File: trajectory_reconstruccion.cpp

package info (click to toggle)
opencv 3.2.0%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 238,480 kB
  • sloc: xml: 901,650; cpp: 703,419; lisp: 20,142; java: 17,843; python: 17,641; ansic: 603; cs: 601; sh: 516; perl: 494; makefile: 117
file content (246 lines) | stat: -rw-r--r-- 6,883 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
#include <opencv2/core.hpp>
#include <opencv2/sfm.hpp>
#include <opencv2/viz.hpp>

#include <iostream>
#include <fstream>
#include <string>

using namespace std;
using namespace cv;
using namespace cv::sfm;

static void help() {
  cout
      << "\n------------------------------------------------------------------\n"
      << " This program shows the camera trajectory reconstruction capabilities\n"
      << " in the OpenCV Structure From Motion (SFM) module.\n"
      << " \n"
      << " Usage:\n"
      << "        example_sfm_trajectory_reconstruction <path_to_tracks_file> <f> <cx> <cy>\n"
      << " where: is the tracks file absolute path into your system. \n"
      << " \n"
      << "        The file must have the following format: \n"
      << "        row1 : x1 y1 x2 y2 ... x36 y36 for track 1\n"
      << "        row2 : x1 y1 x2 y2 ... x36 y36 for track 2\n"
      << "        etc\n"
      << " \n"
      << "        i.e. a row gives the 2D measured position of a point as it is tracked\n"
      << "        through frames 1 to 36.  If there is no match found in a view then x\n"
      << "        and y are -1.\n"
      << " \n"
      << "        Each row corresponds to a different point.\n"
      << " \n"
      << "        f  is the focal lenght in pixels. \n"
      << "        cx is the image principal point x coordinates in pixels. \n"
      << "        cy is the image principal point y coordinates in pixels. \n"
      << "------------------------------------------------------------------\n\n"
      << endl;
}


/* Build the following structure data
 *
 *            frame1           frame2           frameN
 *  track1 | (x11,y11) | -> | (x12,y12) | -> | (x1N,y1N) |
 *  track2 | (x21,y11) | -> | (x22,y22) | -> | (x2N,y2N) |
 *  trackN | (xN1,yN1) | -> | (xN2,yN2) | -> | (xNN,yNN) |
 *
 *
 *  In case a marker (x,y) does not appear in a frame its
 *  values will be (-1,-1).
 */

void
parser_2D_tracks(const string &_filename, std::vector<Mat> &points2d )
{
  ifstream myfile(_filename.c_str());

  if (!myfile.is_open())
  {
    cout << "Unable to read file: " << _filename << endl;
    exit(0);

  } else {

    double x, y;
    string line_str;
    int n_frames = 0, n_tracks = 0;

    // extract data from text file

    vector<vector<Vec2d> > tracks;
    for ( ; getline(myfile,line_str); ++n_tracks)
    {
      istringstream line(line_str);

      vector<Vec2d> track;
      for ( n_frames = 0; line >> x >> y; ++n_frames)
      {
        if ( x > 0 && y > 0)
          track.push_back(Vec2d(x,y));
        else
          track.push_back(Vec2d(-1));
      }
      tracks.push_back(track);
    }

    // embed data in reconstruction api format

    for (int i = 0; i < n_frames; ++i)
    {
      Mat_<double> frame(2, n_tracks);

      for (int j = 0; j < n_tracks; ++j)
      {
        frame(0,j) = tracks[j][i][0];
        frame(1,j) = tracks[j][i][1];
      }
      points2d.push_back(Mat(frame));
    }

    myfile.close();
  }

}


/* Keyboard callback to control 3D visualization
 */

bool camera_pov = false;

void keyboard_callback(const viz::KeyboardEvent &event, void* cookie)
{
  if ( event.action == 0 &&!event.symbol.compare("s") )
    camera_pov = !camera_pov;
}


/* Sample main code
 */

int main(int argc, char** argv)
{
  // Read input parameters

  if ( argc != 5 )
  {
    help();
    exit(0);
  }

  // Read 2D points from text file
  std::vector<Mat> points2d;
  parser_2D_tracks( argv[1], points2d );

  // Set the camera calibration matrix
  const double f  = atof(argv[2]),
               cx = atof(argv[3]), cy = atof(argv[4]);

  Matx33d K = Matx33d( f, 0, cx,
                       0, f, cy,
                       0, 0,  1);

  /// Reconstruct the scene using the 2d correspondences

  bool is_projective = true;
  vector<Mat> Rs_est, ts_est, points3d_estimated;
  reconstruct(points2d, Rs_est, ts_est, K, points3d_estimated, is_projective);

  // Print output

  cout << "\n----------------------------\n" << endl;
  cout << "Reconstruction: " << endl;
  cout << "============================" << endl;
  cout << "Estimated 3D points: " << points3d_estimated.size() << endl;
  cout << "Estimated cameras: " << Rs_est.size() << endl;
  cout << "Refined intrinsics: " << endl << K << endl << endl;

  cout << "3D Visualization: " << endl;
  cout << "============================" << endl;


  /// Create 3D windows
  viz::Viz3d window_est("Estimation Coordinate Frame");
             window_est.setBackgroundColor(); // black by default
             window_est.registerKeyboardCallback(&keyboard_callback);

  // Create the pointcloud
  cout << "Recovering points  ... ";

  // recover estimated points3d
  vector<Vec3f> point_cloud_est;
  for (int i = 0; i < points3d_estimated.size(); ++i)
    point_cloud_est.push_back(Vec3f(points3d_estimated[i]));

  cout << "[DONE]" << endl;


  /// Recovering cameras
  cout << "Recovering cameras ... ";

  vector<Affine3d> path_est;
  for (size_t i = 0; i < Rs_est.size(); ++i)
    path_est.push_back(Affine3d(Rs_est[i],ts_est[i]));

  cout << "[DONE]" << endl;

  /// Add cameras
  cout << "Rendering Trajectory  ... ";

  /// Wait for key 'q' to close the window
  cout << endl << "Press:                       " << endl;
  cout <<         " 's' to switch the camera pov" << endl;
  cout <<         " 'q' to close the windows    " << endl;


  if ( path_est.size() > 0 )
  {
    // animated trajectory
    int idx = 0, forw = -1, n = static_cast<int>(path_est.size());

    while(!window_est.wasStopped())
    {
      /// Render points as 3D cubes
      for (size_t i = 0; i < point_cloud_est.size(); ++i)
      {
        Vec3d point = point_cloud_est[i];
        Affine3d point_pose(Mat::eye(3,3,CV_64F), point);

        char buffer[50];
        sprintf (buffer, "%d", static_cast<int>(i));

        viz::WCube cube_widget(Point3f(0.1,0.1,0.0), Point3f(0.0,0.0,-0.1), true, viz::Color::blue());
                   cube_widget.setRenderingProperty(viz::LINE_WIDTH, 2.0);
        window_est.showWidget("Cube"+string(buffer), cube_widget, point_pose);
      }

      Affine3d cam_pose = path_est[idx];

      viz::WCameraPosition cpw(0.25); // Coordinate axes
      viz::WCameraPosition cpw_frustum(K, 0.3, viz::Color::yellow()); // Camera frustum

      if ( camera_pov )
        window_est.setViewerPose(cam_pose);
      else
      {
        // render complete trajectory
        window_est.showWidget("cameras_frames_and_lines_est", viz::WTrajectory(path_est, viz::WTrajectory::PATH, 1.0, viz::Color::green()));

        window_est.showWidget("CPW", cpw, cam_pose);
        window_est.showWidget("CPW_FRUSTUM", cpw_frustum, cam_pose);
      }

      // update trajectory index (spring effect)
      forw *= (idx==n || idx==0) ? -1: 1; idx += forw;

      // frame rate 1s
      window_est.spinOnce(1, true);
      window_est.removeAllWidgets();
    }

  }

  return 0;
}