File: feature_detection_and_description.rst

package info (click to toggle)
opencv 2.4.9.1%2Bdfsg-1%2Bdeb8u1
  • links: PTS, VCS
  • area: main
  • in suites: jessie
  • size: 126,800 kB
  • ctags: 62,729
  • sloc: xml: 509,055; cpp: 490,794; lisp: 23,208; python: 21,174; java: 19,317; ansic: 1,038; sh: 128; makefile: 72
file content (434 lines) | stat: -rw-r--r-- 16,267 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
Feature Detection and Description
=================================

.. highlight:: cpp

RandomizedTree
--------------
.. ocv:class:: RandomizedTree

Class containing a base structure for ``RTreeClassifier``. ::

    class CV_EXPORTS RandomizedTree
    {
    public:
            friend class RTreeClassifier;

            RandomizedTree();
            ~RandomizedTree();

            void train(std::vector<BaseKeypoint> const& base_set,
                     RNG &rng, int depth, int views,
                     size_t reduced_num_dim, int num_quant_bits);
            void train(std::vector<BaseKeypoint> const& base_set,
                     RNG &rng, PatchGenerator &make_patch, int depth,
                     int views, size_t reduced_num_dim, int num_quant_bits);

            // next two functions are EXPERIMENTAL
            //(do not use unless you know exactly what you do)
            static void quantizeVector(float *vec, int dim, int N, float bnds[2],
                     int clamp_mode=0);
            static void quantizeVector(float *src, int dim, int N, float bnds[2],
                     uchar *dst);

            // patch_data must be a 32x32 array (no row padding)
            float* getPosterior(uchar* patch_data);
            const float* getPosterior(uchar* patch_data) const;
            uchar* getPosterior2(uchar* patch_data);

            void read(const char* file_name, int num_quant_bits);
            void read(std::istream &is, int num_quant_bits);
            void write(const char* file_name) const;
            void write(std::ostream &os) const;

            int classes() { return classes_; }
            int depth() { return depth_; }

            void discardFloatPosteriors() { freePosteriors(1); }

            inline void applyQuantization(int num_quant_bits)
                     { makePosteriors2(num_quant_bits); }

    private:
            int classes_;
            int depth_;
            int num_leaves_;
            std::vector<RTreeNode> nodes_;
            float **posteriors_;        // 16-byte aligned posteriors
            uchar **posteriors2_;     // 16-byte aligned posteriors
            std::vector<int> leaf_counts_;

            void createNodes(int num_nodes, RNG &rng);
            void allocPosteriorsAligned(int num_leaves, int num_classes);
            void freePosteriors(int which);
                     // which: 1=posteriors_, 2=posteriors2_, 3=both
            void init(int classes, int depth, RNG &rng);
            void addExample(int class_id, uchar* patch_data);
            void finalize(size_t reduced_num_dim, int num_quant_bits);
            int getIndex(uchar* patch_data) const;
            inline float* getPosteriorByIndex(int index);
            inline uchar* getPosteriorByIndex2(int index);
            inline const float* getPosteriorByIndex(int index) const;
            void convertPosteriorsToChar();
            void makePosteriors2(int num_quant_bits);
            void compressLeaves(size_t reduced_num_dim);
            void estimateQuantPercForPosteriors(float perc[2]);
    };

.. note::

   * : PYTHON : An example using Randomized Tree training for letter recognition can be found at opencv_source_code/samples/python2/letter_recog.py

RandomizedTree::train
-------------------------
Trains a randomized tree using an input set of keypoints.

.. ocv:function:: void RandomizedTree::train( vector<BaseKeypoint> const& base_set, RNG & rng, int depth, int views, size_t reduced_num_dim, int num_quant_bits )

.. ocv:function:: void RandomizedTree::train( vector<BaseKeypoint> const& base_set, RNG & rng, PatchGenerator & make_patch, int depth, int views, size_t reduced_num_dim, int num_quant_bits )

    :param base_set: Vector of the ``BaseKeypoint`` type. It contains image keypoints used for training.

    :param rng: Random-number generator used for training.

    :param make_patch: Patch generator used for training.

    :param depth: Maximum tree depth.

    :param views: Number of random views of each keypoint neighborhood to generate.

    :param reduced_num_dim: Number of dimensions used in the compressed signature.

    :param num_quant_bits: Number of bits used for quantization.

.. note::

   * : An example on training a Random Tree Classifier for letter recognition can be found at opencv_source_code\samples\cpp\letter_recog.cpp

RandomizedTree::read
------------------------
Reads a pre-saved randomized tree from a file or stream.

.. ocv:function:: RandomizedTree::read(const char* file_name, int num_quant_bits)

.. ocv:function:: RandomizedTree::read(std::istream &is, int num_quant_bits)

    :param file_name: Name of the file that contains randomized tree data.

    :param is: Input stream associated with the file that contains randomized tree data.

    :param num_quant_bits: Number of bits used for quantization.



RandomizedTree::write
-------------------------
Writes the current randomized tree to a file or stream.

.. ocv:function:: void RandomizedTree::write(const char* file_name) const

.. ocv:function:: void RandomizedTree::write(std::ostream &os) const

    :param file_name: Name of the file where randomized tree data is stored.

    :param os: Output stream associated with the file where randomized tree data is stored.



RandomizedTree::applyQuantization
-------------------------------------
.. ocv:function:: void RandomizedTree::applyQuantization(int num_quant_bits)

    Applies quantization to the current randomized tree.

    :param num_quant_bits: Number of bits used for quantization.


RTreeNode
---------
.. ocv:struct:: RTreeNode

Class containing a base structure for ``RandomizedTree``. ::

    struct RTreeNode
    {
            short offset1, offset2;

            RTreeNode() {}

            RTreeNode(uchar x1, uchar y1, uchar x2, uchar y2)
                    : offset1(y1*PATCH_SIZE + x1),
                    offset2(y2*PATCH_SIZE + x2)
            {}

            //! Left child on 0, right child on 1
            inline bool operator() (uchar* patch_data) const
            {
                    return patch_data[offset1] > patch_data[offset2];
            }
    };



RTreeClassifier
---------------
.. ocv:class:: RTreeClassifier

Class containing ``RTreeClassifier``. It represents the Calonder descriptor originally introduced by Michael Calonder. ::

    class CV_EXPORTS RTreeClassifier
    {
    public:
            static const int DEFAULT_TREES = 48;
            static const size_t DEFAULT_NUM_QUANT_BITS = 4;

            RTreeClassifier();

            void train(std::vector<BaseKeypoint> const& base_set,
                    RNG &rng,
                    int num_trees = RTreeClassifier::DEFAULT_TREES,
                    int depth = DEFAULT_DEPTH,
                    int views = DEFAULT_VIEWS,
                    size_t reduced_num_dim = DEFAULT_REDUCED_NUM_DIM,
                    int num_quant_bits = DEFAULT_NUM_QUANT_BITS,
                             bool print_status = true);
            void train(std::vector<BaseKeypoint> const& base_set,
                    RNG &rng,
                    PatchGenerator &make_patch,
                    int num_trees = RTreeClassifier::DEFAULT_TREES,
                    int depth = DEFAULT_DEPTH,
                    int views = DEFAULT_VIEWS,
                    size_t reduced_num_dim = DEFAULT_REDUCED_NUM_DIM,
                    int num_quant_bits = DEFAULT_NUM_QUANT_BITS,
                     bool print_status = true);

            // sig must point to a memory block of at least
            //classes()*sizeof(float|uchar) bytes
            void getSignature(IplImage *patch, uchar *sig);
            void getSignature(IplImage *patch, float *sig);
            void getSparseSignature(IplImage *patch, float *sig,
                     float thresh);

            static int countNonZeroElements(float *vec, int n, double tol=1e-10);
            static inline void safeSignatureAlloc(uchar **sig, int num_sig=1,
                            int sig_len=176);
            static inline uchar* safeSignatureAlloc(int num_sig=1,
                             int sig_len=176);

            inline int classes() { return classes_; }
            inline int original_num_classes()
                     { return original_num_classes_; }

            void setQuantization(int num_quant_bits);
            void discardFloatPosteriors();

            void read(const char* file_name);
            void read(std::istream &is);
            void write(const char* file_name) const;
            void write(std::ostream &os) const;

            std::vector<RandomizedTree> trees_;

    private:
            int classes_;
            int num_quant_bits_;
            uchar **posteriors_;
            ushort *ptemp_;
            int original_num_classes_;
            bool keep_floats_;
    };



RTreeClassifier::train
--------------------------
Trains a randomized tree classifier using an input set of keypoints.

.. ocv:function:: void RTreeClassifier::train( vector<BaseKeypoint> const& base_set, RNG & rng, int num_trees=RTreeClassifier::DEFAULT_TREES, int depth=RandomizedTree::DEFAULT_DEPTH, int views=RandomizedTree::DEFAULT_VIEWS, size_t reduced_num_dim=RandomizedTree::DEFAULT_REDUCED_NUM_DIM, int num_quant_bits=DEFAULT_NUM_QUANT_BITS )

.. ocv:function:: void RTreeClassifier::train( vector<BaseKeypoint> const& base_set, RNG & rng, PatchGenerator & make_patch, int num_trees=RTreeClassifier::DEFAULT_TREES, int depth=RandomizedTree::DEFAULT_DEPTH, int views=RandomizedTree::DEFAULT_VIEWS, size_t reduced_num_dim=RandomizedTree::DEFAULT_REDUCED_NUM_DIM, int num_quant_bits=DEFAULT_NUM_QUANT_BITS )

    :param base_set: Vector of the ``BaseKeypoint``  type. It contains image keypoints used for training.

    :param rng: Random-number generator used for training.

    :param make_patch: Patch generator used for training.

    :param num_trees: Number of randomized trees used in ``RTreeClassificator`` .

    :param depth: Maximum tree depth.

    :param views: Number of random views of each keypoint neighborhood to generate.

    :param reduced_num_dim: Number of dimensions used in the compressed signature.

    :param num_quant_bits: Number of bits used for quantization.


RTreeClassifier::getSignature
---------------------------------
Returns a signature for an image patch.

.. ocv:function:: void RTreeClassifier::getSignature(IplImage *patch, uchar *sig)

.. ocv:function:: void RTreeClassifier::getSignature(IplImage *patch, float *sig)

    :param patch: Image patch to calculate the signature for.
    :param sig: Output signature (array dimension is ``reduced_num_dim)`` .



RTreeClassifier::getSparseSignature
---------------------------------------
Returns a sparse signature for an image patch

.. ocv:function:: void RTreeClassifier::getSparseSignature(IplImage *patch, float *sig, float thresh)

    :param patch: Image patch to calculate the signature for.

    :param sig: Output signature (array dimension is ``reduced_num_dim)`` .

    :param thresh: Threshold used for compressing the signature.

    Returns a signature for an image patch similarly to ``getSignature``  but uses a threshold for removing all signature elements below the threshold so that the signature is compressed.


RTreeClassifier::countNonZeroElements
-----------------------------------------
Returns the number of non-zero elements in an input array.

.. ocv:function:: static int RTreeClassifier::countNonZeroElements(float *vec, int n, double tol=1e-10)

    :param vec: Input vector containing float elements.

    :param n: Input vector size.

    :param tol: Threshold used for counting elements. All elements less than ``tol``  are considered as zero elements.



RTreeClassifier::read
-------------------------
Reads a pre-saved ``RTreeClassifier`` from a file or stream.

.. ocv:function:: void RTreeClassifier::read(const char* file_name)

.. ocv:function:: void RTreeClassifier::read( std::istream & is )

    :param file_name: Name of the file that contains randomized tree data.

    :param is: Input stream associated with the file that contains randomized tree data.



RTreeClassifier::write
--------------------------
Writes the current ``RTreeClassifier`` to a file or stream.

.. ocv:function:: void RTreeClassifier::write(const char* file_name) const

.. ocv:function:: void RTreeClassifier::write(std::ostream &os) const

    :param file_name: Name of the file where randomized tree data is stored.

    :param os: Output stream associated with the file where randomized tree data is stored.



RTreeClassifier::setQuantization
------------------------------------
Applies quantization to the current randomized tree.

.. ocv:function:: void RTreeClassifier::setQuantization(int num_quant_bits)

    :param num_quant_bits: Number of bits used for quantization.

The example below demonstrates the usage of ``RTreeClassifier`` for matching the features. The features are extracted from the test and train images with SURF. Output is
:math:`best\_corr` and
:math:`best\_corr\_idx` arrays that keep the best probabilities and corresponding features indices for every train feature. ::

    CvMemStorage* storage = cvCreateMemStorage(0);
    CvSeq *objectKeypoints = 0, *objectDescriptors = 0;
    CvSeq *imageKeypoints = 0, *imageDescriptors = 0;
    CvSURFParams params = cvSURFParams(500, 1);
    cvExtractSURF( test_image, 0, &imageKeypoints, &imageDescriptors,
                     storage, params );
    cvExtractSURF( train_image, 0, &objectKeypoints, &objectDescriptors,
                     storage, params );

    RTreeClassifier detector;
    int patch_width = PATCH_SIZE;
    iint patch_height = PATCH_SIZE;
    vector<BaseKeypoint> base_set;
    int i=0;
    CvSURFPoint* point;
    for (i=0;i<(n_points > 0 ? n_points : objectKeypoints->total);i++)
    {
            point=(CvSURFPoint*)cvGetSeqElem(objectKeypoints,i);
            base_set.push_back(
                    BaseKeypoint(point->pt.x,point->pt.y,train_image));
    }

            //Detector training
     RNG rng( cvGetTickCount() );
    PatchGenerator gen(0,255,2,false,0.7,1.3,-CV_PI/3,CV_PI/3,
                            -CV_PI/3,CV_PI/3);

    printf("RTree Classifier training...n");
    detector.train(base_set,rng,gen,24,DEFAULT_DEPTH,2000,
            (int)base_set.size(), detector.DEFAULT_NUM_QUANT_BITS);
    printf("Donen");

    float* signature = new float[detector.original_num_classes()];
    float* best_corr;
    int* best_corr_idx;
    if (imageKeypoints->total > 0)
    {
            best_corr = new float[imageKeypoints->total];
            best_corr_idx = new int[imageKeypoints->total];
    }

    for(i=0; i < imageKeypoints->total; i++)
    {
            point=(CvSURFPoint*)cvGetSeqElem(imageKeypoints,i);
            int part_idx = -1;
            float prob = 0.0f;

            CvRect roi = cvRect((int)(point->pt.x) - patch_width/2,
                    (int)(point->pt.y) - patch_height/2,
                     patch_width, patch_height);
            cvSetImageROI(test_image, roi);
            roi = cvGetImageROI(test_image);
            if(roi.width != patch_width || roi.height != patch_height)
            {
                    best_corr_idx[i] = part_idx;
                    best_corr[i] = prob;
            }
            else
            {
                    cvSetImageROI(test_image, roi);
                    IplImage* roi_image =
                             cvCreateImage(cvSize(roi.width, roi.height),
                             test_image->depth, test_image->nChannels);
                    cvCopy(test_image,roi_image);

                    detector.getSignature(roi_image, signature);
                    for (int j = 0; j< detector.original_num_classes();j++)
                    {
                            if (prob < signature[j])
                            {
                                    part_idx = j;
                                    prob = signature[j];
                            }
                    }

                    best_corr_idx[i] = part_idx;
                    best_corr[i] = prob;

                    if (roi_image)
                            cvReleaseImage(&roi_image);
            }
            cvResetImageROI(test_image);
    }

..