File: cv20squares.py

package info (click to toggle)
opencv 2.4.9.1%2Bdfsg-1%2Bdeb8u1
  • links: PTS, VCS
  • area: main
  • in suites: jessie
  • size: 126,800 kB
  • ctags: 62,729
  • sloc: xml: 509,055; cpp: 490,794; lisp: 23,208; python: 21,174; java: 19,317; ansic: 1,038; sh: 128; makefile: 72
file content (169 lines) | stat: -rwxr-xr-x 5,378 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#!/usr/bin/python

"""
Find Squares in image by finding countours and filtering
"""
#Results slightly different from C version on same images, but is
#otherwise ok

import math
import cv2.cv as cv

def angle(pt1, pt2, pt0):
    "calculate angle contained by 3 points(x, y)"
    dx1 = pt1[0] - pt0[0]
    dy1 = pt1[1] - pt0[1]
    dx2 = pt2[0] - pt0[0]
    dy2 = pt2[1] - pt0[1]

    nom = dx1*dx2 + dy1*dy2
    denom = math.sqrt( (dx1*dx1 + dy1*dy1) * (dx2*dx2 + dy2*dy2) + 1e-10 )
    ang = nom / denom
    return ang

def is_square(contour):
    """
    Squareness checker

    Square contours should:
        -have 4 vertices after approximation,
        -have relatively large area (to filter out noisy contours)
        -be convex.
        -have angles between sides close to 90deg (cos(ang) ~0 )
    Note: absolute value of an area is used because area may be
    positive or negative - in accordance with the contour orientation
    """

    area = math.fabs( cv.ContourArea(contour) )
    isconvex = cv.CheckContourConvexity(contour)
    s = 0
    if len(contour) == 4 and area > 1000 and isconvex:
        for i in range(1, 4):
            # find minimum angle between joint edges (maximum of cosine)
            pt1 = contour[i]
            pt2 = contour[i-1]
            pt0 = contour[i-2]

            t = math.fabs(angle(pt0, pt1, pt2))
            if s <= t:s = t

        # if cosines of all angles are small (all angles are ~90 degree)
        # then its a square
        if s < 0.3:return True

    return False

def find_squares_from_binary( gray ):
    """
    use contour search to find squares in binary image
    returns list of numpy arrays containing 4 points
    """
    squares = []
    storage = cv.CreateMemStorage(0)
    contours = cv.FindContours(gray, storage, cv.CV_RETR_TREE, cv.CV_CHAIN_APPROX_SIMPLE, (0,0))
    storage = cv.CreateMemStorage(0)
    while contours:
        #approximate contour with accuracy proportional to the contour perimeter
        arclength = cv.ArcLength(contours)
        polygon = cv.ApproxPoly( contours, storage, cv.CV_POLY_APPROX_DP, arclength * 0.02, 0)
        if is_square(polygon):
            squares.append(polygon[0:4])
        contours = contours.h_next()

    return squares

def find_squares4(color_img):
    """
    Finds multiple squares in image

    Steps:
    -Use Canny edge to highlight contours, and dilation to connect
    the edge segments.
    -Threshold the result to binary edge tokens
    -Use cv.FindContours: returns a cv.CvSequence of cv.CvContours
    -Filter each candidate: use Approx poly, keep only contours with 4 vertices,
    enough area, and ~90deg angles.

    Return all squares contours in one flat list of arrays, 4 x,y points each.
    """
    #select even sizes only
    width, height = (color_img.width & -2, color_img.height & -2 )
    timg = cv.CloneImage( color_img ) # make a copy of input image
    gray = cv.CreateImage( (width,height), 8, 1 )

    # select the maximum ROI in the image
    cv.SetImageROI( timg, (0, 0, width, height) )

    # down-scale and upscale the image to filter out the noise
    pyr = cv.CreateImage( (width/2, height/2), 8, 3 )
    cv.PyrDown( timg, pyr, 7 )
    cv.PyrUp( pyr, timg, 7 )

    tgray = cv.CreateImage( (width,height), 8, 1 )
    squares = []

    # Find squares in every color plane of the image
    # Two methods, we use both:
    # 1. Canny to catch squares with gradient shading. Use upper threshold
    # from slider, set the lower to 0 (which forces edges merging). Then
    # dilate canny output to remove potential holes between edge segments.
    # 2. Binary thresholding at multiple levels
    N = 11
    for c in [0, 1, 2]:
        #extract the c-th color plane
        cv.SetImageCOI( timg, c+1 );
        cv.Copy( timg, tgray, None );
        cv.Canny( tgray, gray, 0, 50, 5 )
        cv.Dilate( gray, gray)
        squares = squares + find_squares_from_binary( gray )

        # Look for more squares at several threshold levels
        for l in range(1, N):
            cv.Threshold( tgray, gray, (l+1)*255/N, 255, cv.CV_THRESH_BINARY )
            squares = squares + find_squares_from_binary( gray )

    return squares


RED = (0,0,255)
GREEN = (0,255,0)
def draw_squares( color_img, squares ):
    """
    Squares is py list containing 4-pt numpy arrays. Step through the list
    and draw a polygon for each 4-group
    """
    color, othercolor = RED, GREEN
    for square in squares:
        cv.PolyLine(color_img, [square], True, color, 3, cv.CV_AA, 0)
        color, othercolor = othercolor, color

    cv.ShowImage(WNDNAME, color_img)


WNDNAME = "Squares Demo"
def main():
    """Open test color images, create display window, start the search"""
    cv.NamedWindow(WNDNAME, 1)
    for name in [ "../c/pic%d.png" % i for i in [1, 2, 3, 4, 5, 6] ]:
        img0 = cv.LoadImage(name, 1)
        try:
            img0
        except ValueError:
            print "Couldn't load %s\n" % name
            continue

        # slider deleted from C version, same here and use fixed Canny param=50
        img = cv.CloneImage(img0)

        cv.ShowImage(WNDNAME, img)

        # force the image processing
        draw_squares( img, find_squares4( img ) )

        # wait for key.
        if cv.WaitKey(-1) % 0x100 == 27:
            break

if __name__ == "__main__":
    main()
    cv.DestroyAllWindows()