File: mosse.py

package info (click to toggle)
opencv 2.4.9.1%2Bdfsg-1%2Bdeb8u1
  • links: PTS, VCS
  • area: main
  • in suites: jessie
  • size: 126,800 kB
  • ctags: 62,729
  • sloc: xml: 509,055; cpp: 490,794; lisp: 23,208; python: 21,174; java: 19,317; ansic: 1,038; sh: 128; makefile: 72
file content (188 lines) | stat: -rwxr-xr-x 6,281 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
#!/usr/bin/env python

'''
MOSSE tracking sample

This sample implements correlation-based tracking approach, described in [1].

Usage:
  mosse.py [--pause] [<video source>]

  --pause  -  Start with playback paused at the first video frame.
              Useful for tracking target selection.

  Draw rectangles around objects with a mouse to track them.

Keys:
  SPACE    - pause video
  c        - clear targets

[1] David S. Bolme et al. "Visual Object Tracking using Adaptive Correlation Filters"
    http://www.cs.colostate.edu/~bolme/publications/Bolme2010Tracking.pdf
'''

import numpy as np
import cv2
from common import draw_str, RectSelector
import video

def rnd_warp(a):
    h, w = a.shape[:2]
    T = np.zeros((2, 3))
    coef = 0.2
    ang = (np.random.rand()-0.5)*coef
    c, s = np.cos(ang), np.sin(ang)
    T[:2, :2] = [[c,-s], [s, c]]
    T[:2, :2] += (np.random.rand(2, 2) - 0.5)*coef
    c = (w/2, h/2)
    T[:,2] = c - np.dot(T[:2, :2], c)
    return cv2.warpAffine(a, T, (w, h), borderMode = cv2.BORDER_REFLECT)

def divSpec(A, B):
    Ar, Ai = A[...,0], A[...,1]
    Br, Bi = B[...,0], B[...,1]
    C = (Ar+1j*Ai)/(Br+1j*Bi)
    C = np.dstack([np.real(C), np.imag(C)]).copy()
    return C

eps = 1e-5

class MOSSE:
    def __init__(self, frame, rect):
        x1, y1, x2, y2 = rect
        w, h = map(cv2.getOptimalDFTSize, [x2-x1, y2-y1])
        x1, y1 = (x1+x2-w)//2, (y1+y2-h)//2
        self.pos = x, y = x1+0.5*(w-1), y1+0.5*(h-1)
        self.size = w, h
        img = cv2.getRectSubPix(frame, (w, h), (x, y))

        self.win = cv2.createHanningWindow((w, h), cv2.CV_32F)
        g = np.zeros((h, w), np.float32)
        g[h//2, w//2] = 1
        g = cv2.GaussianBlur(g, (-1, -1), 2.0)
        g /= g.max()

        self.G = cv2.dft(g, flags=cv2.DFT_COMPLEX_OUTPUT)
        self.H1 = np.zeros_like(self.G)
        self.H2 = np.zeros_like(self.G)
        for i in xrange(128):
            a = self.preprocess(rnd_warp(img))
            A = cv2.dft(a, flags=cv2.DFT_COMPLEX_OUTPUT)
            self.H1 += cv2.mulSpectrums(self.G, A, 0, conjB=True)
            self.H2 += cv2.mulSpectrums(     A, A, 0, conjB=True)
        self.update_kernel()
        self.update(frame)

    def update(self, frame, rate = 0.125):
        (x, y), (w, h) = self.pos, self.size
        self.last_img = img = cv2.getRectSubPix(frame, (w, h), (x, y))
        img = self.preprocess(img)
        self.last_resp, (dx, dy), self.psr = self.correlate(img)
        self.good = self.psr > 8.0
        if not self.good:
            return

        self.pos = x+dx, y+dy
        self.last_img = img = cv2.getRectSubPix(frame, (w, h), self.pos)
        img = self.preprocess(img)

        A = cv2.dft(img, flags=cv2.DFT_COMPLEX_OUTPUT)
        H1 = cv2.mulSpectrums(self.G, A, 0, conjB=True)
        H2 = cv2.mulSpectrums(     A, A, 0, conjB=True)
        self.H1 = self.H1 * (1.0-rate) + H1 * rate
        self.H2 = self.H2 * (1.0-rate) + H2 * rate
        self.update_kernel()

    @property
    def state_vis(self):
        f = cv2.idft(self.H, flags=cv2.DFT_SCALE | cv2.DFT_REAL_OUTPUT )
        h, w = f.shape
        f = np.roll(f, -h//2, 0)
        f = np.roll(f, -w//2, 1)
        kernel = np.uint8( (f-f.min()) / f.ptp()*255 )
        resp = self.last_resp
        resp = np.uint8(np.clip(resp/resp.max(), 0, 1)*255)
        vis = np.hstack([self.last_img, kernel, resp])
        return vis

    def draw_state(self, vis):
        (x, y), (w, h) = self.pos, self.size
        x1, y1, x2, y2 = int(x-0.5*w), int(y-0.5*h), int(x+0.5*w), int(y+0.5*h)
        cv2.rectangle(vis, (x1, y1), (x2, y2), (0, 0, 255))
        if self.good:
            cv2.circle(vis, (int(x), int(y)), 2, (0, 0, 255), -1)
        else:
            cv2.line(vis, (x1, y1), (x2, y2), (0, 0, 255))
            cv2.line(vis, (x2, y1), (x1, y2), (0, 0, 255))
        draw_str(vis, (x1, y2+16), 'PSR: %.2f' % self.psr)

    def preprocess(self, img):
        img = np.log(np.float32(img)+1.0)
        img = (img-img.mean()) / (img.std()+eps)
        return img*self.win

    def correlate(self, img):
        C = cv2.mulSpectrums(cv2.dft(img, flags=cv2.DFT_COMPLEX_OUTPUT), self.H, 0, conjB=True)
        resp = cv2.idft(C, flags=cv2.DFT_SCALE | cv2.DFT_REAL_OUTPUT)
        h, w = resp.shape
        _, mval, _, (mx, my) = cv2.minMaxLoc(resp)
        side_resp = resp.copy()
        cv2.rectangle(side_resp, (mx-5, my-5), (mx+5, my+5), 0, -1)
        smean, sstd = side_resp.mean(), side_resp.std()
        psr = (mval-smean) / (sstd+eps)
        return resp, (mx-w//2, my-h//2), psr

    def update_kernel(self):
        self.H = divSpec(self.H1, self.H2)
        self.H[...,1] *= -1

class App:
    def __init__(self, video_src, paused = False):
        self.cap = video.create_capture(video_src)
        _, self.frame = self.cap.read()
        cv2.imshow('frame', self.frame)
        self.rect_sel = RectSelector('frame', self.onrect)
        self.trackers = []
        self.paused = paused

    def onrect(self, rect):
        frame_gray = cv2.cvtColor(self.frame, cv2.COLOR_BGR2GRAY)
        tracker = MOSSE(frame_gray, rect)
        self.trackers.append(tracker)

    def run(self):
        while True:
            if not self.paused:
                ret, self.frame = self.cap.read()
                if not ret:
                    break
                frame_gray = cv2.cvtColor(self.frame, cv2.COLOR_BGR2GRAY)
                for tracker in self.trackers:
                    tracker.update(frame_gray)

            vis = self.frame.copy()
            for tracker in self.trackers:
                tracker.draw_state(vis)
            if len(self.trackers) > 0:
                cv2.imshow('tracker state', self.trackers[-1].state_vis)
            self.rect_sel.draw(vis)

            cv2.imshow('frame', vis)
            ch = cv2.waitKey(10)
            if ch == 27:
                break
            if ch == ord(' '):
                self.paused = not self.paused
            if ch == ord('c'):
                self.trackers = []


if __name__ == '__main__':
    print __doc__
    import sys, getopt
    opts, args = getopt.getopt(sys.argv[1:], '', ['pause'])
    opts = dict(opts)
    try: video_src = args[0]
    except: video_src = '0'

    App(video_src, paused = '--pause' in opts).run()