File: fcn_semsegm.cpp

package info (click to toggle)
opencv 3.2.0%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 238,480 kB
  • sloc: xml: 901,650; cpp: 703,419; lisp: 20,142; java: 17,843; python: 17,641; ansic: 603; cs: 601; sh: 516; perl: 494; makefile: 117
file content (159 lines) | stat: -rwxr-xr-x 4,642 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#include <opencv2/dnn.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/core/ocl.hpp>
using namespace cv;
using namespace cv::dnn;

#include <fstream>
#include <iostream>
#include <cstdlib>
using namespace std;

static const string fcnType = "fcn8s";

static vector<cv::Vec3b> readColors(const string &filename = "pascal-classes.txt")
{
    vector<cv::Vec3b> colors;

    ifstream fp(filename.c_str());
    if (!fp.is_open())
    {
        cerr << "File with colors not found: " << filename << endl;
        exit(-1);
    }

    string line;
    while (!fp.eof())
    {
        getline(fp, line);
        if (line.length())
        {
            stringstream ss(line);

            string name; ss >> name;
            int temp;
            cv::Vec3b color;
            ss >> temp; color[0] = temp;
            ss >> temp; color[1] = temp;
            ss >> temp; color[2] = temp;
            colors.push_back(color);
        }
    }

    fp.close();
    return colors;
}

static void colorizeSegmentation(dnn::Blob &score, const vector<cv::Vec3b> &colors, cv::Mat &segm)
{
    const int rows = score.rows();
    const int cols = score.cols();
    const int chns = score.channels();

    cv::Mat maxCl(rows, cols, CV_8UC1);
    cv::Mat maxVal(rows, cols, CV_32FC1);
    for (int ch = 0; ch < chns; ch++)
    {
        for (int row = 0; row < rows; row++)
        {
            const float *ptrScore = score.ptrf(0, ch, row);
            uchar *ptrMaxCl = maxCl.ptr<uchar>(row);
            float *ptrMaxVal = maxVal.ptr<float>(row);
            for (int col = 0; col < cols; col++)
            {
                if (ptrScore[col] > ptrMaxVal[col])
                {
                    ptrMaxVal[col] = ptrScore[col];
                    ptrMaxCl[col] = ch;
                }
            }
        }
    }

    segm.create(rows, cols, CV_8UC3);
    for (int row = 0; row < rows; row++)
    {
        const uchar *ptrMaxCl = maxCl.ptr<uchar>(row);
        cv::Vec3b *ptrSegm = segm.ptr<cv::Vec3b>(row);
        for (int col = 0; col < cols; col++)
        {
            ptrSegm[col] = colors[ptrMaxCl[col]];
        }
    }

}

int main(int argc, char **argv)
{
    cv::dnn::initModule();          //Required if OpenCV is built as static libs
    cv::ocl::setUseOpenCL(false);   //OpenCL switcher

    String modelTxt = fcnType + "-heavy-pascal.prototxt";
    String modelBin = fcnType + "-heavy-pascal.caffemodel";
    String imageFile = (argc > 1) ? argv[1] : "rgb.jpg";

    vector<cv::Vec3b> colors = readColors();

    //! [Create the importer of Caffe model]
    Ptr<dnn::Importer> importer;
    try                                     //Try to import Caffe GoogleNet model
    {
        importer = dnn::createCaffeImporter(modelTxt, modelBin);
    }
    catch (const cv::Exception &err)        //Importer can throw errors, we will catch them
    {
        cerr << err.msg << endl;
    }
    //! [Create the importer of Caffe model]

    if (!importer)
    {
        cerr << "Can't load network by using the following files: " << endl;
        cerr << "prototxt:   " << modelTxt << endl;
        cerr << "caffemodel: " << modelBin << endl;
        cerr << fcnType << "-heavy-pascal.caffemodel can be downloaded here:" << endl;
        cerr << "http://dl.caffe.berkeleyvision.org/" << fcnType << "-heavy-pascal.caffemodel" << endl;
        exit(-1);
    }

    //! [Initialize network]
    dnn::Net net;
    importer->populateNet(net);
    importer.release();                     //We don't need importer anymore
    //! [Initialize network]

    //! [Prepare blob]
    Mat img = imread(imageFile);
    if (img.empty())
    {
        cerr << "Can't read image from the file: " << imageFile << endl;
        exit(-1);
    }

    resize(img, img, Size(500, 500));       //FCN accepts 500x500 RGB-images
    dnn::Blob inputBlob = dnn::Blob::fromImages(img);   //Convert Mat to dnn::Blob batch of images
    //! [Prepare blob]

    //! [Set input blob]
    net.setBlob(".data", inputBlob);        //set the network input
    //! [Set input blob]

    //! [Make forward pass]
    double t = (double)cv::getTickCount();
    net.forward();                          //compute output
    t = (double)cv::getTickCount() - t;
    printf("processing time: %.1fms\n", t*1000./getTickFrequency());
    //! [Make forward pass]

    //! [Gather output]
    dnn::Blob score = net.getBlob("score");

    cv::Mat colorize;
    colorizeSegmentation(score, colors, colorize);
    cv::Mat show;
    cv::addWeighted(img, 0.4, colorize, 0.6, 0.0, show);
    cv::imshow("show", show);
    cv::waitKey(0);
    return 0;
} //main