File: video_threaded.py

package info (click to toggle)
opencv 2.4.9.1%2Bdfsg-1%2Bdeb8u1
  • links: PTS, VCS
  • area: main
  • in suites: jessie
  • size: 126,800 kB
  • ctags: 62,729
  • sloc: xml: 509,055; cpp: 490,794; lisp: 23,208; python: 21,174; java: 19,317; ansic: 1,038; sh: 128; makefile: 72
file content (85 lines) | stat: -rwxr-xr-x 2,283 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#!/usr/bin/env python

'''
Multithreaded video processing sample.
Usage:
   video_threaded.py {<video device number>|<video file name>}

   Shows how python threading capabilities can be used
   to organize parallel captured frame processing pipeline
   for smoother playback.

Keyboard shortcuts:

   ESC - exit
   space - switch between multi and single threaded processing
'''


import numpy as np
import cv2

from multiprocessing.pool import ThreadPool
from collections import deque

from common import clock, draw_str, StatValue
import video


class DummyTask:
    def __init__(self, data):
        self.data = data
    def ready(self):
        return True
    def get(self):
        return self.data

if __name__ == '__main__':
    import sys

    print __doc__

    try: fn = sys.argv[1]
    except: fn = 0
    cap = video.create_capture(fn)


    def process_frame(frame, t0):
        # some intensive computation...
        frame = cv2.medianBlur(frame, 19)
        frame = cv2.medianBlur(frame, 19)
        return frame, t0

    threadn = cv2.getNumberOfCPUs()
    pool = ThreadPool(processes = threadn)
    pending = deque()

    threaded_mode = True

    latency = StatValue()
    frame_interval = StatValue()
    last_frame_time = clock()
    while True:
        while len(pending) > 0 and pending[0].ready():
            res, t0 = pending.popleft().get()
            latency.update(clock() - t0)
            draw_str(res, (20, 20), "threaded      :  " + str(threaded_mode))
            draw_str(res, (20, 40), "latency        :  %.1f ms" % (latency.value*1000))
            draw_str(res, (20, 60), "frame interval :  %.1f ms" % (frame_interval.value*1000))
            cv2.imshow('threaded video', res)
        if len(pending) < threadn:
            ret, frame = cap.read()
            t = clock()
            frame_interval.update(t - last_frame_time)
            last_frame_time = t
            if threaded_mode:
                task = pool.apply_async(process_frame, (frame.copy(), t))
            else:
                task = DummyTask(process_frame(frame, t))
            pending.append(task)
        ch = 0xFF & cv2.waitKey(1)
        if ch == ord(' '):
            threaded_mode = not threaded_mode
        if ch == 27:
            break
cv2.destroyAllWindows()