File: dmtx.py

package info (click to toggle)
opencv 2.4.9.1%2Bdfsg-1%2Bdeb8u1
  • links: PTS, VCS
  • area: main
  • in suites: jessie
  • size: 126,800 kB
  • ctags: 62,729
  • sloc: xml: 509,055; cpp: 490,794; lisp: 23,208; python: 21,174; java: 19,317; ansic: 1,038; sh: 128; makefile: 72
file content (184 lines) | stat: -rwxr-xr-x 6,435 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
#!/usr/bin/python

import cv2.cv as cv
import time
from pydmtx import DataMatrix
import numpy
import sys
import math

'''
Find 2 D barcode based on up to 3 channel datamatrix
'''

def absnorm8(im, im8):
    """ im may be any single-channel image type.  Return an 8-bit version, absolute value, normalized so that max is 255 """
    (minVal, maxVal, _, _) = cv.MinMaxLoc(im)
    cv.ConvertScaleAbs(im, im8, 255 / max(abs(minVal), abs(maxVal)), 0)
    return im8

font = cv.InitFont(cv.CV_FONT_HERSHEY_SIMPLEX, 1.0, 1.0, thickness = 2, lineType = cv.CV_AA)
if 0:
    started = time.time()
    print dm_write.decode(bg.width, bg.height, buffer(bg.tostring()), max_count = 1, min_edge = 12, max_edge = 13, shape = DataMatrix.DmtxSymbol10x10) # , timeout = 10)
    print "took", time.time() - started

class DmtxFinder:
    def __init__(self):
        self.cache = {}
        self.dm = DataMatrix()

    def Cached(self, name, rows, cols, type):
        key = (name, rows, cols)
        if not key in self.cache:
            self.cache[key] = cv.CreateMat(rows, cols, type)
        return self.cache[key]

    def find0(self, img):
        started = time.time()
        self.dm.decode(img.width,
                       img.height,
                       buffer(img.tostring()),
                       max_count = 4,
                       #min_edge = 6,
                       #max_edge = 19      # Units of 2 pixels
                       )
        print "brute", time.time() - started
        found = {}
        for i in range(self.dm.count()):
            stats = dm_read.stats(i + 1)
            print stats
            found[stats[0]] = stats[1]
        return found

    def find(self, img):
        started = time.time()
        gray = self.Cached('gray', img.height, img.width, cv.CV_8UC1)
        cv.CvtColor(img, gray, cv.CV_BGR2GRAY)

        sobel = self.Cached('sobel', img.height, img.width, cv.CV_16SC1)
        sobely = self.Cached('sobely', img.height, img.width, cv.CV_16SC1)

        cv.Sobel(gray, sobel, 1, 0)
        cv.Sobel(gray, sobely, 0, 1)
        cv.Add(sobel, sobely, sobel)

        sobel8 = self.Cached('sobel8', sobel.height, sobel.width, cv.CV_8UC1)
        absnorm8(sobel, sobel8)
        cv.Threshold(sobel8, sobel8, 128.0, 255.0, cv.CV_THRESH_BINARY)

        sobel_integral = self.Cached('sobel_integral', img.height + 1, img.width + 1, cv.CV_32SC1)
        cv.Integral(sobel8, sobel_integral)

        d = 16
        _x1y1 = cv.GetSubRect(sobel_integral, (0, 0, sobel_integral.cols - d, sobel_integral.rows - d))
        _x1y2 = cv.GetSubRect(sobel_integral, (0, d, sobel_integral.cols - d, sobel_integral.rows - d))
        _x2y1 = cv.GetSubRect(sobel_integral, (d, 0, sobel_integral.cols - d, sobel_integral.rows - d))
        _x2y2 = cv.GetSubRect(sobel_integral, (d, d, sobel_integral.cols - d, sobel_integral.rows - d))

        summation = cv.CloneMat(_x2y2)
        cv.Sub(summation, _x1y2, summation)
        cv.Sub(summation, _x2y1, summation)
        cv.Add(summation, _x1y1, summation)
        sum8 = self.Cached('sum8', summation.height, summation.width, cv.CV_8UC1)
        absnorm8(summation, sum8)
        cv.Threshold(sum8, sum8, 32.0, 255.0, cv.CV_THRESH_BINARY)

        cv.ShowImage("sum8", sum8)
        seq = cv.FindContours(sum8, cv.CreateMemStorage(), cv.CV_RETR_EXTERNAL)
        subimg = cv.GetSubRect(img, (d / 2, d / 2, sum8.cols, sum8.rows))
        t_cull = time.time() - started

        seqs = []
        while seq:
            seqs.append(seq)
            seq = seq.h_next()

        started = time.time()
        found = {}
        print 'seqs', len(seqs)
        for seq in seqs:
            area = cv.ContourArea(seq)
            if area > 1000:
                rect = cv.BoundingRect(seq)
                edge = int((14 / 14.) * math.sqrt(area) / 2 + 0.5)
                candidate = cv.GetSubRect(subimg, rect)
                sym = self.dm.decode(candidate.width,
                                     candidate.height,
                                     buffer(candidate.tostring()),
                                     max_count = 1,
                                     #min_edge = 6,
                                     #max_edge = int(edge)      # Units of 2 pixels
                                     )
                if sym:
                    onscreen = [(d / 2 + rect[0] + x, d / 2 + rect[1] + y) for (x, y) in self.dm.stats(1)[1]]
                    found[sym] = onscreen
                else:
                    print "FAILED"
        t_brute = time.time() - started
        print "cull took", t_cull, "brute", t_brute
        return found

bg = cv.CreateMat(1024, 1024, cv.CV_8UC3)
cv.Set(bg, cv.RGB(0, 0, 0))
df = DmtxFinder()

cv.NamedWindow("camera", 1)

def mkdmtx(msg):
    dm_write = DataMatrix()
    dm_write.encode(msg)
    pi = dm_write.image # .resize((14, 14))
    cv_im = cv.CreateImageHeader(pi.size, cv.IPL_DEPTH_8U, 3)
    cv.SetData(cv_im, pi.tostring())
    return cv_im

# test = [('WIL', (100,100))]: # , ('LOW', (250,100)), ('GAR', (300, 300)), ('AGE', (500, 300))]:

test = []
y = 10
for j in range(7):
    r = 28 + j * 4
    mr = r * math.sqrt(2)
    y += mr * 1.8
    test += [(str(deg) + "abcdefgh"[j], (50 + deg * 11, y), math.pi * deg / 180, r) for deg in range(0, 90, 10)]

for (msg, (x, y), angle, r) in test:
    map = cv.CreateMat(2, 3, cv.CV_32FC1)
    corners = [(x + r * math.cos(angle + th), y + r * math.sin(angle + th)) for th in [0, math.pi / 2, math.pi, 3 * math.pi / 4]]
    src = mkdmtx(msg)
    (sx, sy) = cv.GetSize(src)
    cv.GetAffineTransform([(0,0), (sx, 0), (sx, sy)], corners[:3], map)
    temp = cv.CreateMat(bg.rows, bg.cols, cv.CV_8UC3)
    cv.Set(temp, cv.RGB(0, 0, 0))
    cv.WarpAffine(src, temp, map)
    cv.Or(temp, bg, bg)


cv.ShowImage("comp", bg)
scribble = cv.CloneMat(bg)

if 0:
    for i in range(10):
        df.find(bg)

for (sym, coords) in df.find(bg).items():
    print sym
    cv.PolyLine(scribble, [coords], 1, cv.CV_RGB(255, 0,0), 1, lineType = cv.CV_AA)
    Xs = [x for (x, y) in coords]
    Ys = [y for (x, y) in coords]
    where = ((min(Xs) + max(Xs)) / 2, max(Ys) - 50)
    cv.PutText(scribble, sym, where, font, cv.RGB(0,255, 0))

cv.ShowImage("results", scribble)
cv.WaitKey()
cv.DestroyAllWindows()

sys.exit(0)

capture = cv.CaptureFromCAM(0)
while True:
    img = cv.QueryFrame(capture)
    cv.ShowImage("capture", img)
    print df.find(img)
    cv.WaitKey(6)