File: squares.py

package info (click to toggle)
opencv 2.4.9.1%2Bdfsg-1%2Bdeb8u1
  • links: PTS, VCS
  • area: main
  • in suites: jessie
  • size: 126,800 kB
  • ctags: 62,729
  • sloc: xml: 509,055; cpp: 490,794; lisp: 23,208; python: 21,174; java: 19,317; ansic: 1,038; sh: 128; makefile: 72
file content (153 lines) | stat: -rwxr-xr-x 5,815 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#!/usr/bin/python
#
# The full "Square Detector" program.
# It loads several images subsequentally and tries to find squares in
# each image
#

import urllib2
from math import sqrt
import cv2.cv as cv

thresh = 50
img = None
img0 = None
storage = None
wndname = "Square Detection Demo"

def angle(pt1, pt2, pt0):
    dx1 = pt1.x - pt0.x
    dy1 = pt1.y - pt0.y
    dx2 = pt2.x - pt0.x
    dy2 = pt2.y - pt0.y
    return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10)

def findSquares4(img, storage):
    N = 11
    sz = (img.width & -2, img.height & -2)
    timg = cv.CloneImage(img); # make a copy of input image
    gray = cv.CreateImage(sz, 8, 1)
    pyr = cv.CreateImage((sz.width/2, sz.height/2), 8, 3)
    # create empty sequence that will contain points -
    # 4 points per square (the square's vertices)
    squares = cv.CreateSeq(0, sizeof_CvSeq, sizeof_CvPoint, storage)
    squares = CvSeq_CvPoint.cast(squares)

    # select the maximum ROI in the image
    # with the width and height divisible by 2
    subimage = cv.GetSubRect(timg, cv.Rect(0, 0, sz.width, sz.height))

    # down-scale and upscale the image to filter out the noise
    cv.PyrDown(subimage, pyr, 7)
    cv.PyrUp(pyr, subimage, 7)
    tgray = cv.CreateImage(sz, 8, 1)
    # find squares in every color plane of the image
    for c in range(3):
        # extract the c-th color plane
        channels = [None, None, None]
        channels[c] = tgray
        cv.Split(subimage, channels[0], channels[1], channels[2], None)
        for l in range(N):
            # hack: use Canny instead of zero threshold level.
            # Canny helps to catch squares with gradient shading
            if(l == 0):
                # apply Canny. Take the upper threshold from slider
                # and set the lower to 0 (which forces edges merging)
                cv.Canny(tgray, gray, 0, thresh, 5)
                # dilate canny output to remove potential
                # holes between edge segments
                cv.Dilate(gray, gray, None, 1)
            else:
                # apply threshold if l!=0:
                #     tgray(x, y) = gray(x, y) < (l+1)*255/N ? 255 : 0
                cv.Threshold(tgray, gray, (l+1)*255/N, 255, cv.CV_THRESH_BINARY)

            # find contours and store them all as a list
            count, contours = cv.FindContours(gray, storage, sizeof_CvContour,
                cv.CV_RETR_LIST, cv. CV_CHAIN_APPROX_SIMPLE, (0, 0))

            if not contours:
                continue

            # test each contour
            for contour in contours.hrange():
                # approximate contour with accuracy proportional
                # to the contour perimeter
                result = cv.ApproxPoly(contour, sizeof_CvContour, storage,
                    cv.CV_POLY_APPROX_DP, cv.ContourPerimeter(contours)*0.02, 0)
                # square contours should have 4 vertices after approximation
                # relatively large area (to filter out noisy contours)
                # and be convex.
                # Note: absolute value of an area is used because
                # area may be positive or negative - in accordance with the
                # contour orientation
                if(result.total == 4 and
                    abs(cv.ContourArea(result)) > 1000 and
                    cv.CheckContourConvexity(result)):
                    s = 0
                    for i in range(5):
                        # find minimum angle between joint
                        # edges (maximum of cosine)
                        if(i >= 2):
                            t = abs(angle(result[i], result[i-2], result[i-1]))
                            if s<t:
                                s=t
                    # if cosines of all angles are small
                    # (all angles are ~90 degree) then write quandrange
                    # vertices to resultant sequence
                    if(s < 0.3):
                        for i in range(4):
                            squares.append(result[i])

    return squares

# the function draws all the squares in the image
def drawSquares(img, squares):
    cpy = cv.CloneImage(img)
    # read 4 sequence elements at a time (all vertices of a square)
    i=0
    while i<squares.total:
        pt = []
        # read 4 vertices
        pt.append(squares[i])
        pt.append(squares[i+1])
        pt.append(squares[i+2])
        pt.append(squares[i+3])

        # draw the square as a closed polyline
        cv.PolyLine(cpy, [pt], 1, cv.CV_RGB(0, 255, 0), 3, cv. CV_AA, 0)
        i+=4

    # show the resultant image
    cv.ShowImage(wndname, cpy)

def on_trackbar(a):
    if(img):
        drawSquares(img, findSquares4(img, storage))

names =  ["../c/pic1.png", "../c/pic2.png", "../c/pic3.png",
          "../c/pic4.png", "../c/pic5.png", "../c/pic6.png" ]

if __name__ == "__main__":
    # create memory storage that will contain all the dynamic data
    storage = cv.CreateMemStorage(0)
    for name in names:
        img0 = cv.LoadImage(name, 1)
        if not img0:
            print "Couldn't load %s" % name
            continue
        img = cv.CloneImage(img0)
        # create window and a trackbar (slider) with parent "image" and set callback
        # (the slider regulates upper threshold, passed to Canny edge detector)
        cv.NamedWindow(wndname, 1)
        cv.CreateTrackbar("canny thresh", wndname, thresh, 1000, on_trackbar)
        # force the image processing
        on_trackbar(0)
        # wait for key.
        # Also the function cv.WaitKey takes care of event processing
        c = cv.WaitKey(0) % 0x100
        # clear memory storage - reset free space position
        cv.ClearMemStorage(storage)
        if(c == '\x1b'):
            break
    cv.DestroyWindow(wndname)