1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
|
Histogram Equalization {#tutorial_histogram_equalization}
======================
Goal
----
In this tutorial you will learn:
- What an image histogram is and why it is useful
- To equalize histograms of images by using the OpenCV function @ref cv::equalizeHist
Theory
------
### What is an Image Histogram?
- It is a graphical representation of the intensity distribution of an image.
- It quantifies the number of pixels for each intensity value considered.

### What is Histogram Equalization?
- It is a method that improves the contrast in an image, in order to stretch out the intensity
range.
- To make it clearer, from the image above, you can see that the pixels seem clustered around the
middle of the available range of intensities. What Histogram Equalization does is to *stretch
out* this range. Take a look at the figure below: The green circles indicate the
*underpopulated* intensities. After applying the equalization, we get an histogram like the
figure in the center. The resulting image is shown in the picture at right.

### How does it work?
- Equalization implies *mapping* one distribution (the given histogram) to another distribution (a
wider and more uniform distribution of intensity values) so the intensity values are spreaded
over the whole range.
- To accomplish the equalization effect, the remapping should be the *cumulative distribution
function (cdf)* (more details, refer to *Learning OpenCV*). For the histogram \f$H(i)\f$, its
*cumulative distribution* \f$H^{'}(i)\f$ is:
\f[H^{'}(i) = \sum_{0 \le j < i} H(j)\f]
To use this as a remapping function, we have to normalize \f$H^{'}(i)\f$ such that the maximum value
is 255 ( or the maximum value for the intensity of the image ). From the example above, the
cumulative function is:

- Finally, we use a simple remapping procedure to obtain the intensity values of the equalized
image:
\f[equalized( x, y ) = H^{'}( src(x,y) )\f]
Code
----
- **What does this program do?**
- Loads an image
- Convert the original image to grayscale
- Equalize the Histogram by using the OpenCV function @ref cv::equalizeHist
- Display the source and equalized images in a window.
- **Downloadable code**: Click
[here](https://github.com/opencv/opencv/tree/master/samples/cpp/tutorial_code/Histograms_Matching/EqualizeHist_Demo.cpp)
- **Code at glance:**
@include samples/cpp/tutorial_code/Histograms_Matching/EqualizeHist_Demo.cpp
Explanation
-----------
-# Declare the source and destination images as well as the windows names:
@code{.cpp}
Mat src, dst;
char* source_window = "Source image";
char* equalized_window = "Equalized Image";
@endcode
-# Load the source image:
@code{.cpp}
src = imread( argv[1], 1 );
if( !src.data )
{ cout<<"Usage: ./Histogram_Demo <path_to_image>"<<endl;
return -1;}
@endcode
-# Convert it to grayscale:
@code{.cpp}
cvtColor( src, src, COLOR_BGR2GRAY );
@endcode
-# Apply histogram equalization with the function @ref cv::equalizeHist :
@code{.cpp}
equalizeHist( src, dst );
@endcode
As it can be easily seen, the only arguments are the original image and the output (equalized)
image.
-# Display both images (original and equalized) :
@code{.cpp}
namedWindow( source_window, WINDOW_AUTOSIZE );
namedWindow( equalized_window, WINDOW_AUTOSIZE );
imshow( source_window, src );
imshow( equalized_window, dst );
@endcode
-# Wait until user exists the program
@code{.cpp}
waitKey(0);
return 0;
@endcode
Results
-------
-# To appreciate better the results of equalization, let's introduce an image with not much
contrast, such as:

which, by the way, has this histogram:

notice that the pixels are clustered around the center of the histogram.
-# After applying the equalization with our program, we get this result:

this image has certainly more contrast. Check out its new histogram like this:

Notice how the number of pixels is more distributed through the intensity range.
@note
Are you wondering how did we draw the Histogram figures shown above? Check out the following
tutorial!
|