1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
|
/*
* webcam-demo.cpp
*
* A demo program of End-to-end Scene Text Detection and Recognition.
*
* Created on: Jul 31, 2014
* Author: Lluis Gomez i Bigorda <lgomez AT cvc.uab.es>
*/
#include "opencv2/text.hpp"
#include "opencv2/core/utility.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/features2d.hpp"
#include <iostream>
using namespace std;
using namespace cv;
using namespace cv::text;
//ERStat extraction is done in parallel for different channels
class Parallel_extractCSER: public cv::ParallelLoopBody
{
private:
vector<Mat> &channels;
vector< vector<ERStat> > ®ions;
vector< Ptr<ERFilter> > er_filter1;
vector< Ptr<ERFilter> > er_filter2;
public:
Parallel_extractCSER(vector<Mat> &_channels, vector< vector<ERStat> > &_regions,
vector<Ptr<ERFilter> >_er_filter1, vector<Ptr<ERFilter> >_er_filter2)
: channels(_channels),regions(_regions),er_filter1(_er_filter1),er_filter2(_er_filter2){}
virtual void operator()( const cv::Range &r ) const
{
for (int c=r.start; c < r.end; c++)
{
er_filter1[c]->run(channels[c], regions[c]);
er_filter2[c]->run(channels[c], regions[c]);
}
}
Parallel_extractCSER & operator=(const Parallel_extractCSER &a);
};
//OCR recognition is done in parallel for different detections
template <class T>
class Parallel_OCR: public cv::ParallelLoopBody
{
private:
vector<Mat> &detections;
vector<string> &outputs;
vector< vector<Rect> > &boxes;
vector< vector<string> > &words;
vector< vector<float> > &confidences;
vector< Ptr<T> > &ocrs;
public:
Parallel_OCR(vector<Mat> &_detections, vector<string> &_outputs, vector< vector<Rect> > &_boxes,
vector< vector<string> > &_words, vector< vector<float> > &_confidences,
vector< Ptr<T> > &_ocrs)
: detections(_detections), outputs(_outputs), boxes(_boxes), words(_words),
confidences(_confidences), ocrs(_ocrs)
{}
virtual void operator()( const cv::Range &r ) const
{
for (int c=r.start; c < r.end; c++)
{
ocrs[c%ocrs.size()]->run(detections[c], outputs[c], &boxes[c], &words[c], &confidences[c], OCR_LEVEL_WORD);
}
}
Parallel_OCR & operator=(const Parallel_OCR &a);
};
//Discard wrongly recognised strings
bool isRepetitive(const string& s);
//Draw ER's in an image via floodFill
void er_draw(vector<Mat> &channels, vector<vector<ERStat> > ®ions, vector<Vec2i> group, Mat& segmentation);
//Perform text detection and recognition from webcam
int main(int argc, char* argv[])
{
cout << endl << argv[0] << endl << endl;
cout << "A demo program of End-to-end Scene Text Detection and Recognition using webcam." << endl << endl;
cout << " Usage: " << argv[0] << " [camera_index]" << endl << endl;
cout << " Press 'r' to switch between MSER/CSER regions." << endl;
cout << " Press 'g' to switch between Horizontal and Arbitrary oriented grouping." << endl;
cout << " Press 'o' to switch between OCRTesseract/OCRHMMDecoder recognition." << endl;
cout << " Press 's' to scale down frame size to 320x240." << endl;
cout << " Press 'ESC' to exit." << endl << endl;
namedWindow("recognition",WINDOW_NORMAL);
bool downsize = false;
int REGION_TYPE = 1;
int GROUPING_ALGORITHM = 0;
int RECOGNITION = 0;
char *region_types_str[2] = {const_cast<char *>("ERStats"), const_cast<char *>("MSER")};
char *grouping_algorithms_str[2] = {const_cast<char *>("exhaustive_search"), const_cast<char *>("multioriented")};
char *recognitions_str[2] = {const_cast<char *>("Tesseract"), const_cast<char *>("NM_chain_features + KNN")};
Mat frame,grey,orig_grey,out_img;
vector<Mat> channels;
vector<vector<ERStat> > regions(2); //two channels
// Create ERFilter objects with the 1st and 2nd stage default classifiers
// since er algorithm is not reentrant we need one filter for channel
vector< Ptr<ERFilter> > er_filters1;
vector< Ptr<ERFilter> > er_filters2;
for (int i=0; i<2; i++)
{
Ptr<ERFilter> er_filter1 = createERFilterNM1(loadClassifierNM1("trained_classifierNM1.xml"),8,0.00015f,0.13f,0.2f,true,0.1f);
Ptr<ERFilter> er_filter2 = createERFilterNM2(loadClassifierNM2("trained_classifierNM2.xml"),0.5);
er_filters1.push_back(er_filter1);
er_filters2.push_back(er_filter2);
}
//double t_r = getTickCount();
//Initialize OCR engine (we initialize 10 instances in order to work several recognitions in parallel)
cout << "Initializing OCR engines ..." << endl;
int num_ocrs = 10;
vector< Ptr<OCRTesseract> > ocrs;
for (int o=0; o<num_ocrs; o++)
{
ocrs.push_back(OCRTesseract::create());
}
Mat transition_p;
string filename = "OCRHMM_transitions_table.xml";
FileStorage fs(filename, FileStorage::READ);
fs["transition_probabilities"] >> transition_p;
fs.release();
Mat emission_p = Mat::eye(62,62,CV_64FC1);
string voc = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
vector< Ptr<OCRHMMDecoder> > decoders;
for (int o=0; o<num_ocrs; o++)
{
decoders.push_back(OCRHMMDecoder::create(loadOCRHMMClassifierNM("OCRHMM_knn_model_data.xml.gz"),
voc, transition_p, emission_p));
}
cout << " Done!" << endl;
//cout << "TIME_OCR_INITIALIZATION_ALT = "<< ((double)getTickCount() - t_r)*1000/getTickFrequency() << endl;
int cam_idx = 0;
if (argc > 1)
cam_idx = atoi(argv[1]);
VideoCapture cap(cam_idx);
if(!cap.isOpened())
{
cout << "ERROR: Cannot open default camera (0)." << endl;
return -1;
}
while (cap.read(frame))
{
double t_all = (double)getTickCount();
if (downsize)
resize(frame,frame,Size(320,240));
/*Text Detection*/
cvtColor(frame,grey,COLOR_RGB2GRAY);
grey.copyTo(orig_grey);
// Extract channels to be processed individually
channels.clear();
channels.push_back(grey);
channels.push_back(255-grey);
regions[0].clear();
regions[1].clear();
//double t_d = (double)getTickCount();
switch (REGION_TYPE)
{
case 0:
{
parallel_for_(cv::Range(0,(int)channels.size()), Parallel_extractCSER(channels,regions,er_filters1,er_filters2));
break;
}
case 1:
{
//Extract MSER
vector<vector<Point> > contours;
vector<Rect> bboxes;
Ptr<MSER> mser = MSER::create(21,(int)(0.00002*grey.cols*grey.rows),(int)(0.05*grey.cols*grey.rows),1,0.7);
mser->detectRegions(grey, contours, bboxes);
//Convert the output of MSER to suitable input for the grouping/recognition algorithms
if (contours.size() > 0)
MSERsToERStats(grey, contours, regions);
break;
}
case 2:
{
break;
}
}
//cout << "TIME_REGION_DETECTION_ALT = " << ((double)getTickCount() - t_d)*1000/getTickFrequency() << endl;
// Detect character groups
//double t_g = getTickCount();
vector< vector<Vec2i> > nm_region_groups;
vector<Rect> nm_boxes;
switch (GROUPING_ALGORITHM)
{
case 0:
{
erGrouping(frame, channels, regions, nm_region_groups, nm_boxes, ERGROUPING_ORIENTATION_HORIZ);
break;
}
case 1:
{
erGrouping(frame, channels, regions, nm_region_groups, nm_boxes, ERGROUPING_ORIENTATION_ANY, "./trained_classifier_erGrouping.xml", 0.5);
break;
}
}
//cout << "TIME_GROUPING_ALT = " << ((double)getTickCount() - t_g)*1000/getTickFrequency() << endl;
/*Text Recognition (OCR)*/
frame.copyTo(out_img);
int scale = downsize ? 2 : 1;
float scale_img = (float)((600.f/frame.rows)/scale);
float scale_font = (float)(2-scale_img)/1.4f;
vector<string> words_detection;
float min_confidence1 = 0.f, min_confidence2 = 0.f;
if (RECOGNITION == 0)
{
min_confidence1 = 51.f; min_confidence2 = 60.f;
}
vector<Mat> detections;
//t_r = getTickCount();
for (int i=0; i<(int)nm_boxes.size(); i++)
{
rectangle(out_img, nm_boxes[i].tl(), nm_boxes[i].br(), Scalar(255,255,0),3);
Mat group_img = Mat::zeros(frame.rows+2, frame.cols+2, CV_8UC1);
er_draw(channels, regions, nm_region_groups[i], group_img);
group_img(nm_boxes[i]).copyTo(group_img);
copyMakeBorder(group_img,group_img,15,15,15,15,BORDER_CONSTANT,Scalar(0));
detections.push_back(group_img);
}
vector<string> outputs((int)detections.size());
vector< vector<Rect> > boxes((int)detections.size());
vector< vector<string> > words((int)detections.size());
vector< vector<float> > confidences((int)detections.size());
// parallel process detections in batches of ocrs.size() (== num_ocrs)
for (int i=0; i<(int)detections.size(); i=i+(int)num_ocrs)
{
Range r;
if (i+(int)num_ocrs <= (int)detections.size())
r = Range(i,i+(int)num_ocrs);
else
r = Range(i,(int)detections.size());
switch(RECOGNITION)
{
case 0:
parallel_for_(r, Parallel_OCR<OCRTesseract>(detections, outputs, boxes, words, confidences, ocrs));
break;
case 1:
parallel_for_(r, Parallel_OCR<OCRHMMDecoder>(detections, outputs, boxes, words, confidences, decoders));
break;
}
}
for (int i=0; i<(int)detections.size(); i++)
{
outputs[i].erase(remove(outputs[i].begin(), outputs[i].end(), '\n'), outputs[i].end());
//cout << "OCR output = \"" << outputs[i] << "\" lenght = " << outputs[i].size() << endl;
if (outputs[i].size() < 3)
continue;
for (int j=0; j<(int)boxes[i].size(); j++)
{
boxes[i][j].x += nm_boxes[i].x-15;
boxes[i][j].y += nm_boxes[i].y-15;
//cout << " word = " << words[j] << "\t confidence = " << confidences[j] << endl;
if ((words[i][j].size() < 2) || (confidences[i][j] < min_confidence1) ||
((words[i][j].size()==2) && (words[i][j][0] == words[i][j][1])) ||
((words[i][j].size()< 4) && (confidences[i][j] < min_confidence2)) ||
isRepetitive(words[i][j]))
continue;
words_detection.push_back(words[i][j]);
rectangle(out_img, boxes[i][j].tl(), boxes[i][j].br(), Scalar(255,0,255),3);
Size word_size = getTextSize(words[i][j], FONT_HERSHEY_SIMPLEX, (double)scale_font, (int)(3*scale_font), NULL);
rectangle(out_img, boxes[i][j].tl()-Point(3,word_size.height+3), boxes[i][j].tl()+Point(word_size.width,0), Scalar(255,0,255),-1);
putText(out_img, words[i][j], boxes[i][j].tl()-Point(1,1), FONT_HERSHEY_SIMPLEX, scale_font, Scalar(255,255,255),(int)(3*scale_font));
}
}
//cout << "TIME_OCR_ALT = " << ((double)getTickCount() - t_r)*1000/getTickFrequency() << endl;
t_all = ((double)getTickCount() - t_all)*1000/getTickFrequency();
char buff[100];
sprintf(buff, "%2.1f Fps. @ %dx%d", (float)(1000/t_all), out_img.cols, out_img.rows);
string fps_info = buff;
rectangle(out_img, Point( out_img.rows-(160/scale),out_img.rows-(70/scale) ), Point(out_img.cols,out_img.rows), Scalar(255,255,255),-1);
putText(out_img, fps_info, Point( 10,out_img.rows-(10/scale) ), FONT_HERSHEY_DUPLEX, scale_font, Scalar(255,0,0));
putText(out_img, region_types_str[REGION_TYPE], Point( out_img.rows-(150/scale),out_img.rows-(50/scale) ), FONT_HERSHEY_DUPLEX, scale_font, Scalar(255,0,0));
putText(out_img, grouping_algorithms_str[GROUPING_ALGORITHM], Point( out_img.rows-(150/scale),out_img.rows-(30/scale) ), FONT_HERSHEY_DUPLEX, scale_font, Scalar(255,0,0));
putText(out_img, recognitions_str[RECOGNITION], Point( out_img.rows-(150/scale),out_img.rows-(10/scale) ), FONT_HERSHEY_DUPLEX, scale_font, Scalar(255,0,0));
imshow("recognition", out_img);
//imwrite("recognition_alt.jpg", out_img);
int key = waitKey(30);
if (key == 27) //wait for key
{
cout << "esc key pressed" << endl;
break;
}
else
{
switch (key)
{
case 103: //g
GROUPING_ALGORITHM = (GROUPING_ALGORITHM+1)%2;
cout << "Grouping switched to " << grouping_algorithms_str[GROUPING_ALGORITHM] << endl;
break;
case 111: //o
RECOGNITION = (RECOGNITION+1)%2;
cout << "OCR switched to " << recognitions_str[RECOGNITION] << endl;
break;
case 114: //r
REGION_TYPE = (REGION_TYPE+1)%2;
cout << "Regions switched to " << region_types_str[REGION_TYPE] << endl;
break;
case 115: //s
downsize = !downsize;
break;
default:
break;
}
}
}
return 0;
}
bool isRepetitive(const string& s)
{
int count = 0;
int count2 = 0;
int count3 = 0;
int first=(int)s[0];
int last=(int)s[(int)s.size()-1];
for (int i=0; i<(int)s.size(); i++)
{
if ((s[i] == 'i') ||
(s[i] == 'l') ||
(s[i] == 'I'))
count++;
if((int)s[i]==first)
count2++;
if((int)s[i]==last)
count3++;
}
if ((count > ((int)s.size()+1)/2) || (count2 == (int)s.size()) || (count3 > ((int)s.size()*2)/3))
{
return true;
}
return false;
}
void er_draw(vector<Mat> &channels, vector<vector<ERStat> > ®ions, vector<Vec2i> group, Mat& segmentation)
{
for (int r=0; r<(int)group.size(); r++)
{
ERStat er = regions[group[r][0]][group[r][1]];
if (er.parent != NULL) // deprecate the root region
{
int newMaskVal = 255;
int flags = 4 + (newMaskVal << 8) + FLOODFILL_FIXED_RANGE + FLOODFILL_MASK_ONLY;
floodFill(channels[group[r][0]],segmentation,Point(er.pixel%channels[group[r][0]].cols,er.pixel/channels[group[r][0]].cols),
Scalar(255),0,Scalar(er.level),Scalar(0),flags);
}
}
}
|