File: gabor_threads.py

package info (click to toggle)
opencv 2.4.9.1%2Bdfsg-1%2Bdeb8u1
  • links: PTS, VCS
  • area: main
  • in suites: jessie
  • size: 126,800 kB
  • ctags: 62,729
  • sloc: xml: 509,055; cpp: 490,794; lisp: 23,208; python: 21,174; java: 19,317; ansic: 1,038; sh: 128; makefile: 72
file content (67 lines) | stat: -rwxr-xr-x 1,704 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
#!/usr/bin/env python

'''
gabor_threads.py
=========

Sample demonstrates:
- use of multiple Gabor filter convolutions to get Fractalius-like image effect (http://www.redfieldplugins.com/filterFractalius.htm)
- use of python threading to accelerate the computation

Usage
-----
gabor_threads.py [image filename]

'''

import numpy as np
import cv2
from multiprocessing.pool import ThreadPool


def build_filters():
    filters = []
    ksize = 31
    for theta in np.arange(0, np.pi, np.pi / 16):
        kern = cv2.getGaborKernel((ksize, ksize), 4.0, theta, 10.0, 0.5, 0, ktype=cv2.CV_32F)
        kern /= 1.5*kern.sum()
        filters.append(kern)
    return filters

def process(img, filters):
    accum = np.zeros_like(img)
    for kern in filters:
        fimg = cv2.filter2D(img, cv2.CV_8UC3, kern)
        np.maximum(accum, fimg, accum)
    return accum

def process_threaded(img, filters, threadn = 8):
    accum = np.zeros_like(img)
    def f(kern):
        return cv2.filter2D(img, cv2.CV_8UC3, kern)
    pool = ThreadPool(processes=threadn)
    for fimg in pool.imap_unordered(f, filters):
        np.maximum(accum, fimg, accum)
    return accum

if __name__ == '__main__':
    import sys
    from common import Timer

    print __doc__
    try: img_fn = sys.argv[1]
    except: img_fn = '../cpp/baboon.jpg'

    img = cv2.imread(img_fn)
    filters = build_filters()

    with Timer('running single-threaded'):
        res1 = process(img, filters)
    with Timer('running multi-threaded'):
        res2 = process_threaded(img, filters)

    print 'res1 == res2: ', (res1 == res2).all()
    cv2.imshow('img', img)
    cv2.imshow('result', res2)
    cv2.waitKey()
    cv2.destroyAllWindows()