File: ar_hmdb_benchmark.cpp

package info (click to toggle)
opencv 3.2.0%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 238,480 kB
  • sloc: xml: 901,650; cpp: 703,419; lisp: 20,142; java: 17,843; python: 17,641; ansic: 603; cs: 601; sh: 516; perl: 494; makefile: 117
file content (245 lines) | stat: -rw-r--r-- 8,544 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2014, Itseez Inc, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Itseez Inc or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "opencv2/datasets/ar_hmdb.hpp"
#include "opencv2/datasets/util.hpp"

#include <opencv2/core.hpp>
#include <opencv2/flann.hpp>
#include <opencv2/ml.hpp>

#include <cstdio>

#include <string>
#include <vector>
#include <fstream>

using namespace std;
using namespace cv;
using namespace cv::datasets;
using namespace cv::flann;
using namespace cv::ml;

void fillData(const string &path, vector< Ptr<Object> > &curr, Index &flann_index, Mat1f &data, Mat1i &labels);
void fillData(const string &path, vector< Ptr<Object> > &curr, Index &flann_index, Mat1f &data, Mat1i &labels)
{
    const unsigned int descriptorNum = 162;
    Mat1f sample(1, descriptorNum);
    Mat1i nresps(1, 1);
    Mat1f dists(1, 1);

    unsigned int numFiles = 0;
    for (unsigned int i=0; i<curr.size(); ++i)
    {
        AR_hmdbObj *example = static_cast<AR_hmdbObj *>(curr[i].get());
        string featuresFullPath = path + "hmdb51_org_stips/" + example->name + "/" + example->videoName + ".txt";

        ifstream infile(featuresFullPath.c_str());
        string line;
        // skip header
        for (unsigned int j=0; j<3; ++j)
        {
            getline(infile, line);
        }
        while (getline(infile, line))
        {
            // 7 skip, hog+hof: 72+90 read
            vector<string> elems;
            split(line, elems, '\t');

            for (unsigned int j=0; j<descriptorNum; ++j)
            {
                sample(0, j) = (float)atof(elems[j+7].c_str());
            }

            flann_index.knnSearch(sample, nresps, dists, 1, SearchParams());
            data(numFiles, nresps(0, 0)) ++;
        }
        labels(numFiles, 0) = example->id;
        numFiles++;
    }
}

int main(int argc, char *argv[])
{
    const char *keys =
            "{ help h usage ? |    | show this message }"
            "{ path p         |true| path to dataset }";
    CommandLineParser parser(argc, argv, keys);
    string path(parser.get<string>("path"));
    if (parser.has("help") || path=="true")
    {
        parser.printMessage();
        return -1;
    }

    // loading dataset
    Ptr<AR_hmdb> dataset = AR_hmdb::create();
    dataset->load(path);

    int numSplits = dataset->getNumSplits();
    printf("splits number: %u\n", numSplits);


    const unsigned int descriptorNum = 162;
    const unsigned int clusterNum = 4000;
    const unsigned int sampleNum = 5613856; // max for all 3 splits

    vector<double> res;
    for (int currSplit=0; currSplit<numSplits; ++currSplit)
    {
        Mat1f samples(sampleNum, descriptorNum);
        unsigned int currSample = 0;
        vector< Ptr<Object> > &curr = dataset->getTrain(currSplit);
        unsigned int numFeatures = 0;
        for (unsigned int i=0; i<curr.size(); ++i)
        {
            AR_hmdbObj *example = static_cast<AR_hmdbObj *>(curr[i].get());
            string featuresFullPath = path + "hmdb51_org_stips/" + example->name + "/" + example->videoName + ".txt";
            ifstream infile(featuresFullPath.c_str());
            string line;
            // skip header
            for (unsigned int j=0; j<3; ++j)
            {
                getline(infile, line);
            }
            while (getline(infile, line))
            {
                numFeatures++;
                if (currSample < sampleNum)
                {
                    // 7 skip, hog+hof: 72+90 read
                    vector<string> elems;
                    split(line, elems, '\t');

                    for (unsigned int j=0; j<descriptorNum; ++j)
                    {
                        samples(currSample, j) = (float)atof(elems[j+7].c_str());
                    }
                    currSample++;
                }
            }
        }
        printf("split %u, train features number: %u, samples number: %u\n", currSplit, numFeatures, currSample);

        // clustering
        Mat1f centers(clusterNum, descriptorNum);
        ::cvflann::KMeansIndexParams kmean_params;
        unsigned int resultClusters = hierarchicalClustering< L2<float> >(samples, centers, kmean_params);
        if (resultClusters < clusterNum)
        {
            centers = centers.rowRange(Range(0, resultClusters));
        }
        Index flann_index(centers, KDTreeIndexParams());
        printf("resulted clusters number: %u\n", resultClusters);


        unsigned int numTrainFiles = curr.size();
        Mat1f trainData(numTrainFiles, resultClusters);
        Mat1i trainLabels(numTrainFiles, 1);

        for (unsigned int i=0; i<numTrainFiles; ++i)
        {
            for (unsigned int j=0; j<resultClusters; ++j)
            {
                trainData(i, j) = 0;
            }
        }

        printf("calculating train histograms\n");
        fillData(path, curr, flann_index, trainData, trainLabels);

        printf("train svm\n");
        Ptr<SVM> svm = SVM::create();
        svm->setType(SVM::C_SVC);
        svm->setKernel(SVM::POLY); //SVM::RBF;
        svm->setDegree(0.5);
        svm->setGamma(1);
        svm->setCoef0(1);
        svm->setC(1);
        svm->setNu(0.5);
        svm->setP(0);
        svm->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, 1000, 0.01));
        svm->train(trainData, ROW_SAMPLE, trainLabels);

        // prepare to predict
        curr = dataset->getTest(currSplit);
        unsigned int numTestFiles = curr.size();
        Mat1f testData(numTestFiles, resultClusters);
        Mat1i testLabels(numTestFiles, 1); // ground true

        for (unsigned int i=0; i<numTestFiles; ++i)
        {
            for (unsigned int j=0; j<resultClusters; ++j)
            {
                testData(i, j) = 0;
            }
        }

        printf("calculating test histograms\n");
        fillData(path, curr, flann_index, testData, testLabels);

        printf("predicting\n");
        Mat1f testPredicted(numTestFiles, 1);
        svm->predict(testData, testPredicted);

        unsigned int correct = 0;
        for (unsigned int i=0; i<numTestFiles; ++i)
        {
            if ((int)testPredicted(i, 0) == testLabels(i, 0))
            {
                correct++;
            }
        }
        double accuracy = 1.0*correct/numTestFiles;
        printf("correctly recognized actions: %f\n", accuracy);
        res.push_back(accuracy);
    }

    double accuracy = 0.0;
    for (unsigned int i=0; i<res.size(); ++i)
    {
        accuracy += res[i];
    }
    printf("average: %f\n", accuracy/res.size());

    return 0;
}