File: find_obj.py

package info (click to toggle)
opencv 2.4.9.1%2Bdfsg-1%2Bdeb8u1
  • links: PTS, VCS
  • area: main
  • in suites: jessie
  • size: 126,800 kB
  • ctags: 62,729
  • sloc: xml: 509,055; cpp: 490,794; lisp: 23,208; python: 21,174; java: 19,317; ansic: 1,038; sh: 128; makefile: 72
file content (167 lines) | stat: -rwxr-xr-x 5,670 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
#!/usr/bin/env python

'''
Feature-based image matching sample.

USAGE
  find_obj.py [--feature=<sift|surf|orb>[-flann]] [ <image1> <image2> ]

  --feature  - Feature to use. Can be sift, surf of orb. Append '-flann' to feature name
                to use Flann-based matcher instead bruteforce.

  Press left mouse button on a feature point to see its matching point.
'''

import numpy as np
import cv2
from common import anorm, getsize

FLANN_INDEX_KDTREE = 1  # bug: flann enums are missing
FLANN_INDEX_LSH    = 6


def init_feature(name):
    chunks = name.split('-')
    if chunks[0] == 'sift':
        detector = cv2.SIFT()
        norm = cv2.NORM_L2
    elif chunks[0] == 'surf':
        detector = cv2.SURF(800)
        norm = cv2.NORM_L2
    elif chunks[0] == 'orb':
        detector = cv2.ORB(400)
        norm = cv2.NORM_HAMMING
    else:
        return None, None
    if 'flann' in chunks:
        if norm == cv2.NORM_L2:
            flann_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
        else:
            flann_params= dict(algorithm = FLANN_INDEX_LSH,
                               table_number = 6, # 12
                               key_size = 12,     # 20
                               multi_probe_level = 1) #2
        matcher = cv2.FlannBasedMatcher(flann_params, {})  # bug : need to pass empty dict (#1329)
    else:
        matcher = cv2.BFMatcher(norm)
    return detector, matcher


def filter_matches(kp1, kp2, matches, ratio = 0.75):
    mkp1, mkp2 = [], []
    for m in matches:
        if len(m) == 2 and m[0].distance < m[1].distance * ratio:
            m = m[0]
            mkp1.append( kp1[m.queryIdx] )
            mkp2.append( kp2[m.trainIdx] )
    p1 = np.float32([kp.pt for kp in mkp1])
    p2 = np.float32([kp.pt for kp in mkp2])
    kp_pairs = zip(mkp1, mkp2)
    return p1, p2, kp_pairs

def explore_match(win, img1, img2, kp_pairs, status = None, H = None):
    h1, w1 = img1.shape[:2]
    h2, w2 = img2.shape[:2]
    vis = np.zeros((max(h1, h2), w1+w2), np.uint8)
    vis[:h1, :w1] = img1
    vis[:h2, w1:w1+w2] = img2
    vis = cv2.cvtColor(vis, cv2.COLOR_GRAY2BGR)

    if H is not None:
        corners = np.float32([[0, 0], [w1, 0], [w1, h1], [0, h1]])
        corners = np.int32( cv2.perspectiveTransform(corners.reshape(1, -1, 2), H).reshape(-1, 2) + (w1, 0) )
        cv2.polylines(vis, [corners], True, (255, 255, 255))

    if status is None:
        status = np.ones(len(kp_pairs), np.bool_)
    p1 = np.int32([kpp[0].pt for kpp in kp_pairs])
    p2 = np.int32([kpp[1].pt for kpp in kp_pairs]) + (w1, 0)

    green = (0, 255, 0)
    red = (0, 0, 255)
    white = (255, 255, 255)
    kp_color = (51, 103, 236)
    for (x1, y1), (x2, y2), inlier in zip(p1, p2, status):
        if inlier:
            col = green
            cv2.circle(vis, (x1, y1), 2, col, -1)
            cv2.circle(vis, (x2, y2), 2, col, -1)
        else:
            col = red
            r = 2
            thickness = 3
            cv2.line(vis, (x1-r, y1-r), (x1+r, y1+r), col, thickness)
            cv2.line(vis, (x1-r, y1+r), (x1+r, y1-r), col, thickness)
            cv2.line(vis, (x2-r, y2-r), (x2+r, y2+r), col, thickness)
            cv2.line(vis, (x2-r, y2+r), (x2+r, y2-r), col, thickness)
    vis0 = vis.copy()
    for (x1, y1), (x2, y2), inlier in zip(p1, p2, status):
        if inlier:
            cv2.line(vis, (x1, y1), (x2, y2), green)

    cv2.imshow(win, vis)
    def onmouse(event, x, y, flags, param):
        cur_vis = vis
        if flags & cv2.EVENT_FLAG_LBUTTON:
            cur_vis = vis0.copy()
            r = 8
            m = (anorm(p1 - (x, y)) < r) | (anorm(p2 - (x, y)) < r)
            idxs = np.where(m)[0]
            kp1s, kp2s = [], []
            for i in idxs:
                 (x1, y1), (x2, y2) = p1[i], p2[i]
                 col = (red, green)[status[i]]
                 cv2.line(cur_vis, (x1, y1), (x2, y2), col)
                 kp1, kp2 = kp_pairs[i]
                 kp1s.append(kp1)
                 kp2s.append(kp2)
            cur_vis = cv2.drawKeypoints(cur_vis, kp1s, flags=4, color=kp_color)
            cur_vis[:,w1:] = cv2.drawKeypoints(cur_vis[:,w1:], kp2s, flags=4, color=kp_color)

        cv2.imshow(win, cur_vis)
    cv2.setMouseCallback(win, onmouse)
    return vis


if __name__ == '__main__':
    print __doc__

    import sys, getopt
    opts, args = getopt.getopt(sys.argv[1:], '', ['feature='])
    opts = dict(opts)
    feature_name = opts.get('--feature', 'sift')
    try: fn1, fn2 = args
    except:
        fn1 = '../c/box.png'
        fn2 = '../c/box_in_scene.png'

    img1 = cv2.imread(fn1, 0)
    img2 = cv2.imread(fn2, 0)
    detector, matcher = init_feature(feature_name)
    if detector != None:
        print 'using', feature_name
    else:
        print 'unknown feature:', feature_name
        sys.exit(1)


    kp1, desc1 = detector.detectAndCompute(img1, None)
    kp2, desc2 = detector.detectAndCompute(img2, None)
    print 'img1 - %d features, img2 - %d features' % (len(kp1), len(kp2))

    def match_and_draw(win):
        print 'matching...'
        raw_matches = matcher.knnMatch(desc1, trainDescriptors = desc2, k = 2) #2
        p1, p2, kp_pairs = filter_matches(kp1, kp2, raw_matches)
        if len(p1) >= 4:
            H, status = cv2.findHomography(p1, p2, cv2.RANSAC, 5.0)
            print '%d / %d  inliers/matched' % (np.sum(status), len(status))
        else:
            H, status = None, None
            print '%d matches found, not enough for homography estimation' % len(p1)

        vis = explore_match(win, img1, img2, kp_pairs, status, H)

    match_and_draw('find_obj')
    cv2.waitKey()
    cv2.destroyAllWindows()