1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
|
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
// (3-clause BSD License)
//
// Copyright (C) 2015-2016, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * Neither the names of the copyright holders nor the names of the contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall copyright holders or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
using namespace cv;
using namespace std;
using namespace testing;
#include <vector>
#include <numeric>
CV_ENUM(Method, RANSAC, LMEDS)
typedef TestWithParam<Method> EstimateAffinePartial2D;
static float rngIn(float from, float to) { return from + (to-from) * (float)theRNG(); }
// get random matrix of affine transformation limited to combinations of translation,
// rotation, and uniform scaling
static Mat rngPartialAffMat() {
double theta = rngIn(0, (float)CV_PI*2.f);
double scale = rngIn(0, 3);
double tx = rngIn(-2, 2);
double ty = rngIn(-2, 2);
double aff[2*3] = { std::cos(theta) * scale, -std::sin(theta) * scale, tx,
std::sin(theta) * scale, std::cos(theta) * scale, ty };
return Mat(2, 3, CV_64F, aff).clone();
}
TEST_P(EstimateAffinePartial2D, test2Points)
{
// try more transformations
for (size_t i = 0; i < 500; ++i)
{
Mat aff = rngPartialAffMat();
// setting points that are no in the same line
Mat fpts(1, 2, CV_32FC2);
Mat tpts(1, 2, CV_32FC2);
fpts.at<Point2f>(0) = Point2f( rngIn(1,2), rngIn(5,6) );
fpts.at<Point2f>(1) = Point2f( rngIn(3,4), rngIn(3,4) );
transform(fpts, tpts, aff);
vector<uchar> inliers;
Mat aff_est = estimateAffinePartial2D(fpts, tpts, inliers, GetParam() /* method */);
EXPECT_NEAR(0., cvtest::norm(aff_est, aff, NORM_INF), 1e-3);
// all must be inliers
EXPECT_EQ(countNonZero(inliers), 2);
}
}
TEST_P(EstimateAffinePartial2D, testNPoints)
{
// try more transformations
for (size_t i = 0; i < 500; ++i)
{
Mat aff = rngPartialAffMat();
const int method = GetParam();
const int n = 100;
int m;
// LMEDS can't handle more than 50% outliers (by design)
if (method == LMEDS)
m = 3*n/5;
else
m = 2*n/5;
const float shift_outl = 15.f;
const float noise_level = 20.f;
Mat fpts(1, n, CV_32FC2);
Mat tpts(1, n, CV_32FC2);
randu(fpts, 0., 100.);
transform(fpts, tpts, aff);
/* adding noise to some points */
Mat outliers = tpts.colRange(m, n);
outliers.reshape(1) += shift_outl;
Mat noise (outliers.size(), outliers.type());
randu(noise, 0., noise_level);
outliers += noise;
vector<uchar> inliers;
Mat aff_est = estimateAffinePartial2D(fpts, tpts, inliers, method);
EXPECT_FALSE(aff_est.empty());
EXPECT_NEAR(0., cvtest::norm(aff_est, aff, NORM_INF), 1e-4);
bool inliers_good = count(inliers.begin(), inliers.end(), 1) == m &&
m == accumulate(inliers.begin(), inliers.begin() + m, 0);
EXPECT_TRUE(inliers_good);
}
}
INSTANTIATE_TEST_CASE_P(Calib3d, EstimateAffinePartial2D, Method::all());
|