File: test_kmeans.cpp

package info (click to toggle)
opencv 2.4.9.1%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 124,160 kB
  • ctags: 63,847
  • sloc: xml: 509,055; cpp: 490,794; lisp: 23,208; python: 21,174; java: 19,317; ansic: 1,038; sh: 128; makefile: 80
file content (235 lines) | stat: -rw-r--r-- 8,234 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
//    Erping Pang,   pang_er_ping@163.com
//    Xiaopeng Fu,   fuxiaopeng2222@163.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "test_precomp.hpp"

#ifdef HAVE_OPENCL

using namespace cvtest;
using namespace testing;
using namespace std;
using namespace cv;

#define OCL_KMEANS_USE_INITIAL_LABELS 1
#define OCL_KMEANS_PP_CENTERS         2

PARAM_TEST_CASE(Kmeans, int, int, int)
{
    int type;
    int K;
    int flags;
    Mat src ;
    ocl::oclMat d_src, d_dists;

    Mat labels, centers;
    ocl::oclMat d_labels, d_centers;
    virtual void SetUp()
    {
        K = GET_PARAM(0);
        type = GET_PARAM(1);
        flags = GET_PARAM(2);

        // MWIDTH=256, MHEIGHT=256. defined in utility.hpp
        Size size = Size(MWIDTH, MHEIGHT);
        src.create(size, type);
        int row_idx = 0;
        const int max_neighbour = MHEIGHT / K - 1;
        CV_Assert(K <= MWIDTH);
        for(int i = 0; i < K; i++ )
        {
            Mat center_row_header = src.row(row_idx);
            center_row_header.setTo(0);
            int nchannel = center_row_header.channels();
            for(int j = 0; j < nchannel; j++)
                center_row_header.at<float>(0, i*nchannel+j) = 50000.0;

            for(int j = 0; (j < max_neighbour) ||
                           (i == K-1 && j < max_neighbour + MHEIGHT%K); j ++)
            {
                Mat cur_row_header = src.row(row_idx + 1 + j);
                center_row_header.copyTo(cur_row_header);
                Mat tmpmat = randomMat(cur_row_header.size(), cur_row_header.type(), -200, 200, false);
                cur_row_header += tmpmat;
            }
            row_idx += 1 + max_neighbour;
        }
    }
};
OCL_TEST_P(Kmeans, Mat){
    if(flags & KMEANS_USE_INITIAL_LABELS)
    {
        // inital a given labels
        labels.create(src.rows, 1, CV_32S);
        int *label = labels.ptr<int>();
        for(int i = 0; i < src.rows; i++)
            label[i] = rng.uniform(0, K);
        d_labels.upload(labels);
    }
    d_src.upload(src);

    for(int j = 0; j < LOOP_TIMES; j++)
    {
        kmeans(src, K, labels,
            TermCriteria( CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 100, 0),
            1, flags, centers);
        ocl::kmeans(d_src, K, d_labels,
            TermCriteria( CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 100, 0),
            1, flags, d_centers);
        Mat dd_labels(d_labels);
        Mat dd_centers(d_centers);
        if(flags & KMEANS_USE_INITIAL_LABELS)
        {
            EXPECT_MAT_NEAR(labels, dd_labels, 0);
            EXPECT_MAT_NEAR(centers, dd_centers, 1e-3);
        }
        else
        {
            int row_idx = 0;
            for(int i = 0; i < K; i++)
            {
                // verify lables with ground truth resutls
                int label = labels.at<int>(row_idx);
                int header_label = dd_labels.at<int>(row_idx);
                for(int j = 0; (j < MHEIGHT/K)||(i == K-1 && j < MHEIGHT/K+MHEIGHT%K); j++)
                {
                    ASSERT_NEAR(labels.at<int>(row_idx+j), label, 0);
                    ASSERT_NEAR(dd_labels.at<int>(row_idx+j), header_label, 0);
                }

                // verify centers
                float *center = centers.ptr<float>(label);
                float *header_center = dd_centers.ptr<float>(header_label);
                for(int t = 0; t < centers.cols; t++)
                    ASSERT_NEAR(center[t], header_center[t], 1e-3);

                row_idx += MHEIGHT/K;
            }
        }
    }
}

INSTANTIATE_TEST_CASE_P(OCL_ML, Kmeans, Combine(
    Values(3, 5, 8),
    Values(CV_32FC1, CV_32FC2, CV_32FC4),
    Values(OCL_KMEANS_USE_INITIAL_LABELS/*, OCL_KMEANS_PP_CENTERS*/)));


/////////////////////////////// DistanceToCenters //////////////////////////////////////////

CV_ENUM(DistType, NORM_L1, NORM_L2SQR)

PARAM_TEST_CASE(distanceToCenters, DistType, bool)
{
    int distType;
    bool useRoi;

    Mat src, centers, src_roi, centers_roi;
    ocl::oclMat ocl_src, ocl_centers, ocl_src_roi, ocl_centers_roi;

    virtual void SetUp()
    {
        distType = GET_PARAM(0);
        useRoi = GET_PARAM(1);
    }

    void random_roi()
    {
        Size roiSizeSrc = randomSize(1, MAX_VALUE);
        Size roiSizeCenters = randomSize(1, MAX_VALUE);
        roiSizeSrc.width = roiSizeCenters.width;

        Border srcBorder = randomBorder(0, useRoi ? MAX_VALUE : 0);
        randomSubMat(src, src_roi, roiSizeSrc, srcBorder, CV_32FC1, -MAX_VALUE, MAX_VALUE);

        Border centersBorder = randomBorder(0, useRoi ? 500 : 0);
        randomSubMat(centers, centers_roi, roiSizeCenters, centersBorder, CV_32FC1, -MAX_VALUE, MAX_VALUE);

        for (int i = 0; i < centers.rows; i++)
            centers.at<float>(i, randomInt(0, centers.cols)) = (float)randomDouble(SHRT_MAX, INT_MAX);

        generateOclMat(ocl_src, ocl_src_roi, src, roiSizeSrc, srcBorder);
        generateOclMat(ocl_centers, ocl_centers_roi, centers, roiSizeCenters, centersBorder);
    }
};

OCL_TEST_P(distanceToCenters, Accuracy)
{
    for (int j = 0; j < LOOP_TIMES; j++)
    {
        random_roi();

        Mat labels, dists;
        ocl::distanceToCenters(ocl_src_roi, ocl_centers_roi, dists, labels, distType);

        EXPECT_EQ(dists.size(), labels.size());

        Mat batch_dists;
        cv::batchDistance(src_roi, centers_roi, batch_dists, CV_32FC1, noArray(), distType);

        std::vector<float> gold_dists_v;
        gold_dists_v.reserve(batch_dists.rows);

        for (int i = 0; i < batch_dists.rows; i++)
        {
            Mat r = batch_dists.row(i);
            double mVal;
            Point mLoc;
            minMaxLoc(r, &mVal, NULL, &mLoc, NULL);

            int ocl_label = labels.at<int>(i, 0);
            EXPECT_EQ(mLoc.x, ocl_label);

            gold_dists_v.push_back(static_cast<float>(mVal));
        }

        double relative_error = cv::norm(Mat(gold_dists_v), dists, NORM_INF | NORM_RELATIVE);
        ASSERT_LE(relative_error, 1e-5);
    }
}

INSTANTIATE_TEST_CASE_P (OCL_ML, distanceToCenters, Combine(DistType::all(), Bool()));

#endif