1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
|
/*
* textdetection.cpp
*
* A demo program of End-to-end Scene Text Detection and Recognition:
* Shows the use of the Tesseract OCR API with the Extremal Region Filter algorithm described in:
* Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012
*
* Created on: Jul 31, 2014
* Author: Lluis Gomez i Bigorda <lgomez AT cvc.uab.es>
*/
#include "opencv2/text.hpp"
#include "opencv2/core/utility.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include <iostream>
using namespace std;
using namespace cv;
using namespace cv::text;
//Calculate edit distance netween two words
size_t edit_distance(const string& A, const string& B);
size_t min(size_t x, size_t y, size_t z);
bool isRepetitive(const string& s);
bool sort_by_lenght(const string &a, const string &b);
//Draw ER's in an image via floodFill
void er_draw(vector<Mat> &channels, vector<vector<ERStat> > ®ions, vector<Vec2i> group, Mat& segmentation);
//Perform text detection and recognition and evaluate results using edit distance
int main(int argc, char* argv[])
{
cout << endl << argv[0] << endl << endl;
cout << "A demo program of End-to-end Scene Text Detection and Recognition: " << endl;
cout << "Shows the use of the Tesseract OCR API with the Extremal Region Filter algorithm described in:" << endl;
cout << "Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012" << endl << endl;
Mat image;
if(argc>1)
image = imread(argv[1]);
else
{
cout << " Usage: " << argv[0] << " <input_image> [<gt_word1> ... <gt_wordN>]" << endl;
return(0);
}
cout << "IMG_W=" << image.cols << endl;
cout << "IMG_H=" << image.rows << endl;
/*Text Detection*/
// Extract channels to be processed individually
vector<Mat> channels;
Mat grey;
cvtColor(image,grey,COLOR_RGB2GRAY);
// Notice here we are only using grey channel, see textdetection.cpp for example with more channels
channels.push_back(grey);
channels.push_back(255-grey);
double t_d = (double)getTickCount();
// Create ERFilter objects with the 1st and 2nd stage default classifiers
Ptr<ERFilter> er_filter1 = createERFilterNM1(loadClassifierNM1("trained_classifierNM1.xml"),8,0.00015f,0.13f,0.2f,true,0.1f);
Ptr<ERFilter> er_filter2 = createERFilterNM2(loadClassifierNM2("trained_classifierNM2.xml"),0.5);
vector<vector<ERStat> > regions(channels.size());
// Apply the default cascade classifier to each independent channel (could be done in parallel)
for (int c=0; c<(int)channels.size(); c++)
{
er_filter1->run(channels[c], regions[c]);
er_filter2->run(channels[c], regions[c]);
}
cout << "TIME_REGION_DETECTION = " << ((double)getTickCount() - t_d)*1000/getTickFrequency() << endl;
Mat out_img_decomposition= Mat::zeros(image.rows+2, image.cols+2, CV_8UC1);
vector<Vec2i> tmp_group;
for (int i=0; i<(int)regions.size(); i++)
{
for (int j=0; j<(int)regions[i].size();j++)
{
tmp_group.push_back(Vec2i(i,j));
}
Mat tmp= Mat::zeros(image.rows+2, image.cols+2, CV_8UC1);
er_draw(channels, regions, tmp_group, tmp);
if (i > 0)
tmp = tmp / 2;
out_img_decomposition = out_img_decomposition | tmp;
tmp_group.clear();
}
double t_g = (double)getTickCount();
// Detect character groups
vector< vector<Vec2i> > nm_region_groups;
vector<Rect> nm_boxes;
erGrouping(image, channels, regions, nm_region_groups, nm_boxes,ERGROUPING_ORIENTATION_HORIZ);
cout << "TIME_GROUPING = " << ((double)getTickCount() - t_g)*1000/getTickFrequency() << endl;
/*Text Recognition (OCR)*/
double t_r = (double)getTickCount();
Ptr<OCRTesseract> ocr = OCRTesseract::create();
cout << "TIME_OCR_INITIALIZATION = " << ((double)getTickCount() - t_r)*1000/getTickFrequency() << endl;
string output;
Mat out_img;
Mat out_img_detection;
Mat out_img_segmentation = Mat::zeros(image.rows+2, image.cols+2, CV_8UC1);
image.copyTo(out_img);
image.copyTo(out_img_detection);
float scale_img = 600.f/image.rows;
float scale_font = (float)(2-scale_img)/1.4f;
vector<string> words_detection;
t_r = (double)getTickCount();
for (int i=0; i<(int)nm_boxes.size(); i++)
{
rectangle(out_img_detection, nm_boxes[i].tl(), nm_boxes[i].br(), Scalar(0,255,255), 3);
Mat group_img = Mat::zeros(image.rows+2, image.cols+2, CV_8UC1);
er_draw(channels, regions, nm_region_groups[i], group_img);
Mat group_segmentation;
group_img.copyTo(group_segmentation);
//image(nm_boxes[i]).copyTo(group_img);
group_img(nm_boxes[i]).copyTo(group_img);
copyMakeBorder(group_img,group_img,15,15,15,15,BORDER_CONSTANT,Scalar(0));
vector<Rect> boxes;
vector<string> words;
vector<float> confidences;
ocr->run(group_img, output, &boxes, &words, &confidences, OCR_LEVEL_WORD);
output.erase(remove(output.begin(), output.end(), '\n'), output.end());
//cout << "OCR output = \"" << output << "\" lenght = " << output.size() << endl;
if (output.size() < 3)
continue;
for (int j=0; j<(int)boxes.size(); j++)
{
boxes[j].x += nm_boxes[i].x-15;
boxes[j].y += nm_boxes[i].y-15;
//cout << " word = " << words[j] << "\t confidence = " << confidences[j] << endl;
if ((words[j].size() < 2) || (confidences[j] < 51) ||
((words[j].size()==2) && (words[j][0] == words[j][1])) ||
((words[j].size()< 4) && (confidences[j] < 60)) ||
isRepetitive(words[j]))
continue;
words_detection.push_back(words[j]);
rectangle(out_img, boxes[j].tl(), boxes[j].br(), Scalar(255,0,255),3);
Size word_size = getTextSize(words[j], FONT_HERSHEY_SIMPLEX, (double)scale_font, (int)(3*scale_font), NULL);
rectangle(out_img, boxes[j].tl()-Point(3,word_size.height+3), boxes[j].tl()+Point(word_size.width,0), Scalar(255,0,255),-1);
putText(out_img, words[j], boxes[j].tl()-Point(1,1), FONT_HERSHEY_SIMPLEX, scale_font, Scalar(255,255,255),(int)(3*scale_font));
out_img_segmentation = out_img_segmentation | group_segmentation;
}
}
cout << "TIME_OCR = " << ((double)getTickCount() - t_r)*1000/getTickFrequency() << endl;
/* Recognition evaluation with (approximate) hungarian matching and edit distances */
if(argc>2)
{
int num_gt_characters = 0;
vector<string> words_gt;
for (int i=2; i<argc; i++)
{
string s = string(argv[i]);
if (s.size() > 0)
{
words_gt.push_back(string(argv[i]));
//cout << " GT word " << words_gt[words_gt.size()-1] << endl;
num_gt_characters += (int)(words_gt[words_gt.size()-1].size());
}
}
if (words_detection.empty())
{
//cout << endl << "number of characters in gt = " << num_gt_characters << endl;
cout << "TOTAL_EDIT_DISTANCE = " << num_gt_characters << endl;
cout << "EDIT_DISTANCE_RATIO = 1" << endl;
}
else
{
sort(words_gt.begin(),words_gt.end(),sort_by_lenght);
int max_dist=0;
vector< vector<int> > assignment_mat;
for (int i=0; i<(int)words_gt.size(); i++)
{
vector<int> assignment_row(words_detection.size(),0);
assignment_mat.push_back(assignment_row);
for (int j=0; j<(int)words_detection.size(); j++)
{
assignment_mat[i][j] = (int)(edit_distance(words_gt[i],words_detection[j]));
max_dist = max(max_dist,assignment_mat[i][j]);
}
}
vector<int> words_detection_matched;
int total_edit_distance = 0;
int tp=0, fp=0, fn=0;
for (int search_dist=0; search_dist<=max_dist; search_dist++)
{
for (int i=0; i<(int)assignment_mat.size(); i++)
{
int min_dist_idx = (int)distance(assignment_mat[i].begin(),
min_element(assignment_mat[i].begin(),assignment_mat[i].end()));
if (assignment_mat[i][min_dist_idx] == search_dist)
{
//cout << " GT word \"" << words_gt[i] << "\" best match \"" << words_detection[min_dist_idx] << "\" with dist " << assignment_mat[i][min_dist_idx] << endl;
if(search_dist == 0)
tp++;
else { fp++; fn++; }
total_edit_distance += assignment_mat[i][min_dist_idx];
words_detection_matched.push_back(min_dist_idx);
words_gt.erase(words_gt.begin()+i);
assignment_mat.erase(assignment_mat.begin()+i);
for (int j=0; j<(int)assignment_mat.size(); j++)
{
assignment_mat[j][min_dist_idx]=INT_MAX;
}
i--;
}
}
}
for (int j=0; j<(int)words_gt.size(); j++)
{
//cout << " GT word \"" << words_gt[j] << "\" no match found" << endl;
fn++;
total_edit_distance += (int)words_gt[j].size();
}
for (int j=0; j<(int)words_detection.size(); j++)
{
if (find(words_detection_matched.begin(),words_detection_matched.end(),j) == words_detection_matched.end())
{
//cout << " Detection word \"" << words_detection[j] << "\" no match found" << endl;
fp++;
total_edit_distance += (int)words_detection[j].size();
}
}
//cout << endl << "number of characters in gt = " << num_gt_characters << endl;
cout << "TOTAL_EDIT_DISTANCE = " << total_edit_distance << endl;
cout << "EDIT_DISTANCE_RATIO = " << (float)total_edit_distance / num_gt_characters << endl;
cout << "TP = " << tp << endl;
cout << "FP = " << fp << endl;
cout << "FN = " << fn << endl;
}
}
//resize(out_img_detection,out_img_detection,Size(image.cols*scale_img,image.rows*scale_img));
//imshow("detection", out_img_detection);
//imwrite("detection.jpg", out_img_detection);
//resize(out_img,out_img,Size(image.cols*scale_img,image.rows*scale_img));
namedWindow("recognition",WINDOW_NORMAL);
imshow("recognition", out_img);
waitKey(0);
//imwrite("recognition.jpg", out_img);
//imwrite("segmentation.jpg", out_img_segmentation);
//imwrite("decomposition.jpg", out_img_decomposition);
return 0;
}
size_t min(size_t x, size_t y, size_t z)
{
return x < y ? min(x,z) : min(y,z);
}
size_t edit_distance(const string& A, const string& B)
{
size_t NA = A.size();
size_t NB = B.size();
vector< vector<size_t> > M(NA + 1, vector<size_t>(NB + 1));
for (size_t a = 0; a <= NA; ++a)
M[a][0] = a;
for (size_t b = 0; b <= NB; ++b)
M[0][b] = b;
for (size_t a = 1; a <= NA; ++a)
for (size_t b = 1; b <= NB; ++b)
{
size_t x = M[a-1][b] + 1;
size_t y = M[a][b-1] + 1;
size_t z = M[a-1][b-1] + (A[a-1] == B[b-1] ? 0 : 1);
M[a][b] = min(x,y,z);
}
return M[A.size()][B.size()];
}
bool isRepetitive(const string& s)
{
int count = 0;
for (int i=0; i<(int)s.size(); i++)
{
if ((s[i] == 'i') ||
(s[i] == 'l') ||
(s[i] == 'I'))
count++;
}
if (count > ((int)s.size()+1)/2)
{
return true;
}
return false;
}
void er_draw(vector<Mat> &channels, vector<vector<ERStat> > ®ions, vector<Vec2i> group, Mat& segmentation)
{
for (int r=0; r<(int)group.size(); r++)
{
ERStat er = regions[group[r][0]][group[r][1]];
if (er.parent != NULL) // deprecate the root region
{
int newMaskVal = 255;
int flags = 4 + (newMaskVal << 8) + FLOODFILL_FIXED_RANGE + FLOODFILL_MASK_ONLY;
floodFill(channels[group[r][0]],segmentation,Point(er.pixel%channels[group[r][0]].cols,er.pixel/channels[group[r][0]].cols),
Scalar(255),0,Scalar(er.level),Scalar(0),flags);
}
}
}
bool sort_by_lenght(const string &a, const string &b){return (a.size()>b.size());}
|