File: digits_adjust.py

package info (click to toggle)
opencv 2.4.9.1%2Bdfsg-1%2Bdeb8u1
  • links: PTS, VCS
  • area: main
  • in suites: jessie
  • size: 126,800 kB
  • ctags: 62,729
  • sloc: xml: 509,055; cpp: 490,794; lisp: 23,208; python: 21,174; java: 19,317; ansic: 1,038; sh: 128; makefile: 72
file content (164 lines) | stat: -rwxr-xr-x 5,446 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
#!/usr/bin/env python

'''
Digit recognition adjustment.
Grid search is used to find the best parameters for SVM and KNearest classifiers.
SVM adjustment follows the guidelines given in
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

Threading or cloud computing (with http://www.picloud.com/)) may be used
to speedup the computation.

Usage:
  digits_adjust.py [--model {svm|knearest}] [--cloud] [--env <PiCloud environment>]

  --model {svm|knearest}   - select the classifier (SVM is the default)
  --cloud                  - use PiCloud computing platform
  --env                    - cloud environment name

'''
# TODO cloud env setup tutorial

import numpy as np
import cv2
from multiprocessing.pool import ThreadPool

from digits import *

try:
    import cloud
    have_cloud = True
except ImportError:
    have_cloud = False



def cross_validate(model_class, params, samples, labels, kfold = 3, pool = None):
    n = len(samples)
    folds = np.array_split(np.arange(n), kfold)
    def f(i):
        model = model_class(**params)
        test_idx = folds[i]
        train_idx = list(folds)
        train_idx.pop(i)
        train_idx = np.hstack(train_idx)
        train_samples, train_labels = samples[train_idx], labels[train_idx]
        test_samples, test_labels = samples[test_idx], labels[test_idx]
        model.train(train_samples, train_labels)
        resp = model.predict(test_samples)
        score = (resp != test_labels).mean()
        print ".",
        return score
    if pool is None:
        scores = map(f, xrange(kfold))
    else:
        scores = pool.map(f, xrange(kfold))
    return np.mean(scores)


class App(object):
    def __init__(self, usecloud=False, cloud_env=''):
        if usecloud and not have_cloud:
            print 'warning: cloud module is not installed, running locally'
            usecloud = False
        self.usecloud = usecloud
        self.cloud_env = cloud_env

        if self.usecloud:
            print 'uploading dataset to cloud...'
            cloud.files.put(DIGITS_FN)
            self.preprocess_job = cloud.call(self.preprocess, _env=self.cloud_env)
        else:
            self._samples, self._labels = self.preprocess()

    def preprocess(self):
        if self.usecloud:
            cloud.files.get(DIGITS_FN)
        digits, labels = load_digits(DIGITS_FN)
        shuffle = np.random.permutation(len(digits))
        digits, labels = digits[shuffle], labels[shuffle]
        digits2 = map(deskew, digits)
        samples = preprocess_hog(digits2)
        return samples, labels

    def get_dataset(self):
        if self.usecloud:
            return cloud.result(self.preprocess_job)
        else:
            return self._samples, self._labels

    def run_jobs(self, f, jobs):
        if self.usecloud:
            jids = cloud.map(f, jobs, _env=self.cloud_env, _profile=True, _depends_on=self.preprocess_job)
            ires = cloud.iresult(jids)
        else:
            pool = ThreadPool(processes=cv2.getNumberOfCPUs())
            ires = pool.imap_unordered(f, jobs)
        return ires

    def adjust_SVM(self):
        Cs = np.logspace(0, 10, 15, base=2)
        gammas = np.logspace(-7, 4, 15, base=2)
        scores = np.zeros((len(Cs), len(gammas)))
        scores[:] = np.nan

        print 'adjusting SVM (may take a long time) ...'
        def f(job):
            i, j = job
            samples, labels = self.get_dataset()
            params = dict(C = Cs[i], gamma=gammas[j])
            score = cross_validate(SVM, params, samples, labels)
            return i, j, score

        ires = self.run_jobs(f, np.ndindex(*scores.shape))
        for count, (i, j, score) in enumerate(ires):
            scores[i, j] = score
            print '%d / %d (best error: %.2f %%, last: %.2f %%)' % (count+1, scores.size, np.nanmin(scores)*100, score*100)
        print scores

        print 'writing score table to "svm_scores.npz"'
        np.savez('svm_scores.npz', scores=scores, Cs=Cs, gammas=gammas)

        i, j = np.unravel_index(scores.argmin(), scores.shape)
        best_params = dict(C = Cs[i], gamma=gammas[j])
        print 'best params:', best_params
        print 'best error: %.2f %%' % (scores.min()*100)
        return best_params

    def adjust_KNearest(self):
        print 'adjusting KNearest ...'
        def f(k):
            samples, labels = self.get_dataset()
            err = cross_validate(KNearest, dict(k=k), samples, labels)
            return k, err
        best_err, best_k = np.inf, -1
        for k, err in self.run_jobs(f, xrange(1, 9)):
            if err < best_err:
                best_err, best_k = err, k
            print 'k = %d, error: %.2f %%' % (k, err*100)
        best_params = dict(k=best_k)
        print 'best params:', best_params, 'err: %.2f' % (best_err*100)
        return best_params


if __name__ == '__main__':
    import getopt
    import sys

    print __doc__

    args, _ = getopt.getopt(sys.argv[1:], '', ['model=', 'cloud', 'env='])
    args = dict(args)
    args.setdefault('--model', 'svm')
    args.setdefault('--env', '')
    if args['--model'] not in ['svm', 'knearest']:
        print 'unknown model "%s"' % args['--model']
        sys.exit(1)

    t = clock()
    app = App(usecloud='--cloud' in args, cloud_env = args['--env'])
    if args['--model'] == 'knearest':
        app.adjust_KNearest()
    else:
        app.adjust_SVM()
    print 'work time: %f s' % (clock() - t)