File: webcam_demo.cpp

package info (click to toggle)
opencv 3.2.0%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 238,480 kB
  • sloc: xml: 901,650; cpp: 703,419; lisp: 20,142; java: 17,843; python: 17,641; ansic: 603; cs: 601; sh: 516; perl: 494; makefile: 117
file content (410 lines) | stat: -rw-r--r-- 14,901 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
/*
 * webcam-demo.cpp
 *
 * A demo program of End-to-end Scene Text Detection and Recognition.
 *
 * Created on: Jul 31, 2014
 *     Author: Lluis Gomez i Bigorda <lgomez AT cvc.uab.es>
 */

#include "opencv2/text.hpp"
#include "opencv2/core/utility.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/features2d.hpp"

#include <iostream>


using namespace std;
using namespace cv;
using namespace cv::text;

//ERStat extraction is done in parallel for different channels
class Parallel_extractCSER: public cv::ParallelLoopBody
{
private:
    vector<Mat> &channels;
    vector< vector<ERStat> > &regions;
    vector< Ptr<ERFilter> > er_filter1;
    vector< Ptr<ERFilter> > er_filter2;

public:
    Parallel_extractCSER(vector<Mat> &_channels, vector< vector<ERStat> > &_regions,
                         vector<Ptr<ERFilter> >_er_filter1, vector<Ptr<ERFilter> >_er_filter2)
        : channels(_channels),regions(_regions),er_filter1(_er_filter1),er_filter2(_er_filter2){}

    virtual void operator()( const cv::Range &r ) const
    {
        for (int c=r.start; c < r.end; c++)
        {
            er_filter1[c]->run(channels[c], regions[c]);
            er_filter2[c]->run(channels[c], regions[c]);
        }
    }
    Parallel_extractCSER & operator=(const Parallel_extractCSER &a);
};

//OCR recognition is done in parallel for different detections
template <class T>
class Parallel_OCR: public cv::ParallelLoopBody
{
private:
    vector<Mat> &detections;
    vector<string> &outputs;
    vector< vector<Rect> > &boxes;
    vector< vector<string> > &words;
    vector< vector<float> > &confidences;
    vector< Ptr<T> > &ocrs;

public:
    Parallel_OCR(vector<Mat> &_detections, vector<string> &_outputs, vector< vector<Rect> > &_boxes,
                 vector< vector<string> > &_words, vector< vector<float> > &_confidences,
                 vector< Ptr<T> > &_ocrs)
        : detections(_detections), outputs(_outputs), boxes(_boxes), words(_words),
          confidences(_confidences), ocrs(_ocrs)
    {}

    virtual void operator()( const cv::Range &r ) const
    {
        for (int c=r.start; c < r.end; c++)
        {
            ocrs[c%ocrs.size()]->run(detections[c], outputs[c], &boxes[c], &words[c], &confidences[c], OCR_LEVEL_WORD);
        }
    }
    Parallel_OCR & operator=(const Parallel_OCR &a);
};


//Discard wrongly recognised strings
bool   isRepetitive(const string& s);
//Draw ER's in an image via floodFill
void   er_draw(vector<Mat> &channels, vector<vector<ERStat> > &regions, vector<Vec2i> group, Mat& segmentation);

//Perform text detection and recognition from webcam
int main(int argc, char* argv[])
{
    cout << endl << argv[0] << endl << endl;
    cout << "A demo program of End-to-end Scene Text Detection and Recognition using webcam." << endl << endl;
    cout << "  Usage:  " << argv[0] << " [camera_index]" << endl << endl;
    cout << "  Press 'r' to switch between MSER/CSER regions." << endl;
    cout << "  Press 'g' to switch between Horizontal and Arbitrary oriented grouping." << endl;
    cout << "  Press 'o' to switch between OCRTesseract/OCRHMMDecoder recognition." << endl;
    cout << "  Press 's' to scale down frame size to 320x240." << endl;
    cout << "  Press 'ESC' to exit." << endl << endl;

    namedWindow("recognition",WINDOW_NORMAL);
    bool downsize = false;
    int  REGION_TYPE = 1;
    int  GROUPING_ALGORITHM = 0;
    int  RECOGNITION = 0;
    char *region_types_str[2] = {const_cast<char *>("ERStats"), const_cast<char *>("MSER")};
    char *grouping_algorithms_str[2] = {const_cast<char *>("exhaustive_search"), const_cast<char *>("multioriented")};
    char *recognitions_str[2] = {const_cast<char *>("Tesseract"), const_cast<char *>("NM_chain_features + KNN")};

    Mat frame,grey,orig_grey,out_img;
    vector<Mat> channels;
    vector<vector<ERStat> > regions(2); //two channels

    // Create ERFilter objects with the 1st and 2nd stage default classifiers
    // since er algorithm is not reentrant we need one filter for channel
    vector< Ptr<ERFilter> > er_filters1;
    vector< Ptr<ERFilter> > er_filters2;
    for (int i=0; i<2; i++)
    {
        Ptr<ERFilter> er_filter1 = createERFilterNM1(loadClassifierNM1("trained_classifierNM1.xml"),8,0.00015f,0.13f,0.2f,true,0.1f);
        Ptr<ERFilter> er_filter2 = createERFilterNM2(loadClassifierNM2("trained_classifierNM2.xml"),0.5);
        er_filters1.push_back(er_filter1);
        er_filters2.push_back(er_filter2);
    }

    //double t_r = getTickCount();

    //Initialize OCR engine (we initialize 10 instances in order to work several recognitions in parallel)
    cout << "Initializing OCR engines ..." << endl;
    int num_ocrs = 10;
    vector< Ptr<OCRTesseract> > ocrs;
    for (int o=0; o<num_ocrs; o++)
    {
      ocrs.push_back(OCRTesseract::create());
    }

    Mat transition_p;
    string filename = "OCRHMM_transitions_table.xml";
    FileStorage fs(filename, FileStorage::READ);
    fs["transition_probabilities"] >> transition_p;
    fs.release();
    Mat emission_p = Mat::eye(62,62,CV_64FC1);
    string voc = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";

    vector< Ptr<OCRHMMDecoder> > decoders;
    for (int o=0; o<num_ocrs; o++)
    {
      decoders.push_back(OCRHMMDecoder::create(loadOCRHMMClassifierNM("OCRHMM_knn_model_data.xml.gz"),
                                               voc, transition_p, emission_p));
    }
    cout << " Done!" << endl;

    //cout << "TIME_OCR_INITIALIZATION_ALT = "<< ((double)getTickCount() - t_r)*1000/getTickFrequency() << endl;


    int cam_idx = 0;
    if (argc > 1)
        cam_idx = atoi(argv[1]);

    VideoCapture cap(cam_idx);
    if(!cap.isOpened())
    {
        cout << "ERROR: Cannot open default camera (0)." << endl;
        return -1;
    }

    while (cap.read(frame))
    {
        double t_all = (double)getTickCount();

        if (downsize)
            resize(frame,frame,Size(320,240));

        /*Text Detection*/

        cvtColor(frame,grey,COLOR_RGB2GRAY);
        grey.copyTo(orig_grey);
        // Extract channels to be processed individually
        channels.clear();
        channels.push_back(grey);
        channels.push_back(255-grey);


        regions[0].clear();
        regions[1].clear();
        //double t_d = (double)getTickCount();

        switch (REGION_TYPE)
        {
        case 0:
        {
            parallel_for_(cv::Range(0,(int)channels.size()), Parallel_extractCSER(channels,regions,er_filters1,er_filters2));
            break;
        }
        case 1:
        {
            //Extract MSER
            vector<vector<Point> > contours;
            vector<Rect> bboxes;
            Ptr<MSER> mser = MSER::create(21,(int)(0.00002*grey.cols*grey.rows),(int)(0.05*grey.cols*grey.rows),1,0.7);
            mser->detectRegions(grey, contours, bboxes);

            //Convert the output of MSER to suitable input for the grouping/recognition algorithms
            if (contours.size() > 0)
                MSERsToERStats(grey, contours, regions);

            break;
        }
        case 2:
        {
            break;
        }
        }
        //cout << "TIME_REGION_DETECTION_ALT = " << ((double)getTickCount() - t_d)*1000/getTickFrequency() << endl;

        // Detect character groups
        //double t_g = getTickCount();
        vector< vector<Vec2i> > nm_region_groups;
        vector<Rect> nm_boxes;
        switch (GROUPING_ALGORITHM)
        {
        case 0:
        {
            erGrouping(frame, channels, regions, nm_region_groups, nm_boxes, ERGROUPING_ORIENTATION_HORIZ);
            break;
        }
        case 1:
        {
            erGrouping(frame, channels, regions, nm_region_groups, nm_boxes, ERGROUPING_ORIENTATION_ANY, "./trained_classifier_erGrouping.xml", 0.5);
            break;
        }
        }
        //cout << "TIME_GROUPING_ALT = " << ((double)getTickCount() - t_g)*1000/getTickFrequency() << endl;




        /*Text Recognition (OCR)*/


        frame.copyTo(out_img);
        int scale = downsize ? 2 : 1;
        float scale_img  = (float)((600.f/frame.rows)/scale);
        float scale_font = (float)(2-scale_img)/1.4f;
        vector<string> words_detection;
        float min_confidence1 = 0.f, min_confidence2 = 0.f;

        if (RECOGNITION == 0)
        {
          min_confidence1 = 51.f; min_confidence2 = 60.f;
        }

        vector<Mat> detections;

        //t_r = getTickCount();

        for (int i=0; i<(int)nm_boxes.size(); i++)
        {
            rectangle(out_img, nm_boxes[i].tl(), nm_boxes[i].br(), Scalar(255,255,0),3);


            Mat group_img = Mat::zeros(frame.rows+2, frame.cols+2, CV_8UC1);
            er_draw(channels, regions, nm_region_groups[i], group_img);
            group_img(nm_boxes[i]).copyTo(group_img);
            copyMakeBorder(group_img,group_img,15,15,15,15,BORDER_CONSTANT,Scalar(0));
            detections.push_back(group_img);
        }
        vector<string> outputs((int)detections.size());
        vector< vector<Rect> > boxes((int)detections.size());
        vector< vector<string> > words((int)detections.size());
        vector< vector<float> > confidences((int)detections.size());

        // parallel process detections in batches of ocrs.size() (== num_ocrs)
        for (int i=0; i<(int)detections.size(); i=i+(int)num_ocrs)
        {
          Range r;
          if (i+(int)num_ocrs <= (int)detections.size())
            r = Range(i,i+(int)num_ocrs);
          else
            r = Range(i,(int)detections.size());

          switch(RECOGNITION)
          {
            case 0:
              parallel_for_(r, Parallel_OCR<OCRTesseract>(detections, outputs, boxes, words, confidences, ocrs));
              break;
            case 1:
              parallel_for_(r, Parallel_OCR<OCRHMMDecoder>(detections, outputs, boxes, words, confidences, decoders));
              break;
          }
        }


        for (int i=0; i<(int)detections.size(); i++)
        {

            outputs[i].erase(remove(outputs[i].begin(), outputs[i].end(), '\n'), outputs[i].end());
            //cout << "OCR output = \"" << outputs[i] << "\" lenght = " << outputs[i].size() << endl;
            if (outputs[i].size() < 3)
                continue;

            for (int j=0; j<(int)boxes[i].size(); j++)
            {
                boxes[i][j].x += nm_boxes[i].x-15;
                boxes[i][j].y += nm_boxes[i].y-15;

                //cout << "  word = " << words[j] << "\t confidence = " << confidences[j] << endl;
                if ((words[i][j].size() < 2) || (confidences[i][j] < min_confidence1) ||
                        ((words[i][j].size()==2) && (words[i][j][0] == words[i][j][1])) ||
                        ((words[i][j].size()< 4) && (confidences[i][j] < min_confidence2)) ||
                        isRepetitive(words[i][j]))
                    continue;
                words_detection.push_back(words[i][j]);
                rectangle(out_img, boxes[i][j].tl(), boxes[i][j].br(), Scalar(255,0,255),3);
                Size word_size = getTextSize(words[i][j], FONT_HERSHEY_SIMPLEX, (double)scale_font, (int)(3*scale_font), NULL);
                rectangle(out_img, boxes[i][j].tl()-Point(3,word_size.height+3), boxes[i][j].tl()+Point(word_size.width,0), Scalar(255,0,255),-1);
                putText(out_img, words[i][j], boxes[i][j].tl()-Point(1,1), FONT_HERSHEY_SIMPLEX, scale_font, Scalar(255,255,255),(int)(3*scale_font));
            }

        }

        //cout << "TIME_OCR_ALT = " << ((double)getTickCount() - t_r)*1000/getTickFrequency() << endl;


        t_all = ((double)getTickCount() - t_all)*1000/getTickFrequency();
        char buff[100];
        sprintf(buff, "%2.1f Fps. @ %dx%d", (float)(1000/t_all), out_img.cols, out_img.rows);
        string fps_info = buff;
        rectangle(out_img, Point( out_img.rows-(160/scale),out_img.rows-(70/scale) ), Point(out_img.cols,out_img.rows), Scalar(255,255,255),-1);
        putText(out_img, fps_info, Point( 10,out_img.rows-(10/scale) ), FONT_HERSHEY_DUPLEX, scale_font, Scalar(255,0,0));
        putText(out_img, region_types_str[REGION_TYPE], Point( out_img.rows-(150/scale),out_img.rows-(50/scale) ), FONT_HERSHEY_DUPLEX, scale_font, Scalar(255,0,0));
        putText(out_img, grouping_algorithms_str[GROUPING_ALGORITHM], Point( out_img.rows-(150/scale),out_img.rows-(30/scale) ), FONT_HERSHEY_DUPLEX, scale_font, Scalar(255,0,0));
        putText(out_img, recognitions_str[RECOGNITION], Point( out_img.rows-(150/scale),out_img.rows-(10/scale) ), FONT_HERSHEY_DUPLEX, scale_font, Scalar(255,0,0));


        imshow("recognition", out_img);
        //imwrite("recognition_alt.jpg", out_img);
        int key = waitKey(30);
        if (key == 27) //wait for key
        {
            cout << "esc key pressed" << endl;
            break;
        }
        else
        {
            switch (key)
            {
            case 103: //g
                GROUPING_ALGORITHM = (GROUPING_ALGORITHM+1)%2;
                cout << "Grouping switched to " << grouping_algorithms_str[GROUPING_ALGORITHM] << endl;
                break;
            case 111: //o
                RECOGNITION = (RECOGNITION+1)%2;
                cout << "OCR switched to " << recognitions_str[RECOGNITION] << endl;
                break;
            case 114: //r
                REGION_TYPE = (REGION_TYPE+1)%2;
                cout << "Regions switched to " << region_types_str[REGION_TYPE] << endl;
                break;
            case 115: //s
                downsize = !downsize;
                break;
            default:
                break;

            }
        }

    }

    return 0;
}

bool isRepetitive(const string& s)
{
    int count  = 0;
    int count2 = 0;
    int count3 = 0;
    int first=(int)s[0];
    int last=(int)s[(int)s.size()-1];
    for (int i=0; i<(int)s.size(); i++)
    {
        if ((s[i] == 'i') ||
                (s[i] == 'l') ||
                (s[i] == 'I'))
            count++;
        if((int)s[i]==first)
            count2++;
        if((int)s[i]==last)
            count3++;
    }
    if ((count > ((int)s.size()+1)/2) || (count2 == (int)s.size()) || (count3 > ((int)s.size()*2)/3))
    {
        return true;
    }


    return false;
}


void er_draw(vector<Mat> &channels, vector<vector<ERStat> > &regions, vector<Vec2i> group, Mat& segmentation)
{
    for (int r=0; r<(int)group.size(); r++)
    {
        ERStat er = regions[group[r][0]][group[r][1]];
        if (er.parent != NULL) // deprecate the root region
        {
            int newMaskVal = 255;
            int flags = 4 + (newMaskVal << 8) + FLOODFILL_FIXED_RANGE + FLOODFILL_MASK_ONLY;
            floodFill(channels[group[r][0]],segmentation,Point(er.pixel%channels[group[r][0]].cols,er.pixel/channels[group[r][0]].cols),
                      Scalar(255),0,Scalar(er.level),Scalar(0),flags);
        }
    }
}