition can be found at opencv_source_code/samples/python2/letter_recog.py
RandomizedTree::train
-------------------------
Trains a randomized tree using an input set of keypoints.
.. ocv:function:: void RandomizedTree::train( vector<BaseKeypoint> const& base_set, RNG & rng, int depth, int views, size_t reduced_num_dim, int num_quant_bits )
.. ocv:function:: void RandomizedTree::train( vector<BaseKeypoint> const& base_set, RNG & rng, PatchGenerator & make_patch, int depth, int views, size_t reduced_num_dim, int num_quant_bits )
:param base_set: Vector of the ``BaseKeypoint`` type. It contains image keypoints used for training.
:param rng: Random-number generator used for training.
:param make_patch: Patch generator used for training.
:param depth: Maximum tree depth.
:param views: Number of random views of each keypoint neighborhood to generate.
:param reduced_num_dim: Number of dimensions used in the compressed signature.
:param num_quant_bits: Number of bits used for quantization.
.. note::
* : An example on training a Random Tree Classifier for letter recognition can be found at opencv_source_code\samples\cpp\letter_recog.cpp
RandomizedTree::read
------------------------
Reads a pre-saved randomized tree from a file or stream.
.. ocv:function:: RandomizedTree::read(const char* file_name, int num_quant_bits)
.. ocv:function:: RandomizedTree::read(std::istream &is, int num_quant_bits)
:param file_name: Name of the file that contains randomized tree data.
:param is: Input stream associated with the file that contains randomized tree data.
:param num_quant_bits: Number of bits used for quantization.
RandomizedTree::write
-------------------------
Writes the current randomized tree to a file or stream.
.. ocv:function:: void RandomizedTree::write(const char* file_name) const
.. ocv:function:: void RandomizedTree::write(std::ostream &os) const
:param file_name: Name of the file where randomized tree data is stored.
:param os: Output stream associated with the file where randomized tree data is stored.
RandomizedTree::applyQuantization
-------------------------------------
.. ocv:function:: void RandomizedTree::applyQuantization(int num_quant_bits)
Applies quantization to the current randomized tree.
:param num_quant_bits: Number of bits used for quantization.
RTreeNode
---------
.. ocv:struct:: RTreeNode
Class containing a base structure for ``RandomizedTree``. ::
struct RTreeNode
{
short offset1, offset2;
RTreeNode() {}
RTreeNode(uchar x1, uchar y1, uchar x2, uchar y2)
: offset1(y1*PATCH_SIZE + x1),
offset2(y2*PATCH_SIZE + x2)
{}
//! Left child on 0, right child on 1
inline bool operator() (uchar* patch_data) const
{
return patch_data[offset1] > patch_data[offset2];
}
};
RTreeClassifier
---------------
.. ocv:class:: RTreeClassifier
Class containing ``RTreeClassifier``. It represents the Calonder descriptor originally introduced by Michael Calonder. ::
class CV_EXPORTS RTreeClassifier
{
public:
static const int DEFAULT_TREES = 48;
static const size_t DEFAULT_NUM_QUANT_BITS = 4;
RTreeClassifier();
void train(std::vector<BaseKeypoint> const& base_set,
RNG &rng,
int num_trees = RTreeClassifier::DEFAULT_TREES,
int depth = DEFAULT_DEPTH,
int views = DEFAULT_VIEWS,
size_t reduced_num_dim = DEFAULT_REDUCED_NUM_DIM,
int num_quant_bits = DEFAULT_NUM_QUANT_BITS,
bool print_status = true);
void train(std::vector<BaseKeypoint> const& base_set,
RNG &rng,
PatchGenerator &make_patch,
int num_trees = RTreeClassifier::DEFAULT_TREES,
int depth = DEFAULT_DEPTH,
int views = DEFAULT_VIEWS,
size_t reduced_num_dim = DEFAULT_REDUCED_NUM_DIM,
int num_quant_bits = DEFAULT_NUM_QUANT_BITS,
bool print_status = true);
// sig must point to a memory block of at least
//classes()*sizeof(float|uchar) bytes
void getSignature(IplImage *patch, uchar *sig);
void getSignature(IplImage *patch, float *sig);
void getSparseSignature(IplImage *patch, float *sig,
float thresh);
static int countNonZeroElements(float *vec, int n, double tol=1e-10);
static inline void safeSignatureAlloc(uchar **sig, int num_sig=1,
int sig_len=176);
static inline uchar* safeSignatureAlloc(int num_sig=1,
int sig_len=176);
inline int classes() { return classes_; }
inline int original_num_classes()
{ return original_num_classes_; }
void setQuantization(int num_quant_bits);
void discardFloatPosteriors();
void read(const char* file_name);
void read(std::istream &is);
void write(const char* file_name) const;
void write(std::ostream &os) const;
std::vector<RandomizedTree> trees_;
private:
int classes_;
int num_quant_bits_;
uchar **posteriors_;
ushort *ptemp_;
int original_num_classes_;
bool keep_floats_;
};
RTreeClassifier::train
--------------------------
Trains a randomized tree classifier using an input set of keypoints.
.. ocv:function:: void RTreeClassifier::train( vector<BaseKeypoint> const& base_set, RNG & rng, int num_trees=RTreeClassifier::DEFAULT_TREES, int depth=RandomizedTree::DEFAULT_DEPTH, int views=RandomizedTree::DEFAULT_VIEWS, size_t reduced_num_dim=RandomizedTree::DEFAULT_REDUCED_NUM_DIM, int num_quant_bits=DEFAULT_NUM_QUANT_BITS )
.. ocv:function:: void RTreeClassifier::train( vector<BaseKeypoint> const& base_set, RNG & rng, PatchGenerator & make_patch, int num_trees=RTreeClassifier::DEFAULT_TREES, int depth=RandomizedTree::DEFAULT_DEPTH, int views=RandomizedTree::DEFAULT_VIEWS, size_t reduced_num_dim=RandomizedTree::DEFAULT_REDUCED_NUM_DIM, int num_quant_bits=DEFAULT_NUM_QUANT_BITS )
:param base_set: Vector of the ``BaseKeypoint`` type. It contains image keypoints used for training.
:param rng: Random-number generator used for training.
:param make_patch: Patch generator used for training.
:param num_trees: Number of randomized trees used in ``RTreeClassificator`` .
:param depth: Maximum tree depth.
:param views: Number of random views of each keypoint neighborhood to generate.
:param reduced_num_dim: Number of dimensions used in the compressed signature.
:param num_quant_bits: Number of bits used for quantization.
RTreeClassifier::getSignature
---------------------------------
Returns a signature for an image patch.
.. ocv:function:: void RTreeClassifier::getSignature(IplImage *patch, uchar *sig)
.. ocv:function:: void RTreeClassifier::getSignature(IplImage *patch, float *sig)
:param patch: Image patch to calculate the signature for.
:param sig: Output signature (array dimension is ``reduced_num_dim)`` .
RTreeClassifier::getSparseSignature
---------------------------------------
Returns a sparse signature for an image patch
.. ocv:function:: void RTreeClassifier::getSparseSignature(IplImage *patch, float *sig, float thresh)
:param patch: Image patch to calculate the signature for.
:param sig: Output signature (array dimension is ``reduced_num_dim)`` .
:param thresh: Threshold used for compressing the signature.
Returns a signature for an image patch similarly to ``getSignature`` but uses a threshold for removing all signature elements below the threshold so that the signature is compressed.
RTreeClassifier::countNonZeroElements
-----------------------------------------
Returns the number of non-zero elements in an input array.
.. ocv:function:: static int RTreeClassifier::countNonZeroElements(float *vec, int n, double tol=1e-10)
:param vec: Input vector containing float elements.
:param n: Input vector size.
:param tol: Threshold used for counting elements. All elements less than ``tol`` are considered as zero elements.
RTreeClassifier::read
-------------------------
Reads a pre-saved ``RTreeClassifier`` from a file or stream.
.. ocv:function:: void RTreeClassifier::read(const char* file_name)
.. ocv:function:: void RTreeClassifier::read( std::istream & is )
:param file_name: Name of the file that contains randomized tree data.
:param is: Input stream associated with the file that contains randomized tree data.
RTreeClassifier::write
--------------------------
Writes the current ``RTreeClassifier`` to a file or stream.
.. ocv:function:: void RTreeClassifier::write(const char* file_name) const
.. ocv:function:: void RTreeClassifier::write(std::ostream &os) const
:param file_name: Name of the file where randomized tree data is stored.
:param os: Output stream associated with the file where randomized tree data is stored.
RTreeClassifier::setQuantization
------------------------------------
Applies quantization to the current randomized tree.
.. ocv:function:: void RTreeClassifier::setQuantization(int num_quant_bits)
:param num_quant_bits: Number of bits used for quantization.
The example below demonstrates the usage of ``RTreeClassifier`` for matching the features. The features are extracted from the test and train images with SURF. Output is
:math:`best\_corr` and
:math:`best\_corr\_idx` arrays that keep the best probabilities and corresponding features indices for every train feature. ::
CvMemStorage* storage = cvCreateMemStorage(0);
CvSeq *objectKeypoints = 0, *objectDescriptors = 0;
CvSeq *imageKeypoints = 0, *imageDescriptors = 0;
CvSURFParams params = cvSURFParams(500, 1);
cvExtractSURF( test_image, 0, &imageKeypoints, &imageDescriptors,
storage, params );
cvExtractSURF( train_image, 0, &objectKeypoints, &objectDescriptors,
storage, params );
RTreeClassifier detector;
int patch_width = PATCH_SIZE;
iint patch_height = PATCH_SIZE;
vector<BaseKeypoint> base_set;
int i=0;
CvSURFPoint* point;
for (i=0;i<(n_points > 0 ? n_points : objectKeypoints->total);i++)
{
point=(CvSURFPoint*)cvGetSeqElem(objectKeypoints,i);
base_set.push_back(
BaseKeypoint(point->pt.x,point->pt.y,train_image));
}
//Detector training
RNG rng( cvGetTickCount() );
PatchGenerator gen(0,255,2,false,0.7,1.3,-CV_PI/3,CV_PI/3,
-CV_PI/3,CV_PI/3);
printf("RTree Classifier training...n");
detector.train(base_set,rng,gen,24,DEFAULT_DEPTH,2000,
(int)base_set.size(), detector.DEFAULT_NUM_QUANT_BITS);
printf("Donen");
float* signature = new float[detector.original_num_classes()];
float* best_corr;
int* best_corr_idx;
if (imageKeypoints->total > 0)
{
best_corr = new float[imageKeypoints->total];
best_corr_idx = new int[imageKeypoints->total];
}
for(i=0; i < imageKeypoints->total; i++)
{
point=(CvSURFPoint*)cvGetSeqElem(imageKeypoints,i);
int part_idx = -1;
float prob = 0.0f;
CvRect roi = cvRect((int)(point->pt.x) - patch_width/2,
(int)(point->pt.y) - patch_height/2,
patch_width, patch_height);
cvSetImageROI(test_image, roi);
roi = cvGetImageROI(test_image);
if(roi.width != patch_width || roi.height != patch_height)
{
best_corr_idx[i] = part_idx;
best_corr[i] = prob;
}
else
{
cvSetImageROI(test_image, roi);
IplImage* roi_image =
cvCreateImage(cvSize(roi.width, roi.height),
test_image->depth, test_image->nChannels);
cvCopy(test_image,roi_image);
detector.getSignature(roi_image, signature);
for (int j = 0; j< detector.original_num_classes();j++)
{
if (prob < signature[j])
{
part_idx = j;
prob = signature[j];
}
}
best_corr_idx[i] = part_idx;
best_corr[i] = prob;
if (roi_image)
cvReleaseImage(&roi_image);
}
cvResetImageROI(test_image);
}
..
|