File: detect_er_chars.py

package info (click to toggle)
opencv 3.2.0%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 238,480 kB
  • sloc: xml: 901,650; cpp: 703,419; lisp: 20,142; java: 17,843; python: 17,641; ansic: 603; cs: 601; sh: 516; perl: 494; makefile: 117
file content (38 lines) | stat: -rw-r--r-- 1,162 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#!/usr/bin/python

import sys
import os

import cv2
import numpy as np

print('\ndetect_er_chars.py')
print('       A simple demo script using the Extremal Region Filter algorithm described in:')
print('       Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012\n')


if (len(sys.argv) < 2):
  print(' (ERROR) You must call this script with an argument (path_to_image_to_be_processed)\n')
  quit()

pathname = os.path.dirname(sys.argv[0])

img  = cv2.imread(str(sys.argv[1]))
gray = cv2.imread(str(sys.argv[1]),0)

erc1 = cv2.text.loadClassifierNM1(pathname+'/trained_classifierNM1.xml')
er1 = cv2.text.createERFilterNM1(erc1)

erc2 = cv2.text.loadClassifierNM2(pathname+'/trained_classifierNM2.xml')
er2 = cv2.text.createERFilterNM2(erc2)

regions = cv2.text.detectRegions(gray,er1,er2)

#Visualization
rects = [cv2.boundingRect(p.reshape(-1, 1, 2)) for p in regions]
for rect in rects:
  cv2.rectangle(img, rect[0:2], (rect[0]+rect[2],rect[1]+rect[3]), (0, 0, 0), 2)
for rect in rects:
  cv2.rectangle(img, rect[0:2], (rect[0]+rect[2],rect[1]+rect[3]), (255, 255, 255), 1)
cv2.imshow("Text detection result", img)
cv2.waitKey(0)